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Abstract: The goal of this paper is to explore the resilience of Generative Adversarial Networks(GANs) against adver-
sarial attacks. Specifically, we evaluated the threat potential of an adversarial attack against the discriminator
part of the system. Such an attack aims to distort the output by injecting maliciously modified input during
training. The attack was empirically evaluated against four types of GANs, injections of 10% and 20% mali-
cious data, and two datasets. The targets were CGAN, ACGAN, WGAN, and WGAN-GP. The datasets were
MNIST and F-MNIST. The attack was created by improving an existing attack on GANs. The lower bound
for the injection size turned out to be 10% for the improvement and 10-20% for the baseline attack. It was
shown that the attack on WGAN-GP can overcome a filtering defence for F-MNIST.

1 INTRODUCTION

A Generative Adversarial Network (GAN) was first
proposed by Goodfellow et al. in 2014. It is a ma-
chine learning technique whose goal is to learn the
distribution of a set of data (Lucic et al., 2018). This is
accomplished similar to a two-player game, where the
players are neural networks. One player - called the
generator - transforms a sample from the normal dis-
tribution into a sample that resembles real data. The
other player - called the discriminator - tries to assess
if a sample is real or fake based on its knowledge of
the real data. After a sufficient number of iterations,
the generator will produce samples that are hard to
distinguish from the real ones. Thus, it will learn to
transform a normal distribution into the data distribu-
tion.

GANs have a variety of applications. A recent
survey paper covers the more popular applications of
GANs (Alqahtani et al., 2021). The authors describe
a variety of use-cases in the audiovisual and medi-
cal domains. Moreover, GANs can generate synthetic
data to compensate insufficient data (Wang et al.,
2019), imbalanced data (Engelmann and Lessmann,
2021), or provide privacy (Choi et al., 2017). Finally,
GANs are also used for malicious purposes such as
deepfakes. These are videos or images where a per-
son can appear to act or say almost anything (Yadav
and Salmani, 2019).

1.1 Problem Statement

It is clear from the above that GANs can be used in
mission-critical systems. Alternatively, one may wish
to disrupt a GAN in case of potential malicious us-
age of the latter. In both cases, the security of these
algorithms is of interest. Thus, the overarching goal
of this paper is to explore the resilience of Generative
Adversarial Networks against adversarial attacks.

It is a well-known fact that neural networks are
susceptible to attacks (Miller et al., 2020; Kaviani and
Sohn, 2021). Some researchers even think that cir-
cumstances enabling attacks on neural networks are
an innate characteristic of the deep learning process
(Ilyas et al., 2019). Since neural networks play a key
role in most GANs, it is reasonable to assume that
security problems from neural networks will affect
them.

Particularly worrisome are adversarial attacks.
These attacks were created to manipulate the output
of a neural network by modifying the input (Miller
et al., 2020). Since GANs are a cleverly designed sys-
tem of two or more neural networks, an adversarial
attack works by targeting one of these networks. In
fact, designing GANs that are resilient to such attacks
is an active area of research (Liu and Hsieh, 2019;
Bashkirova et al., 2019; Xu et al., 2019; Zhou and
Krähenbühl, 2019). A possible impact of such an at-
tack is low-quality output, or synthetic data, that does
not resemble the original.

What is less understood is the feasibility of such
attacks in the real world. The reason is that scholars
often focus on defending either a single component of
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a GAN or a narrow case, such as defending a cycle-
consistent GAN against itself. This is the gap that our
research is trying to close. In short, we want to inves-
tigate the impact of an adversarial attack on synthetic
data, which was not comprehensively examined be-
fore. The attack will be referred to as Monkey-Wrench
Attack (MWA).

1.2 Findings

Our paper will show that adversarial attacks on GANs
are challenging to execute in practice. This is likely
because GANs have a degree of innate resilience to
noisy data (Bora et al., 2018; Thekumparampil et al.,
2018). Of the four GAN variants, only one proved to
be vulnerable across datasets. In addition, the attack
required modifying 10-20% of input data.

