
From GDPR to Privacy Design Patterns:
The MATERIALIST Framework

Vita Barletta1 a, Giuseppe Desolda1 b, Domenico Gigante1 c, Rosa Lanzilotti1 d
and Marco Saltarella1,2 e

1Computer Science Department, University of Bari Aldo Moro, Via Edoardo Orabona, 4, 70125 Bari BA, Italy
2FINCONS SpA, Via Orfeo Mazzitelli, 258/E, 70124 Bari (BA), Italy

Keywords: Privacy Design Patterns, GDPR, ISO 9241-210, Code Vulnerabilities.

Abstract: Privacy is becoming an increasingly important factor in software production. Indeed, besides increasing
software quality, privacy is a mandatory aspect of national and supranational regulations like GDPR.
However, several aspects like lack of knowledge on privacy and data protection regulations ambiguities limit
the adoption of proper privacy implementation mechanisms during the software lifecycle. To fill this gap, this
paper presents a framework, MATERIALIST, which aims to guide developers in choosing privacy design
patterns to be used during software development. In particular, this paper focuses on the selection of privacy
design patterns starting from the GDPR requirements. In this way, what is currently prescribed by GDPR in
a non-technical way becomes a practical solution that software developers can adopt during their work.

1 INTRODUCTION

Despite privacy is increasingly becoming a desired
aspect of software systems, often required by data
protection regulations like the General Data
Protection Regulation (GDPR), different aspects are
still limiting and affecting the right implementation of
privacy features.

First, designers and developers often have
different views toward privacy, which reflects in
different approaches and solutions to implement it
(Martín and Kung 2018). Second, data protection
regulations only provide legal indications on how
systems should be designed but no concrete or
technical indications for developers are reported.
Third, data protection regulations claim to involve the
users (Sobolewski, Mazur, and Paliński 2017), but
their implementations are not user-centric. Fourth,
there is often a lack of privacy and security knowledge
among developers and engineers (Hjerppe,
Ruohonen, and Leppänen 2019). All these aspects
contribute to improper integration of security and

a https://orcid.org/0000-0002-0163-6786
b https://orcid.org/0000-0001-9894-2116
c https://orcid.org/0000-0003-3589-6970
d https://orcid.org/0000-0002-2039-8162
e https://orcid.org/0000-0002-0021-9972

privacy features during software lifecycles,
determining vulnerable systems or insecure data
protection solutions.

For these reasons, more adequate methodologies
are required to ease the process of integrating privacy
aspects in the software lifecycle without ambiguities,
considering the end-users point of view and limiting
the possible scarce knowledge of the developers and
designers on privacy and security.

This paper presents the results of an ongoing
wider research project whose goal is to support
developers, designers and engineers integrate privacy
aspects during software development. The main result
of this project is the definition of a framework,
MATERIALIST (Mapping dATa rEgulation softwaRe
lIfecycle And vuLnerabilitIeS paTterns), which
guides the selection of privacy design patterns (PDP)
starting from three different entry points, i.e., 1)
GDPR articles, 2) phases of the ISO 9241-210
software development lifecycle and 3) vulnerabilities
discovered during static code analysis. The first two
entry points guarantee the possibility to include PDPs

642
Barletta, V., Desolda, G., Gigante, D., Lanzilotti, R. and Saltarella, M.
From GDPR to Privacy Design Patterns: The MATERIALIST Framework.
DOI: 10.5220/0011305900003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 642-648
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

when the development process starts from scratch
(forward engineering), while the third entry point
supports the re-engineering of a software system
(backward engineering). To make more concrete the
adoption of the selected PDPs, we are also extending
such PDSs by defining both architectural patterns and
User Interface patterns that better drive designers and
developers.

The contribution of this paper to the
MATERIALIST framework is the definition of the
mapping between 14 GDPR articles and 72 PDPs.
This allows developers to select the right PDPs when
they have to consider specific GDPR articles. We also
present the preliminary results of the ongoing
mapping between PDPs and ISO 9241-210 lifecycle,
and between PDPs and code vulnerabilities. Lack of
space prevents us from presenting other details we are
working on, for example, the architectural patterns
and user interface patterns linked with the 72 PDPs.

