Transient State Signaling for Spectre/Meltdown Transient Cache

Keywords:

Abstract:

Side-channel Prevention

Zelong Li®? and Akhilesh Tyagi®P

lowa State University, Ames, lowa, U.S.A.

Branch Predictor, Side-channel, Speculative Execution, Timing Attacks, Cache Hierarchy.

The discovery of Meltdown and Spectre attacks and their variants showed that speculative execution offers
a major attack surface for micro-architectural side channel attacks. The secret data-dependent traces in the
CPU’s micro-architectural state are not cleansed which can be exploited by an adversary to reveal victim’s
secrets. In this paper, we propose a cache control scheme that cooperates with a novel load store queue(LSQ)
unit to nullify the cache side-channel exploited by Meltdown and Spectre attacks and their variants. In our
proposed cache scheme, a new saturating reference counter is added to each cache line to hold the number of
accesses since its arrival from the higher level of the memory hierarchy. For every squashed (uncommitted)
speculative transient load, a corresponding flush request packet is sent to the downstream memory hierarchy.
This ensures that any cache line brought into the cache by a transient load is always evicted soon after the
corresponding mis-speculation commit. A cache side-channel adversary can no longer detect the existence
of a transiently loaded cache block. Our experiment on gem5 shows that by integrating the proposed design,
Meltdown and Spectre variants that uses Flush+Reload attack to create the cache covert channel are completely

closed.

1 INTRODUCTION

By taking advantage of virtual to physical address
translation, operating systems provide each running
process its own isolated virtual address space lead-
ing to memory isolation for user processes. Oper-
ating systems also need to prevent a process which
has a lower privilege level from reading or writing
a memory address that requires a higher privileged
level. For example, the memory address space be-
longing to the kernel can only be accessed by a user
process in a secure way, such as system call. Such
mechanisms have proven their effectiveness on archi-
tecture level security and hence are widely adopted on
billions of devices. However, recently, some micro-
architectural level speculation attacks such as Melt-
down (Lipp et al., 2018) and Spectre (Kocher et al.,
2019) have been shown to break down all security
foundations provided by memory isolation.

In this paper, we propose and evaluate a defense
against Meltdown and Spectre attacks by introduc-
ing a Load/Store Queue Controller (LSQC) cooper-
ating with a novel cache line design. We focus on

https://orcid.org/0000-0003-0006-0145
@ https://orcid.org/0000-0001-9096-7116

Li, Z. and Tyagi, A.
Transient State Signaling for Spectre/Meltdown Transient Cache Side-channel Prevention.
DOI: 10.5220/0011307500003283

the micro-architectural cache state of the cache sys-
tem which has been the most widely exploited side-
channel component in a processor. Our proposed de-
sign can identify the cache lines that were brought
into the cache by transient instructions. These tran-
siently loaded cache lines are flushed when the corre-
sponding transient load instructions are flushed in the
pipeline. This maintains the performance benefit of
transient execution with minimal modifications to the
existing underlying cache memory hierarchy. We add
a new meta data element to each cache line. This en-
ables cache controller to decide whether a cache line
should be evicted based on the reference count of each
cache line. We present our approach in detail in Sec-
tion 3.

In Section 4, we analyze the security feature to-
gether with the performance & complexity impact of
our design. We demonstrate that the proposed solu-
tion can successfully defend against Meltdown, Spec-
tre and many of their variants with low performance
loss. The performance difference between the base-
line processor design and our proposed design shows
that the overall performance loss is negligible.

In summary, the main contributions of this work
are:

655

In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 655-660

ISBN: 978-989-758-590-6; ISSN: 2184-7711

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SECRYPT 2022 - 19th International Conference on Security and Cryptography

* We present a novel cache design that can identify
cache lines which are brought in by transient load
instructions.

* A LSQ unit controller to complement the pro-
posed cache design to keep track of cache-line
non-transient reference count.

* We identify the limitations of our work and pro-
pose solutions to mitigate these limitations.

* We evaluate performance penalty caused by im-
plementing our design in modern CPUs on Gem5
simulator. We show that the performance penalty
is acceptable.

