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Abstract: Beyond-visual-range (BVR) engagements are getting more and more frequent in modern air combat. One of 
the key challenges for pilots here is manoeuvre planning, which reflects their decision-making capacity and 
can determinate success or failure. To ensure pilot training employing virtual BVR air combat simulations 
yields success, high accuracy levels of the computer-generated forces (CGFs) are essential. To achieve this, 
it is substantial to not only replicate and simulate the physical properties of the entities to a sufficient degree, 
but also to provide them with a close-to-human-like behaviour. In this paper, we propose a general concept 
to tackle these challenges: First, we introduce flight motion dynamic models (aircraft, missiles, chaff) as well 
as a jammer. Then, we analyse the workflow of a typical beyond-visual-range air combat engagement, 
separating it into attack, self-defence and decide. Within this context, we introduce Behaviour Trees as a 
method to model these tasks and explain its benefits. Further plans include the verification and validation of 
the CGF behaviour within future experimental campaigns that consist of human-controlled opponent aircrafts 
(pilots) flying against the CGFs. Finally, we provide an outlook to future work in where we intent to employ 
reinforcement learning for tasks containing many degrees of freedom. 

1 INTRODUCTION 

In recent developments, beyond-visual-range (BVR) 
air combat has become the most frequent type of air 
combat engagement. In order to be able to prepare for 
these situations, pilots need to have sufficient 
knowledge and training to react appropriate to the 
actions and manoeuvres of the adversary. Since this 
training process is very costly and time-consuming 
(preparation of aircrafts, maintenance), using training 
simulations greatly helps overcoming these 
limitations. However, in order to maximize the 
benefit for pilots, simulating a detailed physical 
representation as well as human-like (which includes 
imperfect/faulty) behaviour of the adversary side is an 
indispensable prerequisite. Since these CGFs need to 
be able to handle different air combat situations, 
designing this type of behaviour is a problem 
incorporating many degrees of freedom. 

 
* https://www.unibw.de/lft/personen/fabian-reinisch-m-sc 
† https://www.unibw.de/lft/personen/dr-ing-akdir-michael-strohal 
‡ https://www.unibw.de/lft/personen/univ-prof-dr-ing-peter-stuetz 

Often, Off-The-Shelf products such as STAGE 
(Presagis, 2016) or VBS (Bohemia Interactive) are 
prominently used to model behaviour in military 
simulations. While these can support AI to some 
degree, (Toubman et al., 2016 - 2016) concluded that  
these products don't have the ability to model 
behaviour through adaptive processes and many even 
still rely on forms of scripting. Aggravating, they 
outlined a lack of AI methods in these Off-The-Shelf 
packages, which would be beneficial to explore new 
air combat strategies and model CGF behaviour. 

Today, existing papers mostly focus on dogfights 
while BVR air combat research is still uncommon. 
Additionally, most of the rare papers that do research 
BVR air combat only focus on a very small subset of 
the whole air combat workflow such as target 
detection and tracking (V. Chandrakanth et al., 2022) 
or engagement support (Joao P. A. Dantas et al., 
2021), however research incorporating the entire 
BVR air combat workflow is still a mostly 
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unexplored field. Nevertheless, to be able to train 
pilots for this type of air combat, the full workflow of 
an BVR air combat scenario needs to be modeled. 
While some subtasks from the workflow can be 
implemented using rule-based mechanisms like finite 
state machines or behavior trees (which are part of our 
concept as well), it can be challenging to implement 
tasks containing many degrees of freedom when 
being limited to these techniques. Here, machine 
learning methods, and especially reinforcement 
learning (RL), can be a promising approach to tackle 
these challenges (Dongyuan Hu et al., 2021; Haiyin 
Piao et al., 2020). Using these methods, the CGFs are 
able to train their behavior themselves to learn 
suitable actions for different situations. 

Our goal is to review different AI technologies 
towards their suitability of generating intelligent CGF 
behavior. Within this context, we aim to model a 
BVR air combat workflow with the goal to implement 
the most promising AI approaches in our CGF 
simulation environment. During a later stage, one or 
multiple pilots/subject-matter-experts (SMEs) will 
pilot the friendly/blue side and fly against the 
adversary/red side (AI-controlled CGFs) in order to 
validate the CGFs air combat behavior. Here, aside 
from validation, special focus will also be placed on 
the topic of verification, so the accuracy of the CGF 
dynamic can be ensured. 

