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Abstract:

We introduce PE-AONT: a novel algorithm for very fast computational secret sharing scheme. The core idea

of this scheme is to encrypt the data only partially before applying an all-or-nothing transform that will blend
the encrypted and non-encrypted data. By doing this, we achieve much better performance than relevant
techniques including straightforward encryption. To this regard, a performance benchmark is provided. In-
terestingly, when the ratio between the number of encrypted and non-encrypted fragments is wisely chosen,
data inside fragments are protected against exposure of the encryption key unless all fragments are gathered
by an attacker. Therefore, by choosing the right parameters, we can achieve key exposure protection, faster

processing, and a better overall protection.

1 INTRODUCTION

Fragmenting and dispersing data over multiple inde-
pendent storage sites reinforces its levels of confiden-
tiality, integrity, and availability (Bessani et al., 2013).
During the past decades, multiple fragmentation
methods were defined and used in various settings
(Buchanan et al., 2015; Memmi et al., 2015). These
methods include but are not limited to information-
theoretic secret sharing schemes (Shamir, 1979; Blak-
ley, 1979), information dispersal algorithms (Rabin,
1989), as well as schemes combining symmetric en-
cryption with data fragmentation (Krawczyk, 1994;
Resch and Plank, 2011).

In distributed systems, it is not uncommon to en-
crypt then fragment data in large chunks in a straight-
forward manner and then disperse them over differ-
ent independent servers or storage sites. To support
key management, encryption keys will be fragmented
using a secret sharing scheme and appended to data
fragments. To ensure resilience, data replication or
error-correction codes (Reed and Solomon, 1960)
may be applied. This sturdy way of proceeding does
not protect against attackers able to recover encryp-
tion keys. Such attackers may obtain a portion of
information just by decrypting fragments they suc-
ceeded to access to.
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Protection against key exposure requires addi-
tional post-processing that will create dependencies
between ciphertext blocks contained inside the frag-
ments (Karame et al., 2018) or that will shred ci-
phertext blocks over fragments (Kapusta and Memmi,
2018a). Encrypted data are then protected against key
exposure unless all fragments are gathered. Such ad-
ditional protection comes at a performance cost, as it
increases the required number of operations.

On another hand, partial encryption is usually
used in lightweight cipher. In this paper, we intro-
duce Partial Encryption with All Or Nothing Trans-
form (PE-AONT) : a new fragmentation algorithm
that is not only faster than most common fragmen-
tation techniques, but also (when carefully applied)
protects encrypted data inside fragments against a sit-
uation of key exposure. To this end, PE-AONT frag-
ments initial data into k fragments and encrypts only
e of them. In a next step, it applies an AONT over
the totality of the fragments that exclusive-ors cipher-
text with plaintext blocks. PE-AONT is then combin-
ing AONT technique with partial encryption achiev-
ing both speed and a good level of security. A secure
dispersal of fragments ensures that data from a single
fragment cannot be recovered unless all fragments are
being gathered. Limiting data encryption to e frag-
ments allows speeding up performance in proportion
of (k—e)/k, while the AONT combined with frag-
mentation ensures good level of data protection. Last
but not least, tuning the values of k and e provides
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the user with a seldom means to easily change the ra-
tio between performance and data protection level in
order to meet the desired requirements of his applica-
tion.

Qutline. In Section 2, we present a selection of rele-
vant techniques for fast data fragmentation. We also
recall two threat models to analyze protection under
key exposure. In Section 3, we describe in details
the proposed PE-AONT algorithm. In Section 4, we
compare PE-AONT with relevant works, analyzing
its complexity and level of data protection. A per-
formance benchmark is provided in Section 5. We
conclude with an insight into future works.

2 RELEVANT WORKS

In this section, we briefly describe selected relevant
fragmentation techniques that will later be used for
theoretical ans performance comparisons. The inter-
ested reader can go to (Memmi et al., 2015; Qiu et al.,
2019) for more extensive surveys.

2.1 Notations

By convention, we keep upper cases variables for se-
quences of bits (D for the initial data, F for a frag-
ment, C for a block). Lower cases variables are for pa-
rameters: initial data D are divided into k fragments.
A fragment is seen as sequence of f blocks and D of
| = f X k blocks.

For resilience purposes, a threshold (i.e. the mini-
mal number of fragments necessary to reconstruct D,
moreover, less fragments must not provide any infor-
mation about the D) can be introduced, In such a case,
D is divided into n fragments with a threshold of k.