The paper is structured as follows. Section 2
presents some existing frameworks for privacy and
security (Section 2.1) and then discusses some
background concepts on which this research was
founded (Section 2.2 and Section 2.3). Then Section
3 presents the MATERIALIST framework and then
illustrates the mapping phase between the privacy
design patterns and the GDPR articles. Section 4
provides an overview of the ongoing works on the
mappings with ISO 9241-210 phases and code
vulnerabilities. Section 5 concludes the paper and
reports some future works.

2 BACKGROUND AND
RELATED WORK

2.1 Integrating Privacy and Security in
Software Development

A growing number of frameworks and approaches
addressing privacy or security aspects in software
development have been proposed. However, very few
solutions face both problems at the same time.

Concerning privacy, one of the most recent
solutions is Security Threat Oriented Requirements
Engineering (P-STORE) a methodology for software
development that proposes 10 mandatory steps,
which starts by defining the software’s data privacy
goals and ends with the privacy elicited requirements.
Another privacy-friendly approach is Structured
Analysis Framework for Privacy (STRAP), which
proposes 4 steps: analysis of the system, refinement
of the found vulnerabilities, evaluation of the

resulting vulnerabilities, and iteration of the entire
process until a reasonable level of risk is reached
(Jensen et al. 2005).

Another interesting framework recently proposed
by Brodin focuses on the GDPR compliance of small
and medium enterprises (Brodin 2019). However, the
proposed framework does not focus on the technical
implementation of the regulation in software. A more
technical work is BPR4GDPR, an H2020 project that
proposes a framework composed of 8 different phases
for supporting the re-engineering approach of
business processes to provide compliance-by-design
(Lioudakis et al. 2020). It includes a compliance
toolkit that integrates different functionalities
spanning from cryptography to notification
mechanisms to support the implementation of
privacy-aware systems.

Concerning the security aspect, we identify two
important approaches, i.e., SQUARE and Microsoft
SDL (which incorporated SQUARE). Security
Quality Requirements Engineering (SQUARE) is a
10-steps sequential process for considering the
security interests of all the stakeholders of the
software system (Mead and Stehney 2005). It also
involves threat agent identification and risk analysis
for effective requirements engineering. In Secure
Development Lifecycle (SDL) the core idea is that, to
build a secure software system, an important aspect is
to consider how an attacker might compromise the
system by exploiting design flaws and, as a
consequence, to build the necessary defense
mechanisms in the system (Adam Shostack 2014).
So, threat modeling plays a key role and SDL has
integrated a systematic approach for security threat
modeling using STRIDE (Microsoft).

An example of an approach facing both privacy
and security at the same time is Restricted Misuse
Case Modeling (RMCM) (Mai et al. 2018). It is a 4-
step method whose output is a misuse case diagram,
use case specifications, security use case
specifications, misuse case specifications, and
mitigation schemes. This method enables engineers to
identify security threats and countermeasures but
considers out-of-scope risk analysis, i.e., ranking and
prioritizing of the resulting security threats.

It is worth mentioning that none of the presented
works proposes an automatic tool to go through the
phases of each approach or focuses on usability
aspects. Our paper contributes to this research area by
proposing a framework that helps developers,
designers and engineers include privacy features in
their software systems through the adoption of PDPs.
The selection of the PDPs can start from the GDPR
articles, the ISO 9241-210 phases, or security and

From GDPR to Privacy Design Patterns: The MATERIALIST Framework

643

privacy vulnerabilities. In the following, the most
important concepts behind the ongoing research are
detailed. In particular, the most important aspects of
source code vulnerabilities, privacy by design
principles, privacy strategies, and privacy design
patterns, are discussed with reference to the literature.