2 BACKGROUND

In this section, we introduce the mechanism and ca-
pabilities of cache timing side-channel attacks. We
discuss the exploitation of cache as a side channel and
then overview how the Meltdown and Spectre attacks
are mounted.

2.1 Timing Side Channel

The significant timing difference between a cache hit
and a cache miss has led to a practical measurement
to exploit cache as a side-channel. Cache based side-
channel attacks have been successfully demonstrated
in a wide range of scenarios. It can be mounted
on both inclusive and non-inclusive cache hierar-
chies. Several cache attack techniques have been pro-
posed and implemented based on the timing differ-
ence, including Prime+Probe (Osvik et al., 2006) and
Flush+Reload.

2.2 Meltdown

Meltdown (Lipp et al., 2018) attack exploits the out-
of-order execution performance enhancing specula-
tion that all accesses satisfy the needed access priv-
ilege level. When a user application that is running
at a lower privilege level and tries to access a mem-
ory address that belongs to the kernel, it will not suc-
ceed at the architecture level due to the privilege level
violation. However, the speculative memory access
request to the target address will bring this data into
the cache, even though this data will not be brought
into the processor registers. Since cache is not an ar-
chitecturally visible object, this does not violate the
architecturally visible state. However, these changes
in the cache micro-architecture state can be probed
by an attacker with a side channel to dump the whole
kernel address space.

656

2.3 Spectre

Spectre attack relies on a covert channel between
two different processes. It breaks the isolation be-
tween the attacker and the victim process. The at-
tacker first mistrains the branch predictor so that the
branch prediction will predict the path containing the
secret revealing load. Explicit instructions to delay
the branch resolution are also inserted. The victim
load instructions along the mispredicted path will load
the victim’s secret into cache lines. On branch reso-
lution, the load or the entire mispredicted path will
be squashed. The transiently prefetched data in the
cache lines can be read by the attacker process to ex-
tract the confidential information through the cache
side-channel.

3 THREAT MODEL

We assume that the attacker process is running at user
privilege level. It is trying to leak secret information
in the victim process or kernel through transient exe-
cution. We assume that the attacker process and the
victim process are running on the same logical core
on the same machine in a time-sharing manner and
the system has no software-based defense for tran-
sient execution. It is possible for the attacker to ar-
bitrarily control the history of the branch prediction
unit and know the source code and the address layout
of the victim process.

This paper aims at mitigating the Flush+Reload
attack as it is the most widely used method in the
existing attack variants to decode the secret in the
cache state. We believe the threat model we dis-
cussed above represents a large class of Spectre and
Meltdown attacks and similar variants such as Fore-
shadow (Van Bulck et al., 2018). Yet we acknowl-
edge that other types of cache side channel attacks
such as Prime+Probe and Evict+Reload need also be
mitigated. We will discuss the possible expansion of
our proposed work in Section 6 as future work.

4 PROTECTION AGAINST
MELTDOWN AND SPECTRE

In this section, we discuss our proposed design in de-
tail. The basic principle is to identify and evict the
cache lines loaded into the cache by transient instruc-
tions. Thus, during the reload phase, the attacker will
not be able to detect a cache hit and infer the secret
information.

Transient State Signaling for Spectre/Meltdown Transient Cache Side-channel Prevention

’ reference count ’ tag ’ data block ’ flag bits ’

Figure 1: Cache line organization with reference count.

4.1 Cache Line Reference Count

Along with the payload data, extra bits are stored in
each cache line as meta data to describe some specific
properties of the corresponding cache line. In this pa-
per, we propose to add one more dimension to each
cache line’s meta data vector. As shown in Figure 1,
the reference count of each cache block is stored in
the meta data together with other bits. It is used to
keep track of the reference count since the last time
this cache line was brought into this level of the cache.
Upon a Last-Level-Cache (LLC) miss, the requested
cache line will be fetched from the main memory to
the CPU and populate all levels of the cache. Initially,
when a cache line is brought into a particular level of
cache, the pending requests that are waiting for this
cache line will be serviced. For each read and write
request that has been serviced by a cache line, the ref-
erence count will be increased by one. In our pro-
posed design, when the data of a cache line arrives
at a particular level of cache, it will first be copied
into a temporary cache line buffer. All of the pend-
ing requests stored in the miss status holding register
(MSHR) are also serviced. Upon completion of ser-
vicing the requests to this cache line, it will be stored
into the correct cache set.