However, in conditions that more closely resemble
a real-world application of GANs, the attack proved
to be more successful. The GAN version that was
more vulnerable is one of the most advanced archi-
tectures proposed to date (Lucic et al., 2018). More-
over, the modifications of input data evaded detection
on the more sophisticated dataset. Advanced GAN ar-
chitectures and sophisticated datasets are more likely
to be employed in applications.

In the setting mentioned above, the attack was also
improved. An adversarial crafting process was de-
vised that improved attack performance over the base-
line approach. Moreover, a lower bound on the injec-
tion size was established for both cases. Finally, our
adversarial samples were harder for a human operator
to identify as malicious.

The stealth of adversarial samples is significant
because they produce unexpected results and might
be spotted during production. However, if the opera-
tor fails to identify the malicious intent behind these
irregularities, the operator may fail to attribute a sys-
tem malfunction to them. This will lead to the opera-
tor forgoing additional security measures and putting
the data into production.

The above high-level conclusions rest on a series
of contingent results. Most of the latter will be de-
rived empirically and substantiated in Section 4. Be-
low is a list of findings that, to the best of our knowl-
edge, were not produced before:
F.1. The improved attack is likely to outperform the

existing attacks when the loss function is complex
and the dataset is sophisticated. Performance is
measured by observing higher output distortion
for equal size injections.

F.2. If the above conditions are met, the improved at-
tack will likely overcome the countermeasure ap-
plied herein with greater success than the existing

attack. Success is defined the same way as above.

F.3. Our version of the attack required an injection of
at least 10%, while the baseline had a lower bound
in the 10-20% range.

F.4. It is likely possible to visually conceal the im-
proved attack from a human operator.

2 RELATED WORKS

This section will commence with descriptions of
GANs used in this paper starting with the original one
(Goodfellow et al., 2014). Although the latter was not
used, it will be provided as a base model of the tech-
nology. Let PX represent an unknown data distribu-
tion, then the discriminator, D, is trained to assign a
probability of sample belonging to PX , while the gen-
erator, G, is trained to create samples that resemble
the original data. This process estimates data distri-
bution, PX , by implicitly creating a generator distri-
bution, QX . Finally, a GAN builds G by learning to
transform samples from the normal distribution, PZ .
The process is expressed by a two-player minimax
game with the following objective function:

min
G

max
D

V (D,G) = Ex∼PX [logD(x)]+

Ez∼PZ [log(1−D(G(z)))]
(1)

Solving it minimizes Jensen–Shannon Divergence
(JSD) between the distributions PX and QX (Gong
et al., 2019).

A straightforward extension of a GAN - called a
Conditional GAN (CGAN) - was achieved by condi-
tioning it on a class label (Mirza and Osindero, 2014).
It was further extended with an Auxiliary Conditional
GAN (AC-GAN) by adding a third component that de-
termines a sample’s probability of belonging to a cer-
tain class (Odena et al., 2017).

A breakthrough in GANs came with the introduc-
tion of a Wasserstein GAN (WGAN) (Arjovsky et al.,
2017). The authors use a different measure of simi-
larities between distributions - Wasserstein or Earth
Mover Distance (EM) which is smoother. Gulra-
jani et al. (Gulrajani et al., 2017) further improve it
by replacing weight clipping with a gradient penalty.
This architecture is called a Wasserstein GAN with
Gradient Penalty (WGAN-GP). The performance of
GANs will be measured with Fréchet Inception Dis-
tance (FID) (Heusel et al., 2017).

Projected Gradient Descent (PGD) is an adversar-
ial attack and was chosen here because it is consid-
ered to be a universal first-order optimization attack
(Madry et al., 2018). It works by adding perturba-
tions to a sample, which forces a neural network to
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misclassify the sample. Madry formulated it as fol-
lows. Let δ lie in l∞-ball, S , around a sample x from
distribution D with corresponding label y and let θ be
model parameters, then

min
θ

ρ(θ), ρ(θ) = E(x,y)∼D

[
max
δ∈S

L(θ,x+δ,y)
]

(2)

The inner optimization produces adversarial pertur-
bations, δ, which is the PGD attack proposed by the
author. The outer optimization is a countermeasure to
PGD. Its strength is varied by the ε parameter or the
norm which can make it more noticeable to the naked
eye.