2.2 Code Vulnerabilities, Privacy by
Design Principles and Privacy by
Design Strategies

Cybersecurity vulnerabilities can be detected by
adopting techniques like static analysis, automatic
penetration testing and manual penetration testing.
The current implementation of our framework
considers vulnerabilities derived from static code
analysis. They can be divided into security
vulnerabilities and privacy vulnerabilities.

Security vulnerabilities are categorized according
to OWASP Top 10 2021 standard: this is based on data
and information provided by firms specialized in
application security or collected by using industry
surveys. Its goal is to provide knowledge and
information on the most common and important
application security weaknesses. The vulnerabilities
are divided into ten categories: A1 Broken Access
Control, A2 Cryptographic Failures, A3 Injection, A4
Insecure Design, A5 Security Misconfiguration, 6
Vulnerable and Outdated Components, A7
Identification and Authentication Failures, A8
Software and Data Integrity Failures, A9 Security
Logging and Monitoring Failures, A10 Server-Side
Request Forgery (SSRF) (OWASP).

Privacy vulnerabilities are grouped by tools for
static code analysis like Fortify SCA into four macro-
categories, each one mapped with a single GDPR
article. In particular, these categories are Access
Violation, Indirect Access to Sensitive Data,
Insufficient Data Protection, and Privacy Violation1.

As proposed in (Baldassarre et al. 2019) these
vulnerabilities can be mapped with Privacy by Design
principles. Privacy by Design (PbD) is a methodology
proposed in 1995 by Ann Cavoukian. This
methodology consists of seven principles, each of
which specifies actions and responsibilities for
assessing “Privacy by Design Compliance”
(Cavoukian 2012). An example of a PbD principle is
Proactive not Reactive, which says that privacy
threats must be anticipated and prevented while
developing and/or running a system, rather than just
reacting to privacy breaches once they have occurred.

1 https://www.microfocus.com/it-it/products/static-code-

analysis-sast/overview

Each of these principles can be further mapped
with one or more Privacy Strategies (Baldassarre et
al. 2019). A privacy design strategy (PDS) is defined
as an approach to achieve some level of privacy
protection. In this study, the Hoepmann’s PDSs are
considered (Hoepman 2014). These strategies are
divided into two categories:
1) Data-oriented, and the strategies are: minimize,
to reduce to the minimum possible the amount of data
collected and processed; separate, to (physically
and/or logically) separate data processing and
storage; abstract, to limit the level of detail of
processed data; hide, to protect personal data from
unauthorized third parties;
2) Process-oriented, and the strategies are: inform,
to notify users in an exhaustive yet simple way about
the whole data processing lifecycle; control, to
provide users full control over their data; enforce, to
implement privacy-friendly data processing;
demonstrate, to prove the enforcement of compliant
data processing.

2.3 Privacy Design Patterns

Generally speaking, a design pattern provides
knowledge collected by experts in a specific field;
this knowledge is provided in a structured,
documented, and reusable manner (Colesky,
Hoepman, and Hillen 2016) and helps practitioners
build information system. In a cybersecurity context,
PDPs address and provide a common solution to
privacy problems. They can be seen as a way to
translate “privacy-by-design” into practical
solutions for software engineering: they help
improve the (re-)engineering process by describing
classes, collaborations between objects, and their
purposes, but also can help designers identify and
address privacy concerns during the initial phases of
the Software Development Life Cycle (SDLC).

In our study, we considered the PDPs resulting
from a joint research work between the U.S.
Department of Homeland Security and the
National Institute of Standards and Technology.
The entire set of patterns is published at
https://privacypatterns.org/. It consists of 72 privacy
patterns grouped by 7 PDSs (control, abstract,
separate, hide, minimize, inform, enforce) described
in terms of the following dimensions: context,
problem, solution, consequences, and examples.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

644

3 A FRAMEWORK TO SELECT
PRIVACY DESIGN PATTERNS
STARTING FROM GDPR

As reported in the Introduction, this study is part of a
broader research that aims to help developers,
designers and engineers (stakeholders in the
following) include privacy features in their software
systems. The main contribution to this research is the
MATERIALIST (Mapping dATa rEgulation
softwaRe lIfecycle And vuLnerabilitIeS paTterns)
framework summarized in Figure 1. The next sub-
sections present the overall MATERIALIST
framework (Section 3.1) and how it guides
stakeholders in choosing PDSs starting from GDPR
articles (Section 3.2).