Multiple approaches have been undertaken to 
automate CGF behaviour, (Toubman et al., 2016 - 
2016) outlines a concept to tackle this challenge by 
proposing AI methods which could be used to 
generate all the needed CGF manoeuvres during the 
whole engagement. However, this approach is less 
flexible and the selected method might work well for 
some phases of the engagement but not so well at 
others. Instead of this, a different concept would be 
dividing the beyond-visual-range air combat 
workflow into different tasks. With this approach, 
aside from keeping overview and structure, this opens 
up the advantage of being able to process each task 
using an AI method that suits it well. 

Here, the SMEs who are supposed to validate the 
CGF behaviour in our experimental campaign, 
specified multiple AI method requirements. These 
include, but are not limited to: the CGF behaviour 
should be explainable, reproduceable, changeable 
and defined. One particular AI method that fulfils all 
these upper requirements are Behaviour Trees (BTs), 
which additionally have storable rulesets so a certain 
behaviour can also be replayed.  In (Siqi Yi et al., 
2021), it was further demonstrated that using BTs, it’s 
possible to “perform a series of actions to react to 
adverse situation”, concluding that BTs are able to 

adapt dynamically to changes in the engagement. 
Because of these advantages, BTs could be a solid 
foundation for modelling the air combat workflow 
and some of its subtasks. 

For tasks requiring more complex air 
manoeuvring, as well as for performing threat 
analysis, machine learning methods, especially 
reinforcement learning, are an option. There has been 
significant progress within this domain within the last 
years as shown in AlfaGo (David Silver et al., 2016), 
AlfaGo Zero (David Silver et al., 2017), and AlfaStar, 
making them a promising approach to tackle these 
complex decision problems. 

2 DYNAMIC MODELS 

In order to obtain accurate and realistic results, our 
requirements include validated and verified dynamic 
models. We intent to include aircrafts, missiles, radar, 
chaff and jammer. We have chosen MATLAB 
Simulink (MathWorks) for constructing the models, 
since it provides a well-known engineering 
environment and offers built-in verification 
capabilities (Test Harness). These models are then 
converted into C++ Code using Autocode and then 
embedded into our experimental system. 
This system is implemented using ROS (Open 
Robotics, 2020) and communicates with an external 
VR flight simulator that will be used by the pilots who 
are flying against the CGFs. This simulator and the 
CGFs are communicating using DIS. Finally, we are 
using Tacview (Raia Software Inc.) as a Debriefing 
Tool. 

2.1 Aircraft Model 

The fighter jet models (CGFs) are constructed using 
a modular, generic and dynamic model, which can be 
fed with physical data describing (instantiate) the 
respective aircraft. 

The aircrafts’ state, at a time, is represented using 
9 continuous variables: {x, y, z, ψ, θ, φ, vx, vy, vz}. 
These represent positions in north (x), east (y) and 
down (z) as well as its orientation: roll, pitch and yaw 
and its velocity {vx, vy, vz}. Additionally, the CGFs 
are simulated with a radar model which reproduces 
representative ranges and the limitations of a real 
radar. This is important, since the AI methods need to 
make behaviour decisions using the same air picture 
a real pilot would have access to. For more 
information regarding flight dynamics, refer to 
(Zipfel, 2007). 
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Usually, two or more aircrafts are involved in a 
BVR air combat scenario and each aircraft has its own 
set of state variables. When making manoeuvring 
decisions, the relative geometry between the aircrafts 
is relevant. Here, we compute the same state variables 
containing the relative values between two aircrafts 
{x, y, z, ψ, θ, φ, vx, vy, vz}. However, in this case, we 
additionally include the relative azimuth and 
elevation angles. 

The aircrafts (CGFs) can be controlled using 
flight control manoeuvres, tactical manoeuvres and 
other actions. Flight control manoeuvres are similar 
to an auto-pilot, an example would be to hold a certain 
heading or accelerate towards a certain speed. 
Tactical manoeuvres are flight instructions with 
reference to another aircraft, for example flying a 
pure pursuit. These data of these two command types 
is specified as a floating-point number (continuous 
value in a constraint range). Other actions consist of 
commands that are able to deploy chaff, control the 
radar/jammer or fire a missile. There are 11 different 
control commands so far with the possibility of 
adding more if needed. 

When a CGF received a flight control manoeuvre, 
it doesn't immediately set the aircraft physical state to 
the given target value, but smooths out its trajectory 
so that the CGF behaves according to real-world 
flight dynamics. 

2.2 Missile Model 

The missiles’ and aircrafts’ states are similarly 
composed. Meaning it contains the nine state 
variables {x, y, z, ψ, θ, φ, vx, vy, vz}, however, 
additionally has a variable to indicate whether the 
missile hits the ground. It also contains a variable 
which gets triggered if the missile has hit a target (in 
order to mimic real-world hit probabilities, we apply 
a PK rate here). Missiles are initialized using the same 
state as the aircraft state which fires it. 