To complement the proposed cache line design,
we also propose a novel LSQ unit. Besides the con-
ventional type of memory requests that an LSQ unit
can send to the upstream memory hierarchy, a new
type of request, SpecFlush is also available. It is
designed to help the cache decrement the reference
count of a target cache line on the corresponding load
instruction squashing. In the proposed LSQ unit de-
sign, when a load instruction is later found out to
be transient, and needs to be squashed, the LSQ unit
will send out SpecFlush requests to reduce the refer-
ence count by 1. This negates the +1 reference count
brought about by the speculative, transient load into
the cache line. In summary, for each squashed load
instruction that has sent a load request to the cache, a
corresponding SpecFlush request are sent during the
squashing process. In this paper, we present our pro-
posed design on a two level cache system where L2
is the LLC to simplify the discussion. Following the
same principle, the proposed work can be easily ex-
tended to work on a multi level cache system. Upon
receiving a read request from L1 cache, the L2 will
perform the same operations with respect to the ref-
erence count as L1, where its down stream memory

component is the main memory. L2 cache lines also
maintain a reference count in a manner similar to L1.

For each instruction that reads a memory address,
a load queue entry is placed in the load queue to keep
track of the status of a memory read request. The LSQ
unit will also send out memory read request packets
to the down stream memory hierarchy to request the
data. The packet will first arrive at the L1 cache. Two
different scenarios could take place upon receiving
the packet. The L1 cache may have a copy of the re-
quested data which, in turn, results in a cache hit. In
this case, L1 cache can simply satisfy this request by
sending a response to the CPU. It can simultaneously
increase the reference count of the cache line that was
just used to service the request. On the other hand,
a L1 cache miss could happen. In this scenario, two
sub-cases need to be treated differently. In the first
case, a prior instruction that requests the same cache
line data may have just sent a request packet to the L1
cache, yet the data has not came back from the down
stream memory hierarchy. In this case, the L1 cache
must have allocated a MSHR entry to hold the infor-
mation about the ongoing memory read request to the
same cache line data. The MSHR can simply append
the current request packet at the back of the packet
list while waiting for the data. In the second sub-
case, upon encountering a cache miss when receiving
a read request packet, there may not be an MSHR en-
try for the requested address which means this packet
is the first packet that is requesting this address from
L1 cache. An MSHR entry needs to be allocated for
a corresponding available cache line. This packet will
be the first element in the packet list of this MSHR
entry. In order to retrieve the data from the memory,
a down stream packet also needs to be constructed
based on the received packet to be sent out from L1 to
L2 cache. In both of the sub-cases when cache miss
happens, upon receiving the requested data from the
down stream memory hierarchy, a temporary cache
block is used to store the data. All of the pending re-
quests including read, write, SpecFlush, etc. to the
requested cache line are serviced. By executing each
request in the pending request list, the reference count
of temporary cache block will be increased by one
when servicing a read/write request or decreased by
one when encountering a SpecFlush request. If, af-
ter servicing all of the pending requests, the reference
count is larger than O or the block is dirty, the cache
line stays valid. This indicates that at least one load
access instruction for this cache line is not squashed
or a write request has accessed this cache line. This
means that this cache line exists due to a non-transient
program behavior and hence should continue to be
part of the cache micro-architecture state.