Defense GAN (Def-GAN) is a pre-processing
countermeasure against adversarial input attacks,
such as PGD (Samangouei et al., 2018). This method
will be used extensively in this paper. The idea is that
assuming the defender possesses enough clean data
to train a GAN, they can use that GAN to filter out
adversarial samples.

Security of GANs was considered before (Liu and
Hsieh, 2019; Zhou and Krähenbühl, 2019; Xu et al.,
2019; Bashkirova et al., 2019). One method is to per-
form adversarial training of the discriminator but it
fails at stronger levels of PGD (Liu and Hsieh, 2019).
Another approach is to apply adversarial regulariza-
tion to the discriminator which may negatively af-
fect convergence (Zhou and Krähenbühl, 2019). A
method to protect the generator was proposed (Xu
et al., 2019). It is not applicable because the target
of our work is the discriminator. Finally, the work
by Xu etal. was extended to cycle-consistent GANs
(Bashkirova et al., 2019). However, these differ sig-
nificantly from the GANs considered here

3 METHODOLOGY

3.1 Attack Description

A GAN can be viewed as a “student-teacher” system
and MWA works by nudging the learning vector in the
wrong direction. Forcing the teacher - the discrimina-
tor - to assign a surplus of value to bad examples will
provide wrong training directions to the student - the
generator. Alternatively, the goal can be achieved by
doing the opposite - making the teacher assign too lit-
tle value to legitimate examples. In this paper these
two types of bad examples are referred to as Early
Epoch Decoy (EED)1 and Downgrade Decoy (DGD),

1Sometimes the term “Early Stop Decoys” is used in-
stead of “Early Epoch Decoys”

respectively. They can also be seen as two variations
of MWA.

Starting with the first type, decoys are created
by replacing a subset of data with bogus informa-
tion while keeping the labels intact. For example,
one could simply replace these samples with normal
noise. However, normal noise is easy to detect, so a
different source of bogus data was used.

Instead of normal noise, we used samples gener-
ated by a GAN that was trained for only an epoch or
two. In this paper, these samples are referred to as
EEDs. For this purpose, a GAN is trained using simi-
lar settings as the victim GAN. As a result, adversarial
samples will share similarities with the original data,
making them harder to remove. Moreover, by overem-
phasizing their value to the teacher, the hope is that
the system will treat premature convergence as a de-
sirable goal.

The discriminator will be nudged to overestimate
the value of decoys using the following technique.
Once decoys are created, a PGD attack will be ap-
plied to this subset of data. The discriminator is es-
sentially a classifier, so theoretically, it is possible to
modify samples with PGD such that the discriminator
will classify them according to the attacker’s needs.
In this case, the discriminator will classify decoys as
more likely to be real.

In the downgrade variation the opposite occurs.
PGD is applied such that the discriminator assigns lit-
tle value to a subset of legitimate data. The concept of
attacking a GAN by applying PGD to a subset of the
training data is not new and was mentioned in Section
2. However, to the best of our knowledge, the early
epoch approach had not been tried before.

Once malicious samples are produced, they are
combined with the rest of the dataset and given to
a victim GAN for training. If the above hypothesis
holds, the victim will produce either more malformed
samples or a larger number of them. In both cases, the
generating process will be compromised.

Finally, MWA can be considered a white-box
attack because the attacker assumes knowledge of
GAN hyperparameters and network architectures but
not direct access to the weights. Typically, a black-
box attack assumes little knowledge of the above
(Miller et al., 2020). However, this limitation can be
overcome using a method called transferability that
uses a surrogate model (Madry et al., 2018; Miller
et al., 2020). The attack schematic can be seen in Fig.
1.
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Figure 1: MWA Topology2.

3.2 Data

This paper used two datasets: Modified National
Institute of Standards and Technology Database
(MNIST) (Lecun et al., 1998) and Fashion-MNIST
(F-MNIST) (Xiao et al., 2017). F-MNIST was de-
signed as a “direct drop-in replacement” (Xiao et al.,
2017, p.1) for MNIST and is more sophisticated. The
authors divided the dataset into 60k training and 10k
testing samples. Finally, as recommended for vi-
sion datasets, images are normalized to [-1,1] with a
mean of 0.5 and standard deviation of 0.5 (Goodfel-
low et al., 2016, p.419).