The missile itself can’t be controlled using 
commands after it was launched. However, it contains 
its own radar model which is able to direct the missile 
towards a moving target. During this navigation 
process, proportional navigation is used. 

2.3 Chaff Model 

Aircrafts are able to deploy chaff during an 
engagement. Chaff consist of many metal/metallized 
articles and are used to confuse radar systems. In our 
setup, their functionality is mainly used to divert 
missiles from their original target so their trajectory 
is directed towards the chaff clouds instead of an 

aircraft. The CGFs deploy chaff clouds at once (with 
a predefined delay) to ensure the chaff radar signature 
gets big enough so the missiles’ radar beam gets stuck 
on the chaff cloud.  

2.4 Jammer Model 

In general, a jammer is used to jam/confuse radars, 
either targeting another aircraft or a missile. We aim 
to implement multiple types of jammers that can be 
used by the CGFs: 

• Spot noise jammer: This is used to just emit 
strong waves 

• False targets: This jammer type is used to 
simulate non-existent aircrafts on the 
opponents’ radar 

• Towed decoy: This jammer consists of a 
separate object which is towed behind the 
aircraft using a rope. It’s used to divert 
missiles away towards the decoy. 

3 BVR AIR COMBAT 
WORKFLOW 

We propose dividing the beyond-visual-range air 
combat workflow into three big task loops: Attack, 
Self-Defence and Decide. We define the CGFs being 
inside the attack loop when an offensive strategy is 
being executed, on the opposite side, they are 
traversing the self-defence loop when execution of 
defensive strategies has priority. Lastly, the decide 
block is designated to determine in which of the two 
major loops the CGFs should be situated according to 
the current air picture as well as deciding if/when the 
CGFs should terminate the mission.  

 
Figure 1: OODA Loop. This loop forms the basics of the 
workflow. 
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 The majority of the tasks follow the observe–
orient–decide–act (OODA) principle (Richards, 
2020). It’s a tried and tested principle which has 
proven its advantages when used in decision systems 
(Henry Leung, 2018) and combat simulations (Aya 
Fusano et al., 2011).  This loop structure ensures that 
the individual tasks always start with collecting and 
processing data, so they are able to make informed 
decisions with up-to-date information. 

3.1 Attack 

The attack loop is the default for the CGFs, meaning 
when there is no special reason to go defensive, the 
CGFs behave according to the attack loop. 

We worked out multiple tasks within the attack 
loop. At each point during the engagement, a CGF is 
performing one or two tasks of this loop (some tasks 
can overlap) while at the same time performing 
checks whether the current task is finished: If yes, 
move to the next task.  

 
Figure 2: The attack loop workflow as well as its different 
tasks are visualized here. 

Following are the attack tasks: 

• Pre-Intercept: At the beginning of the 
scenario, the CGFs are flying an initial 
Combat air patrol (CAP) in order to be ready 
to engage the blue side and shorten response 
times. This continues, until the distance 
between the blue side and the CGFs (red side) 
has fallen below a certain threshold. After this 

happened, the CGFs are instructed to fly in 
formation towards the aircrafts from the blue 
side. 

• Picture Targeting: After enemy contact has 
been reported, the Picture Targeting is 
performed: This task consists of two subtasks, 
first, the risk of each blue aircraft with respect 
to the scenario is rated. This rating process 
incorporates parameters from the air picture 
(see Section 3.3) like speed, height, distance, 
and also the targets probable strategy and 
intention. Following this, the forces of the blue 
side are mapped to the CGFs, giving them 
targets to focus on. 

• Intercept: Here, summarized, a flight path is 
planned and executed with respect to their 
assigned target aircraft from the blue side. The 
goal is to obtain a superior position that fulfils 
the shot criteria with respect to the target. 
These include optimizing its aspect angle, 
height (energy) and distance. The own risk 
level, the predicted target intention/strategy 
and the targets weapon-engagement-zone 
(WEZ) also affect the shot criteria. The 
decision which manoeuvres should be 
executed to achieve the intercept goals are 
evaluated constantly, so the CGF is able react 
to sudden movement changes from the target. 

• Weapon delivery: If the shot criteria are 
fulfilled, a decision is made whether a missile 
should be fired at all and if yes, the proceeds 
firing the missile(s). Following this, the CGF 
needs to support its missile before it becomes 
active and autonomous. A deeper analysis of 
this task can be found in (P. Ruther et al. 
2022). 