3.1 The MATERIALIST Framework

The core of this framework is represented by the set
of 72 privacy design patterns reported at
https://privacypatterns.org/. In addition, to make the
adoption of these patterns more concrete, we are also
working on their extension through architectural and
user interface patterns that guide more practically and
less ambiguously developers in the creation of code
(architectural patterns) and designers in the design of
user interfaces (interface patterns). For sake of
simplicity, in the following, PDPs refer to the
extended set of the original 72 patterns.

 The underlying idea is to guide stakeholders in
selecting such PDPs starting from three different
entry points: i) GDPR articles, ii) ISO 9241-210
phases and iii) privacy vulnerabilities discovered
during static code analysis. The use of these PDPs
aims to solve two of the four issues mentioned in the
Introduction, specifically different views about
privacy and lack of privacy and security knowledge.
Indeed, PDPs are intrinsically a standardized
language for privacy aspects, thus they contribute to
providing the same view on privacy. Lack of
knowledge is addressed since patterns have been
created by privacy experts and provide robust and
practical solutions.

In the MATERIALIST framework, we considered
the GDPR instead of other regulations because it is
the main privacy regulation in the European Union,
where the authors of the paper live. The
ISO 9241-210 has been considered since, differently
from other software development processes, it is
human-centered and thus contributes to developing
user-centric software systems. This choice aims to
mitigate the issue implementations are not user-

centric. The vulnerabilities are the ones provided by
OWASP Top 10 2021, which is one of the most
important standard de-facto in this field.

A peculiarity of this framework is that ‘traversing’
is also allowed between any entry points passing
through the privacy patterns. For example, a
stakeholder may require the list of the GDPR articles
violated by a specific vulnerability and vice versa; or,
a stakeholder may need to know which are the ISO
9241-210 phases that can trigger some vulnerabilities
and vice versa. This flexible traversing guarantees the
inclusion of PDPs both when the development
process starts from scratch (forward engineering) and
in case of re-engineerisation of a software system
(backward engineering).

In forward engineering, the entry points are the
GDPR and the ISO 9241-210. In the former case,
PDPs are suggested to comply with the GDPR
articles. In the latter case, to support the stakeholders
along with all the ISO 9241-210 phases, patterns are
suggested for each phase.

Figure 1: The MATERIALIST framework guides
stakeholders in selecting the right privacy design patterns.

In backward engineering, the re-engineering
software process may start from a scan performed by
static code analysis tools such as SonarQube and
Fortify SCA, which detect common security and
privacy vulnerabilities (i.e., OWASP Top 10).
Starting from a specific vulnerability, the framework
suggests the PDPs that, when re-engineering the
software, help mitigate such vulnerability. At the
current stage, the MATERIALIST framework covers
the mapping between the GDPR articles and the
PDPs. In the next section, we detail the process we

From GDPR to Privacy Design Patterns: The MATERIALIST Framework

645

followed to perform this mapping activity, which
represents the main contribution of this paper. The
other mappings between vulnerabilities with patterns
and between ISO 9241-210 with patterns are still in
progress; an overview of the results of these
mappings is reported in Section 4.

3.2 Mappings between the GDPR and
Vulnerabilities

In this paper, we focused on the forward engineering
that starts from the GDPR entry point up to PDPs.
This side of the framework addresses one of the
current limitations reported in the Introduction, i.e.,
data protection regulations only provide legal
indications. To this end, PDPs come in handy as a
way to guide the design of systems by proposing a
common and reusable solution to common privacy
problems. However, PDPs alone do not provide any
indication of how to comply with the GDPR, leaving
developers with no clear references on the regulation.
Moreover, the GDPR is composed of 99 articles, most
of which are about purely legal and bureaucratic
aspects.