657

SECRYPT 2022 - 19th International Conference on Security and Cryptography

However, if the reference count of the temporary
cache block is 0 and it is not in dirty state, implying
that there are a equal number of loads and SpecFlush
requests, this cache line should be invalidated. A ref-
erence count of 0 indicates that the cache line exis-
tence reasons are exclusively transient. It should also
send a SpecFlush request to the cache down stream
to indicate that these caches may also need to evict
the cache block. In summary, after servicing all of
the pending requests at the L1 cache, if the reference
count of the requested cache line becomes 0, the tem-
porary cache line should be evicted. Additionally, a
SpecFlush request needs to be sent to the L2 cache.
Upon receiving the SpecFlush in L2 cache, it will also
decrease the reference count of the transiently loaded
cache line to 0. This forces the L2 cache to also evict
this cache line even if it is not a temporary cache line.
This in turn will send a SpecFlush request to the next
level of the cache if it exists. The SpecFlush request
will percolate through all the levels of the cache and
flush the cache line in every level of the cache. In
case, the transient load instruction is requesting data
that hits in L2 but misses in L1 cache, it increases
the reference count of the requested cache line in L2
from n to n+ 1 where n > 0. A copy of the cache line
will be sent to L1. Once L1 services all of the pend-
ing requests using the requested data and invalidates
this cache line based on reference count 0, it sends a
SpecFlush request to L2. This decreases the reference
count of the target cache line in L2 back to n.

For cache lines that are brought into the cache by
retired instructions, the reference count must be larger
than 0. There is a chance for these cache lines may
be accessed by a transient load instruction as well
and temporarily increases their reference count. The
reference count will be restored to the original value
when transient load instructions are squashed result-
ing in SpecFlush request being sent to the cache. Pre-
serving such cache lines in the cache results in a per-
formance benefit due to locality.

While each non-transient memory access will al-
ways increase the reference count by one, it is not
necessary for each cache line to maintain an exact,
large reference count. A saturating 2-bit counter as-
sociated with each cache line may suffice for refer-
ence count. It is also much more resource efficient to
maintain in hardware. For a cache line A with a refer-
ence count of three, which is the maximum saturating
value, a sequence of five read instructions will keep
the reference count at three, instead of increasing it to
eight. If these five instructions are finally determined
to be transient and are squashed in the pipeline, five
SpecFlush request packets will be sent to the cache,
which effectively reduces the reference count of cache

658

line A from three to zero. This will evict the cache
line A leading to a performance loss. The program be-
havior however is not altered. In order to reduce the
probability of a false eviction, more reference count
bits are preferred. In our testing and evaluation setup
on the Gem5 simulator, we observe that a maximum
of seven speculative load instruction requests for the
same address can be issued to the cache. This ensures
that a 4 bits wide reference count field will suffice to
prevent false evictions to maximize the program per-
formance.

Unlike InvisiSpec (Yan et al., 2018) and Cleanup-
spec (Saileshwar and Qureshi, 2019) that only support
software prefetching due to the lack of knowledge
about the prefetched cache lines, both software and
hardware prefetching are supported by our design. At
the moment when a perfected cache line arrives the
cache, if the prefetched cache line is not accessed by
any pending load or store request, it will have a ref-
erence count of 0. Therefore, prefetched cache line
will be evicted after receiving the response from the
downstream memory hierarchy.

5 EVALUATION

5.1 Evaluation Setup

To evaluate the proposed design, we use Gem5 to
model an x86 system that supports out-of-order and
speculative execution. We integrate our proposed
LSQ unit design and cache scheme in the GemS5 simu-
lator and simulate a subset of SPEC CPU2006 bench-
marks in syscall emulation mode on a single core sys-
tem. To facilitate the simulation process yet capturing
the performance impact of our proposed design with
high accuracy, we used Pinplay(Patil et al., 2010) with
SimPoint(Hamerly et al., 2005) to discover the repre-
sentative simulation locations for SPEC benchmarks.
For each benchmark program we use the reference in-
put size and generate up to ten simulation locations.
For each simulation location, we use 10 million in-
structions to warm up the cache and then execute 1
million instructions to observe the performance. The
CPU and cache configurations of our evaluation setup
are shown in Table 1.

5.2 Performance Overhead

Figure 2 breaks down the performance overhead of
implementing our proposed design compared to the
baseline CPU. It illustrates normalized IPC values
for the tested SPEC benchmarks. Here, we see that
mcf is hurt the most among the tested benchmarks

Transient State Signaling for Spectre/Meltdown Transient Cache Side-channel Prevention

1.005

1
0.995
0.99
0.985

0.98
0.975
0.97
0.965

perlbench bzip2

Normalized IPC

omentpp h264

bwaves hmmer sjeng astar

specrand geomean

Flgure 2: Relative Performance Compared to Baseline CPU.