2.2 Encryption and Straightforward
Fragmentation

A computationally secure scheme for fragmentation
of a large amount of data was first introduced by
Krawczyk in his seminal work Secret Sharing Made
Short (SSMS) (Krawczyk, 1994). SSMS is a general
methodology combining data encryption and frag-
mentation together with secret sharing of the encryp-
tion key. In the original proposal, data is encrypted
using a symmetric cipher (usually, AES), and then
fragmented using an information dispersal algorithm
(e.g. see (Rabin, 1989)) into n fragments. A thresh-
old of k of them are needed for data reconstruction.
Encryption key is split using a perfect secret sharing
scheme (typically Shamir’s secret sharing (Shamir,
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1979)) and embedded within data fragments. In con-
trast to perfect secret sharing schemes (such as one-
time pad or Shamir’s scheme), the storage overhead
of SSMS does not depend on data size, but is equal
to the key size per data fragment which is practically
negligible for sizeable data.

Performance of SSMS depends on implementa-
tion details of encryption and dispersal techniques. In
modern implementations, systematic error-correction
codes are used as the dispersal technique (Bessani
etal., 2013; Reed and Solomon, 1960). This improves
the performance, but allows a partial decryption of
compromised fragments in a situation of key expo-
sure, as the set of fragments contains fragments that
are formed from large encrypted data chunks.

Alike SSMS, the AONT-RS method (Chen et al.,
2017; Resch and Plank, 2011) combines symmetric
encryption with data dispersal. The difference be-
tween those two methodologies lies in the key man-
agement. In AONT-RS, the key is exclusive-ored with
the encrypted data hash. See (Qiu et al., 2019) for a
survey on different AONT variations such as (Boyko,
1999). A recent extension to AONT can be found in
(Esfahani et al., 2021).

2.3 CAKE Threat Model and the
Bastion Scheme

The Ciphertext Access under Key Exposure (CAKE)
threat model (Karame et al., 2018) aims at addressing
the problem of data protection against key exposure
in cloud environments. A scheme is denoted to be
(I — L) CAKE-secure when it resists an attacker able
to access any (I —A) blocks of the dispersed ciphertext
as well as the encryption key. Bastion protects trans-
formed ciphertext against key exposure as long as two
blocks are not being exposed ((1-2) CAKE-secure).
Authors of the CAKE model introduce an effi-
cient encryption scheme, Bastion, that provides ¢ — 2
CAKE security (decryption computationally infeasi-
ble unless all but two ciphertext blocks are being gath-
ered). In more details, the sequence of / input cipher-
text blocks X = X1,...,X; is is transformed into a se-
quence of / transformed blocks: X' = X{,..., X/ by
multiplying X by a square matrix A, such that: (i) all
diagonal elements are set to 0, and (ii) the remaining
off-diagonal elements are set to 1. The multiplication
X' = A-X (where ’and’ and ’xor’ stand for 'multi-
ply’ and ’add’ respectively) ensures that each output
block X/ will depend on all input blocks X; excluding
X;. k fragments are then formed from the transformed
ciphertext, for instance, by cutting it into blocks of %
The Bastion scheme achieves much better per-
formance than other AONTSs as it requires only 2/
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exclusive-or operations in addition to data encryption.

2.4 SAKE Threat Model

The Shares Access under Key Exposure (SAKE)
threat model introduced in (Kapusta et al., 2020),
is a variation of CAKE that results from the obser-
vation that once an attacker compromises a storage
site, she will be most probably able to acquire all the
blocks of the share S; stored at this site. A scheme
is denoted (k — &) SAKE-secure when it resists an at-
tacker able to access any (k—A) fragments of the dis-
persed ciphertext as well as the encryption key. The
SAKE model comes with SSAKE and ROSSAKE
schemes that outperforms the Bastion scheme (thanks
to changing the threat model, it is possible to re-
duce (SSAKE) or even remove (ROSSAKE) the post-
processing of the ciphertext) (see (Kapusta et al.,
2020) for details).