To fill this gap and guide stakeholders in selecting
the right privacy design patterns according to the
GDPR articles they must be compliant with, we
performed a systematic mapping between the 72
privacy patterns and the GDPR articles. This activity
has been conducted by two researchers that are
experts in both GDPR and PDPs. In addition, to
increase robustness and reduce the possibility of
biases, this mapping has been performed starting:

1. from each PDP towards the GDPR articles;
2. from each GDPR article towards the PDPs.
The two researchers started by performing

independently the mapping phase. Each of them spent
around 40 hours for this phase. Then, they compared
their results and the reliability value was 67%; thus,
they discussed the differences and reached a full
agreement on the remaining mappings.

This process led to the identification of different
relationships between each privacy pattern and 14
different articles of the GDPR, thus providing a clear
indication of which PDPs can support compliance
with what article. Three patterns, namely
“Incentivized Participation”, “Pay Back” and
“Reciprocity” are left without any assignation
because the GDPR does not incentivize any
remuneration in return for data shared by users. The
result of the mapping represents the main contribution
of this work and, due to the huge amount of content,
the report of this mapping is reported as a Web page
available at http://90.147.170.155/mapping.html.

Stakeholders can exploit this table, as part of the
overall framework, to choose the right PDPs starting
from the GDPR articles they must be compliant to.

4 TOWARD THE EXTENSION OF
MATERIALIST

As reported before, as a work in progress, we are
extending the MATERIALIST framework by
associating PDPs with both vulnerabilities and ISO
9241-210 phases. We are also augmenting
MATERIALIST by extending the 72 PDPs with more
concrete architectural and UI patterns; however, a
lack of space limits the presentation of these details.
In the next sub-sections, we provide an overview of
the mappings with ISO 9241-210 and vulnerabilities.
We also present the adoption of user stories to
furtherly filter PDPs selected starting from any entry
point.

4.1 Mappings with Vulnerabilities and
ISO 9241-210

The mapping between vulnerabilities and PDPs is
inspired by the work of Baldassarre et al. (Baldassarre
et al. 2019): we are performing the same mapping by
considering the updated OWASP Top 10 2021 instead
of the OWASP Top 10 2017 used in the existing
mapping. It is worth noticing that there is not a direct
mapping between vulnerabilities and patterns, indeed
vulnerabilities are mapped first with the PbD
principles, which are mapped with PDSs, and are in
turn mapped with the PDPs. Table 1 reports an extract
of the results of this mapping. In particular, we can
see five OWASP Top 10 2021 vulnerabilities (A1,
A2, A3, A7, A8) mapped with the same PDPs.

Table 1: Mapping between some OWAPS Top 10 2021
vulnerabilities and privacy design patterns.

Vulnerability Privacy Design Pattern

A1 - Broken Access
Control
A2 - Cryptographic
Failures
A3 - Injection
A7 - Identification and
Authentication Failures
A8 - Software and Data
Integrity Failures

Abridged Terms and
Conditions

Ambient Notice

Appropriate Privacy
Icons

Asynchronous notice

SECRYPT 2022 - 19th International Conference on Security and Cryptography

646

Regarding the ISO 9241-210, we are also carrying
out a mapping between all the process phases and
each PDP. The ISO 9241-210 proposes a
complementary and iterative process, divided into an
initial planning phase and 4 iterative phases
(understand and specify the context of use; specify
the user requirements; produce design solutions to
meet user requirements; evaluate the designs against
requirements) that are cycled until the solution
satisfies all the user requirements. To this end, the
mapping aims to identify, during the development
process, when stakeholders should start considering
the implementation of a PDP. This is necessary
because security must be considered as a process
throughout the whole SDLC. Although, one may
think that patterns, being practical solutions, may be
considered only during the coding phase, their
implementation heavily depends on the context and
on the requirements of the system. As an example, the
Data Breach Notification 2 pattern should be
considered from the requirements phase as it is
mandatory, by the GDPR, that the authorities are
notified of the incident within 72 hours. Hence,
specific requirements must be set to duly implement
this pattern and thus comply with the regulation. On
the other hand, a pattern such as the Aggregation
gateway3, which deals with more architectural and
technical aspects instead, belongs to the design
production phase.