0.6
0.4
H

o | ||

perlbench bzip2 gee mcf

Branch Miss-
Prediction Rate

omentpp h264

bwaves hmmer sjeng astar

specrand geomean

M Direct Branch M Indirect Branch

Figure 3: Direct + Indirect Branch Miss-Prediction Rate.

Table 1: Configuration of the Simulated CPU.

Parameter Configuration

Core 1-Core, 8-issue, Out-of-order,
2.0GHz

Pipleline 224 ROB entries, 32 Load
Queue entries, 32 Store Queue
entries, 256 Int and 256 FP phys-
ical registers

Branch Predic- LTAGE, 4096 BTB, 16 RAS

tor

L1-I Cache 32KB, 64B line, 2-way, 5 cycle
hit, 4 MSHRs

L1-D Cache 32KB, 64B line, 2-way, 5 cycle
hit, 4 MSHRs

L2 Cache 8MB, 64B line, 8-way, 20 cycle
hit, 20 MSHRs

Memory 4GB, DDR4-2400

as its IPC is decreased by 2.7%. While some other
benchmarks such as bwaves and hmmer slow down
by less than 0.1%. The geometric mean of the per-
formance overhead over all the benchmarks in Fig-
ure 2 is 0.8%. We believe the performance over-
head is significantly affected by the number of branch
mis-predictions and the number of transiently loaded
cache lines. For benchmarks that have lower mis-
predictions or cache misses counts during the tran-
sient window, intuitively, the performance degrada-
tion should be minimal.

For the baseline processor, when a load instruc-
tion cannot commit in the ROB, the load request may
have already been sent to the memory system and the
cache line will still be brought into the cache. This
is despite the fact that the instruction is squashed in
the pipeline. Due to data locality, this speculatively
loaded cache line is very likely to be accessed in the
near future. A branch is likely to exhibit both its taken
and not-taken paths over a short time window. Hence
a current speculative path is likely to be a commit-

ted path in the near future. This results in a cache
hit on these speculatively loaded data to improve the
performance. However, in the proposed design, such
cache lines must be flushed to eliminate the attack sur-
face. Intuitively, this likely increases the cache miss
count compared to the baseline processor which in
turn causes performance degradation.

To dive deeper in the causes of performance
degradation, Figure 3 shows the branch mis-
prediction rate in the tested SPEC 2006 benchmarks
on the baseline CPU. Due to the extremely low mis-
prediction rate, the IPC performance of benchmarks
such as h264, bwaves and hmmer are barely af-
fected. Though sjeng has a relatively high branch
miss-prediction rate, its performance is barely af-
fected due to its low cache miss rate. For a lower over-
head, it is beneficial to have a branch prediction unit
with a high accuracy. For instance, a branch predictor
with 50% accuracy will request half of the speculative
loaded cache lines to be flushed while a branch pre-
dictor with 95% accuracy will only flush 5% of the
speculative loaded cache lines.

5.3 Hardware Overhead

The extra bits for storing the reference count of each
cache line brings hardware overheads to the CPU
cache. We use CACTI (Muralimanohar et al., 2009)
v6.5 to calculate the area and power overhead that are
needed to implement the proposed design in the L2
cache. The number of extra bits added to the cache tag
vector when simulating in CACTT is the same as the
evaluation setup, which is 4 bits. At 32nm, CACTI
estimates that the area overhead for the L2 cache is
0.18mm? with dynamic access energy increased by
8.9% when accessing the tag. Compared with the L2
cache area size, which is 4.75mm?, the area overhead
is negligible.

659

SECRYPT 2022 - 19th International Conference on Security and Cryptography

6 LIMITATION AND FUTURE
DIRECTIONS

We recognize that the major limitation of the current
work is that it is only feasible when defending against
transient execution attacks that use side-channels such
as Flush+Reload and Flush+Flush. Attacks, such as
Prime+Probe, can still succeed. The first step we take
is to use a temporary cache block to store the latest
loaded cache line instead of putting the data into the
cache directly before servicing all of the pending re-
quests. Very often the temporary cache line will be
evicted after servicing, thus helping to decrease the
success rate and bandwidth of the Prime+Probe at-
tack.