• Weapon impact assessment: 10 – 30 seconds 
after the shot, it can be determined whether the 
target was hit or not. After this, a decision is 
made whether the CGF will go back to 
formation, re-engage (go to pre-intercept / 
targeting) or go out and terminate the mission 
(see decide loop). 

3.2 Self-defence 

When the CGFs are facing threatening situations, 
they switch to the self-defence loop. As with the 
attack loop, we divided it into different tasks, 
however, the current task of each CGF here depends 
on the danger it currently faces. 
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The different self-defence tasks fulfil the 
following functions: 

• Track avoidance: In this stage, the CGF is not 
yet within the weapon engagement zone 
(WEZ) of the blue side. Therefore, its main 
goal is, aside from disrupting the opponent 
(chaff, jammer), to escape the threat and 
switch back to the attack loop. This can be 
done by already selecting potential new targets 
and start planning for an intercept towards it. 

• Shot avoidance: If the GCF finds itself within 
the WEZ of an aircraft from the blue side, but 
no missile has been fired towards it yet, shot 
avoidance is executed. Here, the main task 
consists of executing manoeuvres to get out of 
the WEZ together with the use of chaff, 
jammer and optimizing the aspect angle. 
Special focus is also put on avoiding the no-
escape-zone of the blue side. 

• Defeat enemy weapon: This is the worst case, 
avoiding the WEZ of the blue side didn't work 
and a missile already has been fired towards 
the CGF. Now, avoiding the missile is the 
main goal. To achieve this, the CGF is using 
chaff and jammer (towed decoy) to confuse 
the missiles radars as well as trying to 
manoeuvre out of the missile trajectory. 

 
Figure 3: The workflow as well as the different tasks of the 
self-defence loop are visualized here. 

 

3.3 Decide 

The decide loop is not a task sequence like the attack 
and defence loops. Its job is to decide whether the 
CGFs should go offensive, behave defensive or 
terminate their mission. This decision is evaluated 
constantly during the engagement and depends on 
multiple properties, which are divided into 
static/dynamic mission information as well as 
detection and identification (see below). These 
properties are then combined to form the air picture 
which forms the base for making an informed decision. 

Static mission information contains fixed 
properties that are already known in advance prior to 
the engagement. This includes the own/enemy’s, 
possible physical limitations of the aircraft types or 
pilot-related limitations (expert level) as well as 
further fixed properties from used 
aircrafts/missiles/jammers.  

 
Figure 4: Decide process. It’s responsible to choose 
whether the CGFs should go offensive or defensive. 

Dynamic mission information contains data 
regarding the current state during the engagement. 
Examples here include the own mission intent and 
risk levels as well as variable information regarding 
the current mission like fuel or weapon status. 
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Detection and identification are the processes of, 
firstly, collecting data from aircraft sensors (radar, 
radar-warning-receiver, link) including uncertainties, 
and in the second step, analysing this data in order to 
identify opponent aircrafts (aircraft type, etc.). All the 
collected and processed information then forms the 
so-called air picture which is used in the following 
decision process. 

The decide process itself starts by collecting and 
updating all the information from the air picture. It 
then proceeds to perform the own assessment in 
which the CGFs own chances are evaluated. This also 
includes checking whether the CGF is in a threatening 
situation, e.g. is tracked/attacked. Afterwards, in the 
enemy assessment, the risk/potential superiority of 
the enemy, including its intention, etc. are taken into 
consideration. Finally, the current task conditions are 
checked. The purpose of this is to decide whether the 
CGFs can proceed in their current task or if the 
situation has changed fundamentally and the task 
needs to be aborted (go from offensive to defensive 
or the other way). This check varies depending on the 
task the CGFs currently are dealing with. 

4 GENERATING BVR AIR 
COMBAT CGF BEHAVIOUR 

Since we are dividing the BVR air combat workflow 
into different tasks (Section 3), we have the advantage 
of being able to compare and evaluate multiple AI 
methods with respect to CGF behaviour generation 
for each task separately. While this is a continuous 
process and will be part of our future research, we 
additionally need a way to guide the CGFs between 
the different tasks: Meaning to check whether the 
current task is finished/needs to be aborted as well as 
invoke the execution of the following task. 