In this way, having a clear view of when engineers
should start considering a pattern, helps in easing the
secure implementation of the system. Moreover, the
adoption of a user-centered development process such
as the ISO 9241-210 further supports the
implementation of more usable approaches in security,
as usability is frequently overlooked in security and
privacy features (Jakobi et al. 2019) (Alpers et al.
2018), thus solving the aforementioned issue.

4.2 Mappings with User Stories

Traversing the MATERIALIST framework from any
entry point to PDPs can undoubtedly simplify the
work of the stakeholders, also avoiding choosing the
wrong PDPs due to missing or different knowledge
on privacy. However, sometimes this traversing leads
to the selection of several patterns, which have to be
further refined by the stakeholders if not properly
guided. For example, starting from the Article 5 of the
GDPR, 23 patterns can be used and the selection of
the right one(s) is in charge of the stakeholders, which

2 https://privacypatterns.org/patterns/Data-breach-notifi

cation-pattern

has not furthered elements to guide the choice.
To assist the selection of relevant patterns, we

defined an intermediate layer between the three entry
points and the PDPs. This layer consists of a set of
common use case scenarios (e.g., user registration on
a website, user deletion) mapped with the PDPs. We
started from a set of user stories proposed by the
Agency for Digital Italy (AgID), which is the
technical agency of the Presidency of the Council of
Ministers (AgID). Such scenarios represent the
majority of the situations that can cause privacy and
security vulnerability.

To perform this map, an analysis of the privacy
patterns was made to identify which PDPs are
involved in each user story and can be implemented
to provide a secure and GDPR-compliant procedure
(e.g., secure credentials storage during registration).
As an example, we can consider the users'
registration scenario; this is an interactive activity
where users are required to input their data, choose a
secure password and possibly make some choices
regarding how to share their data with the website or
any other related third-party services they are
registering with (e.g., share the email with a third-
party service for marketing purposes). In this context,
the designers not only have to design a privacy-aware
component but also they have to work on the front-
end to provide an intuitive and clear user interface
that can guide users during the whole registration
process and can help take appropriate decisions,
exactly in line with what GDPR asks for.

The PDPs related to this scenario are proposed by
the MATERIALIST framework, for example, the
Protection against Tracking and Strip Invisible
Metadata. In particular, these are the suggested PDPs:

PDP: Protection against Tracking
SUMMARY: Do not collect unnecessary cookies,
especially if they are useful only in the future and not
at the moment
USER STORY: Collecting cookies during the
registration
NOTES: If it is necessary to collect cookies for
system functionality, collect only those strictly
necessary and not the optional ones (i.e. technical and
profiling ones). For each cookie used, keep
correspondence in the DB between the cookie and the
user
PDP: Strip Invisible Metadata
SUMMARY: At least warn the user of what he is
sharing and give him a chance to rectify it

3 https://privacypatterns.org/patterns/Aggregation-gateway

From GDPR to Privacy Design Patterns: The MATERIALIST Framework

647

USER STORY: Metadata collection during
registration
NOTES: If it is necessary to collect metadata for
system functionality, collect only what is strictly
necessary and inform the user of all information that
can be deduced from the collected metadata.

The stakeholders that start from an entry point thus
can further refine the selection of PDPs considering
the scenarios they have to cover in their system. As
for the ISO 9241-210 and for the vulnerability this is
a work in progress.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented MATERIALIST, a
framework, which supports secure and privacy-aware
forward and backward software engineering
processes with a user-centric approach. Specifically,
we focused on developing the MATERIALIST
component that guides the selection of PDPs starting
from the GDPR articles. This framework is going to
be extended to facilitate the selection of PDPs also
starting from the ISO 9241-210 phases, as well as
from privacy and security code vulnerabilities. Some
results of these extensions are already reported in this
paper.