2.5 Mix and Slice

Mix&Slice (Bacis et al., 2016) is an approach to
enforce access revocation on data stored at external
Cloud providers. Before being uploaded to the cloud,
data is transformed in an AONT manner making the
data decryption infeasible as long as the ciphertext is
incomplete. Consequently, re-encrypting even a small
portion of the outsourced data with a fresh key re-
vokes the access to a user who does not possess the
new key. Mix&Slice uses a symmetric block cipher
to create dependencies inside the data. Indeed, a sym-
metric block function transforms a plaintext block
into a ciphertext block, correct decryption of which
is infeasible when even a single bit of data is missing.
Thus, it is possible to use it as a way of creating strong
dependencies between bits of data.

2.6 Secure Fragmentation and
Dispersal (SFD)

Secure fragmentation and dispersal (Kapusta and
Memmi, 2018a) divides a ciphertext encrypted us-
ing a block cipher with a mode of operation that cre-
ates chaining between consecutive ciphertext blocks
(like Cipher Block Chaining) into fragments resisting
to key exposure. The complete scheme is composed
of three steps. The first step separates consecutive
blocks of the ciphertext. The second step separates
bits of blocks over final fragments. At last, fragments
are dispersed and stored over independent storage lo-
cations e.g. multiple cloud providers (like in (Bessani
et al., 2013)). In consequence, an attacker present at
a single storage location is unable to decrypt a single

638

block of the ciphertext even if she possesses the right
encryption key.

3 ALGORITHM DESCRIPTION

PE-AONT is composed of three steps detailed in the
subsequent subsections. In a first step, initial data D
together with an Initial Vector (IV) is composed of /
plaintext blocks. They are structured into k fragments
of which only e of them are encrypted. In a second
step, the k fragments are transformed using an AONT
that blends ciphertext contained inside the e encrypted
fragments with the k — e plaintext fragments in a one-
time pad fashion. It is this step that is ensuring the
protection of the k — e plaintext fragments with a level
of protection depending on the values of k and e. The
last step simply consists of dispersing the fragments.

3.1 Stepl: Data Fragmentation and
Partial Encryption

The pseudo-code of the first step of the algorithm -
FRAGMENTANDENCRYPT- is presented in Figure 1
and illustrated by the example in Figure 2.

1: function FRAGMENTANDENCRYPT(D, ¢, k)
2: Fragment data D into k initial fragments
F(), “es 7Fk—1 and of
/leach fragment has f blocks
//Encrypt e of the k fragments:
for each fragment F;, i =0,...,e— 1 do
Encrypt fragment F;

AR A

/I' I blocks Cy,...,C;— are now straightfor-
wardly defined from the e encrypted fragments
and the k — e plaintext fragments.

Figure 1: Pseudo-code of Step 1 fragmenting data into k
fragments, encrypting e of them, creating / blocks.

| o | o o [ |
2 | ] =1
o1 | [= [
F, F, F, F

Figure 2: Step 1 example with k =4, ¢ =3, and [ = 8. The
first step of the algorithm fragments D into k fragments of
f =2 blocks, the last fragment contains plaintext blocks. D
has 7 blocks: D = Py, P, ...P;. The block Py =1V is added
to D; it corresponds to the ciphertext block containing the
Initial Vector used by the cipher.

During this step, a block Py containing the Initial
Vector (IV) is added to D = Py, P, ...P, the initial data
to form [ plaintext blocks which are structured into k
fragments. Only e < k of the fragments are being en-



crypted using a block cipher (usually, AES). There-
fore, at the end of the processing [ blocks denoted
with the letter C are created. Each fragment contains
f= % blocks, e fragments contain ciphertext blocks,
k — e of them contain plaintext blocks.

The fragments can be put together side by side to
form a matrix of f rows and k columns as in Figure 2
where each block is an element of the matrix, each
column a fragment. This way of organizing blocks
will be used to more easily describe the second step
of our algorithm.

3.2 Step 2: All-or-Nothing Transform of
the Fragments

The pseudo-code of the second step of the algorithm -
AONTTRANSFORM - is presented in Figure 3 and il-
lustrated by a continuation of the example of Figure 2
shown in Figure 4. Blocks are processed in a row by
row fashion by sets of k blocks, each block coming
from a different fragment. The AONT presented in
(Karame et al., 2018; Stinson, 2001) is applied over
the set of k blocks, e of which are ciphertext blocks
and the k — e remaining ones are plaintext blocks.

