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Abstract: Recommender systems are rapidly becoming an integral part of our daily lives. They play a crucial role in 
overcoming the overloading problem of information by suggesting and personalizing the recommended items. 
Collaborative filtering, content-based filtering, and hybrid methods are examples of traditional recommender 
systems which had been used for straightforward prediction problems. More complex problems can be solved 
with new methods which are applied to recommender systems, such as reinforcement learning algorithms. 
Markov decision process and reinforcement learning can take part in solving these problems. Recent 
developments in applying reinforcement learning methods to recommender systems make it possible to use 
them in order to solve problems with the massive environment and states.  A review of the reinforcement 
learning recommender system will follow the traditional and reinforcement learning-based methods 
formulation, their evaluation, challenges, and recommended future work. 

1 INTRODUCTION 

The enormous amount of information existing on the 
Internet causes the information overload problem, 
making it hard to make the right decision. It can be 
realized in our everyday online shopping when we 
have an extended list of possible items to be 
purchased. If the list grows longer, it will be harder to 
select from the list. Recommender Systems (RSs) are 
algorithms and software tools designed to assist users 
in finding items of interest by anticipating their 
preferences or ratings. The development of RSs helps 
users find the item they are interested in by predicting 
the rating on the items and their previous preferences. 
Today, RSs are a crucial part of enormous companies 
like Netflix, Amazon, Facebook, and Google where a 
vast range of applications of RSs is employed, such 
as e-learning (Aleksandra et al., 2015), e-commerce 
(Ben et al., 1999), healthcare (Emre and Sevgi, 2013), 
and news (Mozhgan et al., 2018). Different 
techniques such as content-based filtering, 
collaborative filtering, and hybrid methods are also 
proposed to address the recommender system 
problem. By the introduction of matrix factorization, 
some success was achieved in the field of providing 
appropriate recommendations. Still, the mentioned 
methods have problems, i.e., cold start, scalability, 
serendipity, proper computational expense, and 
recommendation quality (Francesco et al. 2011). 

Deep learning (DL) has recently gained approval in the 
RSs application field because of the potential in 
complex relationships of users, items, and their 
accurate performance in the recommendation. Non-
interpretable, computationally expensive, and data-
hungry are properties of DL models (Shuai et al., 
2019). Above all, prior RSs methods are not beneficial 
in the interaction between users and items, which can 
be better handled with Reinforcement Learning (RL) 
and its training agent in the environment that is a semi-
supervised machine learning field (Shuai et al., 2019). 
The most critical point in the RL can be a combination 
of traditional RL methods and DL together; this 
combination is known as Deep Reinforcement 
Learning (DRL). This allowed RL to be used in 
problems with large state and action spaces, such as 
robotics (Jens et al.,2013), industry automation 
(Richard et al., 2017), self-driving cars (Ahmad et al. 
2017; Changxi et al, 2019), finance (Zhengyao et al. 
2017), healthcare (Arthur et al., 2008).  

The RL is a seamless match for the recommenda-
tion problem because it has the ability to reward 
learning without any training data, which is a unique 
specification. These days, the power of RL is used to 
recommend better items to the customers by many 
companies, i.e., the video recommender system on 
YouTube uses RL (Minmin et al., 2019). The use of 
RL in the RSs is becoming more popular not only in 
the industry but also in academia. The importance of 
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this topic motivated us to write this paper in the field 
of reinforcement for RSs. Our paper's major goal is to 
show the progress in utilizing RL in RSs to depict the 
trend that has been changed during recent years. The 
sample chart shown in Fig. 1 depicts the number of 
papers published from 2010 through January 2022. 

 
Figure 1: Number of papers published from 2010 to 2022. 

2 METHODOLOGIES 

We have decided to explore the problems and 
challenges associated with the RSs with the RL 
algorithm. As the second goal, methods, and 
algorithms to tackle these challenges are discussed, 
highlighting a critical point that involves the 
introduction of the applications for RL-based and 
non-RL-based RSs. This paper addresses the 
followings: 

• We first categorize the algorithms in the field 
into RL- and DRL-based techniques. The 
categories are then divided into specific RL 
algorithms employed in the studies. 

• To provide the reader with the essential idea and 
contribution of the study, we first provide a 
simple yet detailed description of each 
algorithm.  

• Future research directions are suggested. 
Finally, in order to combine our survey study, 
we give some insights about active research in 
the Reinforcement Learning Recommender 
System (RLRS) field.  