To improve the selection of PDPs we are also
working on the definition of intermediate layers that
further guide the choice of PDPs selected starting
from any entry point. Further approaches based on
heuristics and metrics are also under development to
suggest proper PDPs also depending on the context of
use. We are also working on the extension of the 72
PDSs by defining, for each of them, architectural
patterns and User Interface patterns, which better
drive designers and developers during software
development activities like coding and design.

REFERENCES

AgID “Linee Guida per Lo Sviluppo Del Software
Sicuro|Agenzia per l’Italia Digitale.”
(https://www.agid.gov.it/it/sicurezza/cert-pa/linee-
guida-sviluppo-del-software-sicuro).

Alpers, S., Oberweis A., Pieper M., Betz S., Fritsch A.
2018. “PRIVACY-AVARE: An Approach to Manage
and Distribute Privacy Settings”. In IEEE International
Conference on Computer and Communications (ICCC
2017), pp. 1460-1468.

Baldassarre, M.T., , Barletta V.S., Caivano D., and Scalera
M. 2019. “Privacy Oriented Software Development”. In
International Conference on the Quality of Information
and Communications Technology, pp. 18-32. Springer,
Cham.

Brodin, M., 2019. “A Framework for GDPR Compliance
for Small- and Medium-Sized Enterprises.” European
Journal for Security Research

Cavoukian, A., 2012. “Operationalizing Privacy by Design:
A Guide to Implementing Strong Privacy Practices.”

Colesky, Michael, Jaap Henk Hoepman, and Christiaan
Hillen. 2016. “A Critical Analysis of Privacy Design
Strategies”. In IEEE Symposium on Security and
Privacy Workshops (SPW '16), pp 33–40.

Hjerppe, K., Ruohonen J., and Leppänen V. 2019. “The
General Data Protection Regulation: Requirements,
Architectures, and Constraints”. In IEEE International
Conference on Requirements Engineering. Vols. 2019-
September.

Hoepman, J.H. 2014. “Privacy Design Strategies.” Pp. 446–
59 in IFIP Advances in Information and
Communication Technology. Vol. 428.

Jakobi, T., Patil, S., Randall, D., Stevens, G., & Wulf, V.
2019. It is about what they could do with the data: A
user perspective on privacy in smart metering. ACM
Transactions on Computer-Human Interaction
(TOCHI), 26(1), 1-44.

Jensen, Carlos, Joe Tullio, Colin Potts, and Elizabeth D.
Mynatt. 2005. “STRAP: A Structured Analysis
Framework for Privacy.” Technology.

Lioudakis, Georgios V., et al. "Facilitating GDPR
compliance: the H2020 BPR4GDPR approach." IOn
Conference on e-Business, e-Services and e-Society.
Springer, Cham, 2019.

Mai, P. X., Goknil, A., Shar, L. K., Pastore, F., Briand, L.
C., & Shaame, S. (2018). Modeling security and
privacy requirements: a use case-driven approach.
Information and Software Technology, 100, 165-182.

Martin, Y. S., & Kung, A. 2018. Methods and tools for
GDPR compliance through privacy and data protection
engineering. In IEEE European symposium on security
and privacy workshops (EuroS&PW), pp. 108-111.

Mead, N. R., & Stehney, T. 2005. Security quality
requirements engineering (SQUARE) methodology.
ACM SIGSOFT Software Engineering Notes, 30(4).

Sobolewski, M., J. Mazur, and M. Paliński. 2017. “GDPR:
A Step towards a User-Centric Internet?”
Intereconomics. 52(4), 207-213.

Shostack, A. 2014. Threat Modeling: Designing for
Security (1st. ed.). John Wiley & Sons.
https://dl.acm.org/doi/10.5555/2829295

SECRYPT 2022 - 19th International Conference on Security and Cryptography

648