3.3 Decoys

As described in Section 3.1, the first step of MWA
is to create decoys. Downgrade decoys are taken di-
rectly from the training data. Early epoch decoys,
on the other hand, need crafting. They were pro-
duced by creating four types of GANs: CGAN, AC-
GAN, WGAN, and WGAN-GP. The neural network
architectures of the discriminator and the generator
for these GANs were borrowed from PyTorch-GAN
package that was used as part of our implementation.3

To save computational power, only one class out
of the ten available was used with CGANs and AC-
GANs. Since these two architectures are conditional,
it is possible to specify which class one prefers to gen-
erate. However, GANs themselves were created from
the entire training dataset.

3.4 Adversarial Perturbations

At this stage of the attack, decoys are modified such
that the discriminator will either overestimate or un-
derestimate them. This is accomplished by adding ad-
versarial perturbations using PGD described in Sec-
tion 2. The goal is to create a specially crafted noise -
referred to as adversarial perturbations - and add it to

2Wrench Icon By Estelle DB - Own work, CC
BY-SA 4.0, https://commons.wikimedia.org/w/index.php?
curid=57721428

3https://github.com/eriklindernoren/PyTorch-GAN

the decoys. These perturbations change the discrimi-
nator’s valuation. Since PGD requires a model to craft
samples, a fully trained discriminator from the decoy
production step (ref. Section 3.3) was used. Visual
examples of the result can be seen in Figure 2.

Figure 2: Examples of EEDs (top row) and DGDs (bottom
row) trained on MNIST (left col) and F-MNIST (right col).

The biggest challenge at this stage was providing
an appropriate loss function to PGD as stipulated in
Equation 2. Binary Cross Entropy (BCE) was chosen
for WGAN, WGAN-GP, and CGAN. The target was
either 1.0 (early stop) or 0.0 (downgrades), and the in-
put was whatever validity the discriminator assigned,
passed through a Sigmoid function. Again, since the
discriminator can be viewed as a binary classifier (i.e.
real or fake), BCE is an appropriate choice.

The loss function for performing PGD on the AC-
GAN discriminator was constructed differently. The
reason is that the discriminator is composed of two
neural networks that share the same base network.
One network measures data validity, while the other
predicts the label. Both must be used during the PGD
step because the networks are intertwined. For this
reason, the loss function was similar to the one used
in the actual AC-GAN. However, only the part that
evaluates loss on the real data was used. The code
was based on the Advertorch library created by Bo-
realisAI (Ding et al., 2019). PGD parameter ε = 1.0
was used.

3.5 Detection

This section proposes a method for defending against
MWA. The countermeasure used is based on Def-
GAN described in Section 2. Def-GAN relies on
a clean generator to detect adversarial samples. To
source the generator, the same GAN was used as the
one for the decoys and PGD steps above, sections 3.3
and 3.4 respectively. This decision was made to re-
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duce computational complexity.
However, using the same GAN possibly created a

new problem. Since GANs used for crafting decoys
and building the detector were the same, they were
trained on the same data. Moreover, the detector usu-
ally would be trained on a subset of the data and not
the whole of it. As a result, detection figures might be
more optimistic than they should be.

Def-GAN was used in its capacity as a detector
as described in the original paper. Detection perfor-
mance was measured by creating ROCs and AUC for
different thresholds.4

4 ANALYSIS

Four GAN variants were trained on both datasets con-
taining 10% and 20% of malicious decoys constructed
according to MWA from above. Each combination
of architecture, dataset, percentage, and decoy type
constitutes a parameter set for a single experiment.
To produce viable statistics, each experiment was re-
peated 50 times.

4.1 Null Hypothesis

To evaluate whether MWA had any effect on a GAN,
two null hypotheses must be rejected:

H.1. The attack had no effect on a GAN.
H.2. Comparable results can be achieved with a sim-

ple injection of random, bogus data.

To address the first hypothesis, FID scores of an attack
- parameterized as described above - will be compared
to the FID scores of a clean GAN. A similar approach
will be taken for the second null hypothesis. The dif-
ference is that instead of using a clean GAN, a substi-
tute will be trained on data containing bogus samples.
In this case, bogus samples will be EEDs before PGD.
For simplicity, it will be referred to as a bogus GAN.