We initially searched among all related articles 
using multiple search engines with the following 
search queries: recommender systems, recommender 
engine, recommendation, content filtering, 
collaborative filtering, reinforcement learning 
algorithm, deep reinforcement learning algorithm, 
and reinforcement learning for recommender systems 
and applied them in different databases including 
IEEE Xplore, SpringerLink, ScienceDirect, ACM 
digital library, Lynda.com. We also explored popular 
conferences in the field of RSs, such as RecSys, 
SIGIR, and KDD. Following the article collection, we 

reviewed the publications to find all related articles 
for our purpose (Aleksandra et al., 2015; Smyth et al., 
2000). Therefore, the papers that use RL also for other 
technologies other than RSs such as dialogue 
management system/conversational were selected 
(Satinder et al., 2000; Joel et al., 2006). 

3 RECOMMENDER SYSTEMS 

On daily basis, we encounter situations where 
decisions need to be made and there is not enough 
information on different aspects of them. In these 
cases, it is necessary to trust others’ recommendations 
who are experienced in those situations (Paul et al., 
1992). The early RSs were called collaborative 
filtering (CF) (David et al., 1992). Then, it was 
changed to RSs for two reasons: i) CF may not be 
used by the users ii) item may be recommended not 
filtered by the method. The recommender system may 
use another approach termed Content-based Filtering 
(CBF) that applies the user profile to suggest related 
items associated with the user’s interest (Michael and 
Daniel 2007; Pasquale et al., 2011). Both CF and CBF 
cannot be used for some problems, where cold-start 
and serendipity persist. To address the above issues, 
the hybrid method was applied (Francesco et al. 
2011). All the mentioned methods cannot handle 
today’s RS problems due to a massive number of 
users and items. We will introduce briefly classic 
techniques used in RSs in this section and in the next 
sections, we'll go through RL in further depth. 

3.1 Collaborative Filtering 

The aim of Collaborative Filtering (CF) RSs is to help 
users to make a decision based on other users’ 
suggestions with similar interests (Deshpande and 
Karypis, 2004). The CF approaches can be divided 
into item-based and user-based (Sarwar et al., 2001), 
wherein the user-based, the recommended items will 
be suggested based on items that are liked by similar 
users. In the item-based, items will be recommended 
to users based on items in which they were interested. 
Pearson correlation-based (Resnick et al. 1994), 
Cosine-based, and Adjusted Cosine-based can be 
used to calculate the similarity between users or 
items. Users who rated both items will take part in the 
calculation of the similarity of recommended items 
which helps the calculation be more accurate. An 
improved item-based CF was introduced by the 
combination of the Adjusted Cosine and Jaccard 
metric in order to increase the similarity calculation's 
accuracy (Shambour and Lu, 2011).  
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3.2 Content-based Filtering 

Content-based (CB) RSs recommend items based on 
similar items which have been liked by the user in the 
past (Pazzani and Billsus, 2007). The fundamental 
concepts of CB RSs are i) The specifications of items 
are used to find the recommended items. In order to 
detect these attributes, the items description which is 
preferred by a certain user should be analyzed. ii) For 
each item, specifications are compared with the 
profile of the user. Eventually, items with a high 
degree of similarity to the profile of the user will be 
recommended (Pazzani and Billsus, 2007).  Two 
techniques are used to create recommendations in 
CB. Methods with information retrieval, including 
Cosine similarity measures, are used in the first 
technique, which generates recommendations. The 
second technique uses Machine Learning methods to 
create recommendations. 

3.3 Hybrid Recommendation Methods 

To tackle the weaknesses regarding traditional RS 
techniques and to achieve higher efficiency, a hybrid 
RS technique is used, that merges two or more 
recommendation techniques (Bruke, 2007). There are 
seven initial combination approaches that are used to 
create hybrid methods: Mixed (Smyth and Cotter, 
2000), Weighted (Mobasher et al. 2004), Switching 
(Billsus and Pazzani, 2000), Feature Combination, 
and Argumentation (Wilson et al. 2003), Meta-level 
(Pazzani, 1999), and Cascade (Bruke, 2002). The 
most used hybrid RSs attempt to tackle cold start and 
scalability issues (Bellogin et al., 2013). 

4 REINFORCEMENT LEARNING 
AND DEEP REINFORCEMENT 
LEARNING 

A machine learning method that studies different 
problems and solutions to maximize a reward through 
interaction between agents and their environment is 
called RL. Three characteristics that discriminate an 
RL problem (Richard et al., 2017) are: i) closed-loop 
problem ii) there is no need for a trainer to teach the 
learner, but it trains what to do to the learner with the 
trial-and-error method according to the policy iii) the 
short and long terms results can be influenced by the 
actions. The crucial part to model the RL problem is 
the agent’s interface and environment as shown in 
Fig. 2.  