1: function AONTRANSFORM(D)

2 fori=0,...,f—1do

3: sum = @éﬂci] Crxjri

4 for j=0,...,k—1do

5 Crxjyi = sum Crx jyi

Figure 3: Pseudo-code of Step 2. An AONT is applied over
the k fragments exclusive-oring their plaintext and cipher-
text blocks. f denotes the number of blocks inside a frag-
ment. Blocks are processed by 'rows’ of k blocks (each
block of a given row coming from a different fragment). For
each ‘row’ of k blocks a sum value containing the exclusive-
or of the k blocks is first computed. sum is then exclusive-
ored with each original block in the row in order to remove
it and getting a different new block in each fragment.

It must be pointed out that for k = 2 this process-
ing does not change anything about the values of the
blocks save for the 2 fragments numbering. For k =3
the knowledge of 2 fragments allows deducing the
third one. It is therefore, necessary to consider k > 3.

3.3 Step 3: Dispersing Fragments

In a final step, fragments are dispersed over indepen-
dent storage sites. The dispersal technique depends
on values of e and k and of course, on the number of
available machines.

* For e = k— 1: no more than k — 2 fragments can
be stored at a single storage site. This comes from
the property of the linear AONT protecting trans-
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[c.ocor, [cecer,| [cocec)

[cocer,

[c.ocor.| [cocer,| [cocer.| [cocac)
ry I r, Iy

Figure 4: Step2, example for k =4 and e = 3. Fragments
are transformed using an AONT that exclusive-ors cipher-
text and plaintext blocks. The transform is applied 'row’
by 'row’ over k blocks (each block comes from a different
fragment) protecting the k — e fragments which were not en-

crypted.

formed blocks unless more than k — 2 blocks are
exposed (Karame et al., 2018).

e For e < k— 1: all fragments have to be dispersed
over independent storage sites. As the number
of plaintext fragments increases, it is possible that
same combinations of ciphertext blocks will be
used to protect different plaintext blocks.

3.4 Further Considerations

As -AONTransform- uses the Bastion transform over
k blocks at a time, k has to be even in order to al-
low the Bastion’s reconstruction matrix to be invert-
ible (Karame et al., 2018) ). Under this condition, the
defragmentation process is an inverse of the fragmen-
tation and is straightforward.

Indeed, data protection level is lower as e de-
creases and fragments are only secure when the as-
sumed attacker is not able to compromise more than
one storage site. It is the price that has to be paid for
speeding up the algorithm processing.

4 THEORETICAL ASPECTS

4.1 Choosing PE-AONT Parameters

To achieve the protection against key exposure, each
plaintext block should be exclusive-ored with at least
two different ciphertext blocks. This goes from the
definition of a SAKE-secure scheme, which is pre-
sented in details in (Kapusta et al., 2020). An intuitive
explanation is that an adversary possessing a linear
combination of plaintext blocks xored with a single
ciphertext block is able to win the ind-CPA game. In
contrary, if the plaintext blocks are xored with more
that one ciphertext blocks, the adversary has a negli-
gible chance to win the game, even if it possess the
right encryption key.

Thus, the minimum value of e is 3, which enables
combinations of at least two ciphertext blocks hiding
a plaintext. The minimum value of £ is 4, as the num-
ber of input block has to be even in order to allow
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the Bastion’s reconstruction matrix to be invertible
(Karame et al., 2018) and k > e. Intuitively, the larger
the value of e, the higher will be the provided level
of data protection. When e = k — 1, data cannot be
decrypted unless all k fragments are gathered. Frag-
ments are thus protected against key exposure (are
SAKE-secured). It’s the most interesting PE-AONT
configuration from a security point of view, as it is not
only faster than encryption and straightforward frag-
mentation (enc.+ SF) but also protects data against
key exposure.

When 3 < e < k—2 the protection is lower and en-
sured only if the attacker is not able to access to more
than a single storage site. Indeed, when the attacker
compromised more than one site, she can obtain re-
lationships between fragments by exclusive-oring the
fragments in her possession (a similar problem occurs
when a one-time pad is reused).

4.2 Comparison with Relevant Schemes

We compared PE-AONT with relevant works in terms
of amount of computations and ability to protect
against key exposure. Results are shown in Figure 5.
As a baseline, we use encryption that requires / — 1
block cipher operations and [ — 1 exclusive-or op-
erations (when applied on a plaintext composed of
m = [ — 1 blocks).