For an easy comparison, notch boxes are created
from FID scores generated by a single combination
of experiment parameters over 50 trials. If notches
do not overlap, this means the difference between the
two groups is statistically significant (0.05 p-value)
(Krzywinski and Altman, 2014). However, to dismiss
a null hypothesis, a stricter measure was taken than
the standard p-value.

This difference was not sufficient to manifest vi-
sually on the generated samples during experiments.

4Used code from https://github.com/sky4689524/
DefenseGAN-Pytorch

For this reason, the measure was tightened. To dis-
miss a null hypothesis, the entire boxes must not over-
lap. Moreover, such an approach guarantees statisti-
cal significance.

Figure 3: FID Scores of attacks on GANs. The tuples on the
x-axis represent experiment parameters: injection size (%),
PGD strength (ε), PGD norm, decoy type. The numbers
on the boxplots indicate the medians. The columns with
PGD strength of 0.0 represent the bogus GANs needed to
reject H.2.. The clean column refers to H.1.. A higher score
implies less similiarty.

4.2 Performance Summary

This subsection will analyze which attacks reject null
hypotheses using Figure 3. Out of the 32 attack com-
binations, 13 passed both null hypotheses and can be
considered successful. In the rest of the cases, the at-
tack is considered failed. The results are summarized
in the table below.

Table 1: Cases where both null hypothesis were rejected
marked by a dataset were it happened. M - MNIST, F -
FMNIST.

GAN EED 10% EED 20% DGD 10% DGD 20%
AC-GAN M/F M M
WGAN M
WGAN-GP M/F M/F M/F M/F

The first observation from the table is that the
Wasserstein family of GANs is more vulnerable to
both early epoch and downgrade variations of the at-
tack. As was noted in Section 2, Wasserstein GANs
use a more sophisticated measure to construct the loss
function. This supports the part of finding F.1. that re-
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lates loss function complexity to attack success.
Our next observation is that success varies within

each family. Again, as noted in Section 2, AC-GAN
is a more advanced version of CGAN and WGAN-
GP of WGAN. In both cases, advancement stems
from improvements of the loss functions. Also, in
both cases, these improvements made the loss func-
tions more complex. This further supports the claim
in finding F.1. that attack success improves with loss
function complexity.

Finally, from Table 1 we can see that target data
can be a significant factor in the success of the at-
tack. The attack succeeded eight times on MNIST and
five on F-MNIST. Moreover, EEDs succeeded consis-
tently across datasets, while downgrades succeeded
more often on MNIST. This implies that the claim in
finding F.1. relating the improved attack’s success to
dataset complexity is correct.

4.3 Detection Analysis

Having established the conditions for a successful at-
tack, it is important to establish whether it is possi-
ble to prevent it. The defensive strategy chosen here
is based on filtering out malicious samples from the
training data. The precise mechanics of this process
were described in Section 3.5.

ROC curves plot the relationship between detected
malicious samples and false alarms. The technical
term for the first one is True Positive Rate (TPR) and
False Positive Rate (FPR) for the second one. In our
case, FPR implies the portion of the dataset that must
be abandoned to eliminate a number of decoys that
stems from a corresponding TPR.

It is impossible to establish a commonly accept-
able FPR because it depends on the case. For exam-
ple, in some situations, eliminating 10% of the data is
unacceptable, while 50% might be dispensable in oth-
ers. However, to proceed with the analysis, we will
consider a 20-30% sacrifice of the dataset to be the
threshold of an acceptable loss of data.

To visualize the effect of the countermeasure on
the attack, a figure similar to Figure 3 will be created.
However, this figure will contain FIDs that we would
have received if we filtered the data before training
the GAN. These numbers were simulated as follows.

Re-training the GANs on smaller numbers of de-
coys was computationally prohibitive. For this rea-
son, an approximation was made. FID scores in Fig-
ure 3 exhibited approximately a linear relationship to
the amount of decoys. This applies to both types of
decoys and bogus data. Thus, the new FID scores in
Figure 4 were simulated by exploiting this linear rela-
tionship. FID scores were linearly projected to lower

Figure 4: FID Scores After Filtering. The tuples on the x-
axis represent the injection size , PGD strength, and decoy
type. The numbers on the boxplots indicate the medians and
the TPRs.

size injections. New sizes were determined using
TPRs that correspond to the acceptable FPR range.
TPRs were averaged over iterations.