Our discussions of the design details are based
on a single thread model. The proposed design can
be expanded to work with a multi-core system. In a
multi-core system, a cache line loaded during the tran-
sient execution window by one thread can be accessed
by another thread before it is evicted from the cache.
This forms a temporary side channel in the shared L3
cache. We can resolve this problem by taking advan-
tage of the saturating counter associated with each
cache line. For a system with n cores, if a transient
cache line is loaded into the L3 cache and all of the
cores are accessing this cache line transiently during
the same transient window, the reference count of this
transiently loaded cache line in L3 can reach up to
n. Thus, a cache line with a reference count greater
than n has established its bona fides as a non-transient
data. The L3 cache can respond to requests to this line
in the usual manner. However, if the reference count
of a cache line is less than n, the L3 cache can delay
its response to simulate a cache miss.

7 RELATED WORK

Since the discovery of Spectre and Meltdown, a wide
variety of defenses were proposed by both CPU ven-
dors and other researchers. Most of these proposed
defenses involve either mitigating transient execution
or mitigating the side channel. Adding a fence in-
struction after each branch instruction is the most in-
tuitive approach that can defend against transient exe-
cution. However, this approach abandons the benefits
of speculative execution causing an average of 88%
performance loss (Yan et al., 2018).

To limit the covert channels, hardware mitigation
approaches are also proposed by researchers. Safe-
Spec (Khasawneh et al., 2019) propose to introduce
extra shadow structures for caches and the TLBs to
store speculative states temporarily. If an instruction

660

is squashed in the pipeline, the corresponding entry
in the shadow structures will be discarded to leave no
traces in the micro-architecture. However, the extra
shadow structure requires a larger area to implement
compared to our proposed design.

REFERENCES

Hamerly, G., Perelman, E., Lau, J., and Calder, B. (2005).
Simpoint 3.0: Faster and more flexible program phase
analysis. Journal of Instruction Level Parallelism,
7(4):1-28.

Khasawneh, K. N., Koruyeh, E. M., Song, C., Evtyushkin,
D., Ponomarev, D., and Abu-Ghazaleh, N. (2019).
Safespec: Banishing the spectre of a meltdown with
leakage-free speculation. In 2019 56th ACM/IEEE
Design Automation Conference (DAC), pages 1-6.
IEEE.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas,
W., Hamburg, M., Lipp, M., Mangard, S., Prescher, T.,
et al. (2019). Spectre attacks: Exploiting speculative
execution. In 2019 IEEE Symposium on Security and
Privacy (SP), pages 1-19. IEEE.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W.,
Mangard, S., Kocher, P., Genkin, D., Yarom, Y., and
Hamburg, M. (2018). Meltdown. arXiv preprint
arXiv:1801.01207.

Muralimanohar, N., Balasubramonian, R., and Jouppi, N. P.
(2009). Cacti 6.0: A tool to model large caches. HP
laboratories, 27:28.

Osvik, D. A., Shamir, A., and Tromer, E. (2006). Cache at-
tacks and countermeasures: the case of aes. In Cryp-
tographers’ track at the RSA conference, pages 1-20.
Springer.

Patil, H., Pereira, C., Stallcup, M., Lueck, G., and Cownie,
J. (2010). Pinplay: a framework for deterministic re-
play and reproducible analysis of parallel programs.
In Proceedings of the 8th annual IEEE/ACM interna-
tional symposium on Code generation and optimiza-
tion, pages 2—11.

Saileshwar, G. and Qureshi, M. K. (2019). Cleanupspec:
An” undo” approach to safe speculation. In Pro-
ceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 73—86.

Van Bulck, J., Minkin, M., Weisse, O., Genkin, D., Kasikci,
B., Piessens, F., Silberstein, M., Wenisch, T. E,
Yarom, Y., and Strackx, R. (2018). Foreshadow: Ex-
tracting the keys to the intel {SGX} kingdom with
transient {Out-of-Order} execution. In 27th USENIX
Security Symposium (USENIX Security 18), pages
991-1008.

Yan, M., Choi, J., Skarlatos, D., Morrison, A., Fletcher, C.,
and Torrellas, J. (2018). Invisispec: Making specula-
tive execution invisible in the cache hierarchy. In 2018
51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 428-441. IEEE.