Algorithm Block op. Exclusive-ors KEP
Encryption 1-1 b.c. 1-1 No
Bastion 1-1 b.c. 31-1 [AON Transform: 21] Yes
SFD 1-1 bc. 1-1 Yes
PE-AONT ex fbec. 20+ fle—1) Yes*

Figure 5: Comparison in terms of number of block cipher
operations (block op.), number of exclusive-ors, and ability
to provide a key exposure protection (K.E.P), assuming a
plaintext of / — 1 blocks. (*): PE-AONT provides key expo-
sure protection when e > 3. When e < k— 1 fragments are
protected against key exposure, but data is protected only
against an attacker at a single storage site.

Bastion scheme applies only a linear transform
over the encrypted data without increasing the num-
ber of block cipher operations. Bastion’s trans-
form uses 2/ exclusive-or operations. Counting with
the encryption step, Bastion scheme requires 3/ — 1
exclusive-ors.

SFD does not require additional operations in ad-
dition to data encryption, as it just disperses data
chunks over fragments (depending on the program-
ming technique this also leads to a slight performance
overhead of up to 11%).

PE-AONT requires only e x f block cipher op-
erations, as it does not encrypt the totality of the
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Performance (MB/s)

Enc.+SF  PE-AONT (6,5) PE-AONT (4,3) PE-AONT (6,4) PE-AONT (4.2) SFD Bastion

Figure 6: Performance benchmark. PE-AONT was mea-
sured in different configurations of (k,e). In all of them it
is faster than encryption and straightforward fragmentation
(enc.+ SF). It is also faster than two fragmentation schemes
protecting against data exposure: secure fragmentation and
dispersal (SFD) and the Bastion scheme.

data contained inside the fragments. It performs
21+ f x (e — 1) exclusive-or operations: e x f during
the encryption and 2/ — f during the AONT.

5 PERFORMANCE
COMPARISON

Implementation Details. Relevant algorithms were
implemented using the same programing style in
JAVA with JDK 1.8 on DELL Latitude E6540, X64-
based PC running on Intel® Core™ i7-4800MQ CPU
@ 2.70 GHz with 8 GB RAM, under Windows 7.
Standard javax.crypto library was used. A random
data sample was used for each measurement and each
presented result is an average of 30 measurements.
AES-NI with 128 bits key was used for encryption.

Performance comparison between relevant algo-
rithms is presented in Figure 6. The performance of
PE-AONT is shown in 4 configurations: two con-
figurations were e = k — 1 (and where the protec-
tion level is high) and for two configurations when
e < k—2 (data protection is traded for better perfor-
mance). In all configurations, PE-AONT outperforms
encryption and straightforward fragmentation. More-
over, it is much faster than two relevant fragmentation
techniques protecting fragmented data against key ex-
posure: SFD and Bastion’s scheme.

6 FUTURE WORKS

Our software integrates AES-NI cipher and PE-
AONT in a coarse-grained fashion. In the future, we
would like to integrate the algorithm within the code
of the encryption process in a fine-grain fashion to al-
low an even better fragmentation performance. We
improved the Bastion AONT algorithm by decreas-
ing the number of Xor operations needed to protect



data against key exposure in (Kapusta and Memmi,
2018b) or in (Kapusta and Memmi, 2018c). It be-
comes important to keep analyzing and comparing
these various scheme and determine in which situa-
tion one method is preferable over another one. We
believe PE-AONT is very likely best fitted as a tun-
able lightweight cipher since it is faster than the other
AONT algorithms.

Moreover, we would like to integrate PE-AONT
inside a complete distributed system protecting data
using an adaptable combination of fragmentation, en-
cryption, and dispersal (Kapusta et al., 2020).

7 CONCLUSION

PE-AONT: a fast fragmentation method combining
Partial Encryption with an AONT was introduced in
order to speed up the overall scheme performance
in a tun-able fashion. The desired ratio between
performance and protection levels can easily be ad-
justed by users with just two parameters to increase
performance and decrease protection or the other
way around. An experimental evaluation shows that
the algorithm achieves better performance than rele-
vant techniques including the most common way of
data fragmentation. As such, it can be chosen as a
lightweight cipher. Moreover, by carefully choosing
parameters values, it protects fragmented data against
key exposure (SAKE-secure) as long as an attacker
does not access to the entire set of fragments.

We now believe that PE-AONT is ready for seri-
ous consideration as a component and successfully be
integrated within modern distributed or transmission
systems where rapid protection is required.
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