The attack was successful only for WGAN-GP: on
F-MNIST at 10% of EEDs and at 20% for both types
of decoys. Two implications stem from the above.
First, the attack survived the countermeasure only for
the most advanced GAN (Lucic et al., 2018) and on
the more sophisticated dataset. More, EEDs survived
twice, while downgrades only once. This proves find-
ing F.2. that our proposed attack is likely to evade de-
tection for more complex loss functions and datasets.

Moreover, judging from FID dynamics in Figure
4, 10% is the lower bound for EEDs. For downgrades,
the lower bound is somewhere in the 10-20% range.
Together, these facts support finding F.3..

Now let us consider visual inspection as a defen-
sive tool. As was mentioned, MWA with downgrade
decoys corresponds to efforts from earlier literature.
These decoys are easier to identify as malicious (ref.
Fig. 2). Individual items can be discerned and the
noise always follows a similar pattern. This indicates
a lack of randomness and a possible presence of in-
tent.

The situation with EEDs is different. Often the
original data cannot be discerned at all and the noise
does not follow an obvious pattern (ref. Fig. 2). Thus,
we conclude that it is likely possible to conceal EEDs
from a human observer. This supports finding F.4..
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4.4 Decoy Comparison

For the purpose of this comparison, only cases that
pass both null hypotheses will be examined. From
Figure 3 we can see that EEDs outperformed down-
grades in all cases, but two: (1) AC-GAN trained on
MNIST with 10% decoys, and (2) WGAN trained on
MNIST with a 20% injection.

It is possible to conclude that EEDs outperform
downgrades quantitatively with standard statistical
significance (Krzywinski and Altman, 2014). But is
statistical significance enough to claim an improve-
ment in this domain? When EEDs outperform down-
grades, they do so with an average FID increase of ap-
proximately 5%. Which is the first argument to sup-
port finding F.1. that existing attack proposals were
improved upon.

Now, let us consider decoy performance after ap-
plying the countermeasure. In this case, the attack is
successful only for WGAN-GP trained on F-MNIST
with a 10% and 20% injection. In the 20% case, the
bogus GAN used as a basis for H.2. had a median FID
of 119. EEDs and DGDs had FIDs of 130 and 124,
respectively. The first one was 9% higher and the sec-
ond one was 4% higher than the H.2. median. In the
10% case, only EEDs succeeded and outperformed
H.2. with 3.5%.

This tells us that the early epoch approach outper-
forms the downgrades when the attack rejects the null
hypotheses and evades detection. Moreover, this hap-
pens with standard statistical significance. Noting that
the downgrade approach is an existing scientific pro-
posal, the result forms another argument towards find-
ing F.2. that an improvement was achieved. However,
in both cases, improvement is true only for complex
loss functions and datasets.

5 CONCLUSIONS AND FUTURE
WORK

This paper aimed to explore the vulnerability of
GANs to adversarial input attacks. Specifically, it was
unclear what conditions are necessary for such an at-
tack to succeed and whether it is possible to defend
against. An attack was devised based on a known ap-
proach to answer these questions. The latter was im-
proved by using different source data for crafting ad-
versarial samples. Empirical results showed that this
is indeed a superior approach.

The gains were made on the more sophisticated
dataset or GANs with more advanced loss functions.
A similar pattern held when trying to break through a
countermeasure. The attacks overcame the defence

only on the F-MNIST dataset and WGAN-GP ar-
chitecture. Our version succeeded for injections of
10% and 20%, while the baseline succeeded only with
20%. In both cases, our version achieved a higher FID
score, which indicates better performance.

However, when a countermeasure was not ap-
plied, both attacks were successful more often, with
EEDs performing better. Finally, the adversarial sam-
ples proposed in this paper are more difficult to iden-
tify visually.

The countermeasure remains an open question.
Other approaches were proposed that may perform
better but with additional costs. Given that some
GANs are defenceless using the current countermea-
sure, future work will investigate the cost-benefit
equilibrium of other defences.
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