 
Figure 2: The interface of RL. 

An agent is a decision-maker or learner; everything 
outside of the agent is called the environment. 
Information and representation that is seen outside of 
the agent (the environment) at time step t is called 
state, and the agent makes an action according to the 
current state. Based on the action taken, the 
environment is given a numerical reward and goes to 
a new state. The RL problems are formulated 
commonly as a Markov Decision Process (MDP) with 
the form of (S, A, R, P, ߛ), where S represents all 
possible states, A indicates actions that are available 
in all states, R presents reward function, P shows the 
probability of the transition, and finally, ߛ  is the 
discount factor. The agent’s aim in the RL problem is 
the best policy π(a|s) to make an action which is a 
member of A in state s ߳  S to maximize the 
cumulative reward. An RL system includes four 
principal parts (Richard et al., 2017): i) Policy: It is 
presented by π generally, which indicates the 
probability of doing an action. The RL algorithm may 
be categorized into on-policy and off-policy 
techniques depending on the policy. In the first case, 
RL approaches are used to evaluate or improve the 
policy that is being used to make judgments. They 
enhance or assess a policy that is not the same as the 
one used to create the data in the latter. ii) Numeral 
rewards: regarding the selected actions, the 
environment gives a numeral reward in order to send 
an announcement to the agent about the action that is 
selected. iii) Value function: the purpose of the value 
function is to indicate how good or bad is the action 
in the long run. iv) Model: it indicates the conduct of 
the environment. There are two types of algorithms 
that are utilized to address RL challenges: tabular and 
approximate. In the tabular method, tables are used to 
represent value functions, and an accurate policy is 
found because the size of spaces (action and state) is 
not big. Monte Carlo (MC), Temporal Difference 
(TD), and Dynamic Programming (DP) are popular 
tabular methods. The MC methods need only an 
instance of rewards, states, and actions that will be 
provided by the environment. Monte Carlo Tree 
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Search (MCTS) is the most important algorithm of 
MC methods. The DP methods use an excellent 
model of the environment and value function in order 
to find good policies. Policy and value iteration can 
be good examples of DP methods. The TD method is 
a blend of the MC sampling method and the DP 
bootstrapping method. The TD methods, like the MC 
methods, may learn from the agent's interactions with 
the world and do not require model knowledge. From 
this class, Q-learning (Christopher, 1989) and 
SARSA are the most important ones as they are off-
policy and on-policy, respectively. In the 
approximate method, the aim is to search for 
sufficient solutions regarding the computational 
resources constraint because state space has a massive 
size. To address this, previous experiences are used. 
Policy Gradient methods are very popular because of 
their ability to learn policy parametrization and 
actions selection without the need for a value 
function. Actor-critic and reinforcement (Roland, 
1992) are more significant methods in this category. 
DL is a field based on an artificial Neural Network 
that is used as the function in RL and suggests a deep 
Q-network (DQN) (Alex et al. 2012; Ian et al. 2012). 
DQN and Deterministic policy gradient (DPG) 
(David et al. 2014) are combined and used in Deep 
Deterministic Policy Gradient (DDPG) (Timothy et 
al., 2015). In RSs, Double DQN (DDQN) and 
Dueling Q-network are also used (Ziyu et al 2016). 

5 REINFORCEMENT LEARNING 
FOR RECOMMENDATION 

The user's interaction with an RS is sequential in 
nature. (Zimdars et al., 2001), and recommending the 
best items to a user is a sequential decision problem 
(Guy et al, 2005). This implies that the recommenda-
tion problem can be modeled as an MDP and solved 
using RL approaches. As previously stated, an agent in 
a normal RL situation seeks to maximize a numerical 
reward through interaction with an environment. This 
is similar to the recommendation problem, in which the 
RS algorithm seeks to recommend the best goods to the 
user while maximizing the user's pleasure. As a result, 
the RS algorithm can act as the RL agent, and 
everything outside of this agent, including system users 
and items, can be regarded as the agent's environment. 
Applying standard tabular RL algorithms to today's 
RSs with large action and state spaces is nearly 
impossible (Gabriel et al. 2015). Instead, with the 
emergence of DRL algorithms, there is a growing trend 
in the RS community to use RL approaches. 