4.1 Behaviour Trees: Overview 

Behaviour Trees are a mathematical model used for 
task execution and decision making. Their origins can 
be tracked back to the game industry, where their 
initial purpose was to model Non-player character 
(NPC) behaviour. Derived from finite state machines 
(FSM), they were meant to replace FSMs in video 
games. Nowadays, they are a well-established model 
that is present in many game frameworks such as 
Unreal Engine and Pygame. BTs can be artificially 
created using AI algorithms (Luis Peña et al., 2012; 
Evgenii Safronov et al., 2020; Matteo Iovino et al., 
2021) or manually designed by humans (Francesco 

Rovida et al., 2017; Enrique Coronado et al., 2018; 
Chris Paxton et al., 2017). More possible uses span 
from robot control systems (Özer Özkahraman & 
Petter Ögren, 2020; Oliver Biggar & Mohammad 
Zamani, 2020) or human-robot interaction (Dianmu 
Zhang & Blake Hannaford, 2020) to even machine 
learning (Bikramjit Banerjee, 2018). 

In our case, we decided to employ BTs for guiding 
the CGFs between the different tasks because they 
fulfil all the requirements given by the SMEs and 
provide a solid foundation to model the workflow. 
Since the SMEs are from a different domain, it is also 
appreciated by them that BTs are also suitable for 
non-expert programming (David C. Shepherd et al., 
2018; Enrique Coronado et al., 2018). Because of 
these reasons, we additionally intent to explore the 
use of BTs for modelling other tasks within BVR air 
combat as well. 

4.2 Behaviour Trees: Application 

Since we are implementing our system in ROS2 
(Open Robotics, 2020), we have decided to use the 
BT implementation ‘BehaviorTree.CPP’ (Davide 
Faconti, 2018). It supports a seamless integration into 
ROS and also comes with an editor that allows 
visualization (see Figure 5) and modification of the 
trees using a user-friendly GUI interface called 
‘Groot’. Within our experimental apperatus, we intent 
to employ a BT calling different AI methods (see 
Figure 6) depending on which tasks should be 
executed and then redirect their output back to the 
CGFs.  

 
Figure 5: Behaviour Tree containing 6 main levels capable 
of executing a Baseline Intercept including the three 
subtrees: Lead, Wingman and Target. Level 0 consists of 
the root node. Level 1 is responsible to determine to which 
forces the aircraft belongs to. Level 2 only executes 
sequential commands. Level 3 performs a check whether 
the aircraft is Lead/Wingman, or contains its behavioural 
subtree if it’s the Target. Level 4 mainly executes sequence 
commands again. Finally, at Level 5 reside the subtrees for 
Lead/Wingman behaviour as well as initialization 
commands. 
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Figure 6: Behaviour Tree workflow in our experimental 
system. Our implementation (within ROS) consists of the 
CGFs as well as their behaviour which will be generated 
using BTs calling different AI methods depending on the 
current air combat task. ROS is communicating with an 
external VR-Simulator in which pilots (humans) can fly 
against our CGFs. 

In order to prove the suitability of BTs for our 
aim, we implemented multiple BVR air combat 
sample scenario behaviours using BTs. One of these 
engagements consists of a Baseline Intercept in which 
two CGFs (lead: red, wingman: brown) are flying 
towards one target aircraft (blue) in order to identify 
it (see Figure 7). Using our implementation, we were 
able to successfully execute the Baseline Intercept 
using BTs (see Figure 8), therefore showing their 
ability to dynamically adapt to scenario changes 
during the execution and generate CGF behaviour 
accordingly. Finally, in this sample scenario, the 
advantage of subtrees can be seen as well, since the 
behaviour for Leader, Wingman and Target (see 
Figure 5) is modelled using these, so a structured 
view can be preserved. 

5 CONCLUSION AND FURTHER 
OUTLOOK 

In our concept, together with pilots, we elaborated a 
BVR air combat workflow and divided it into 
different parts. Combining this with validated and 
verified dynamic models, we set the foundation to 
obtain accurate and realistic simulation results. 
Behaviour Trees have been proven to be a suitable 
method to model tasks during the engagement. In the 
future, we intent to further evaluate different AI 
methods, especially with respect to tasks 
incorporating more degrees of freedom. Initial work 
within this field can already be read in (P. Ruther et 
al., 2022).  

 
Figure 7: Execution of the sample scenario “baseline 
intercept”. Lead (red) starts with a pure pursuit towards the 
blue target (1), then flies different headings (2, 3) to 
approach the target, followed by continuing its pure pursuit 
(4) until the final heading (5) is reached. Wingman (brown) 
starts by flying different headings (1-4) in order to get 
behind the target, then proceeds with turning (5) and 
finalises with a pure pursuit (6) towards the target. 

 
Figure 8: Debriefing tool Tacview (Raia Software Inc.) 
visualising the execution of a Baseline Intercept (see Figure 
7) at stage 5 using BTs for air combat behaviour generation. 
Visualised are Lead (red), Wingman (brown) and Target 
(blue) as well as their flown trajectories. 
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