6 REINFORCEMENT LEARNING 
ALGORITHMS 

We present algorithms in a classified manner in this 
part. After reviewing all the algorithms, we concluded 
that the emergence of DRL has significantly altered  
 

 

Figure 3: Number of publications using each algorithm. 

the study of RLRSs. As a result, we split RLRS 
approaches into two broad categories: RL- and DRL-
based algorithms. Fig. 3. gives a high-level overview 
of the algorithms and number of publications. We 
begin with RL-based approaches. 

6.1 RL-based Methods 

We mean RLRSs that use an RL algorithm for 
recommendation policy optimization but do not use 
DL to estimate parameters by RL-based methods. 
RL-based methods include TD, DP, MC, and Fitted 
Q RL algorithms from both tabular and approximate 
approaches. 

6.1.1 TD Methods 

Q-learning is a well-known RL algorithm in the RS 
field (Thorsten et al., 1997; Anongnrat and Pisit, 
2005). WebWatcher is most likely the first RS 
method to integrate RL to improve suggestion 
quality. They simply treat the web page 
recommendation problem as an RL problem and 
apply Q-learning to increase the accuracy of their 
basic web RS, which employs a similarity function 
(based on TF-IDF) to propose pages that are related 
to the user's interest. Authors in (Nima et al., 2007) 
extend this idea a decade later to offer tailored 
websites to users. To address the state dimensionality 
issue, they employ the N-gram model from the online 
usage mining literature (Bamshad et al., 2000) and a 
sliding window to represent states.  
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6.1.2 DP Methods 

Another tubular approach that has been used in 
(Thorsten and Anthony, 2001; Guy et al., 2005, Elad 
et al., 2014) is DP. Ref. (Thorsten and Anthony, 
2001) is one of the early studies that formulate the 
recommendation problem as an MDP. In fact, the 
paper examines the potential benefits of utilizing 
MDP for the recommendation problem using the 
example of guiding a user through an airport. 
Similarly, ref. (Guy et al., 2005) is one of the early 
and valuable attempts to model the recommendation 
problem as an MDP. Because the model parameters 
of an MDP-based recommender are unknown and 
deploying it on the actual to learn them is 
prohibitively expensive, they propose a predictive 
model capable of providing starting parameters for 
the MDP. This prediction model is a Markov chain in 
which the state and transition function are modeled 
based on the dataset observations. They suggest that 
the simplest version of this Markov chain faces the 
data sparsity problem because it uses maximum 
probability to estimate the transition function. As a 
result, the basic version is improved by utilizing three 
techniques: skipping, clustering, and mixture 
modeling. This prediction model is then utilized to 
kickstart the MDP-based recommender. To address 
the dimensionality issue, the last k elements are 
employed to encode state information. They use an 
online study to evaluate the effectiveness of their 
strategy. 

6.1.3 MC Methods 

The final tabular approach, MC, has been used in 
various RLRSs (Elad et al., 2014; Yu, 2020; Lixin et 
al., 2019). To address the dimensionality issue, each 
song is represented as a vector of song (spectral 
auditory) descriptors, which include information 
about the song's spectral fingerprint, rhythmic 
features, overall loudness, and change over time. To 
expedite the process of learning, the reward function 
is also used to account for the listener's liking for 
certain songs as well as his song transition behavior. 
The DJ-MC architecture is made up of two primary 
parts: learning listener parameters (his preferences for 
songs and transitions) and arranging a song sequence. 

6.1.4 Fitted Q Methods 

Some RL-based algorithms (Yufan et al, 2011; Susan 
et al., 2011; Georgios et al., 2015) also employ an 
approximation technique (fitted Q) for policy 
optimization. In a clinical application (Yufan et al, 
2011), RL is used to offer treatment alternatives for 

lung cancer patients with the goal of maximizing 
patient survival. They regard treatment for patients 
with advanced non-small cell lung cancer (NSCLC) 
as a two-line treatment, with the role of the RL agent 
being to recommend the best treatment option in each 
treatment line as well as the appropriate time to begin 
second-line therapy. Support vector regression (SVR) 
is used to optimize the Q-function for the RL agent. 
They alter SVR with a ߝ -insensitive loss function 
because the original SVR cannot be used to censored 
data (Vladimir, 2013). (Susan et al., 2011) employs 
RL to identify the best therapy alternatives for 
patients suffering from schizophrenia. First, they 
employ multiple imputations (Roderick et al., 2019) 
to solve the missing data issue, which can introduce 
bias and increase variance in Q-value estimations due 
to patient dropout or item missingness. The second 
issue they address is that clinical data is highly 
variable, with few trajectories, making function 
approximation difficult. As a result, they train the Q-
function using fitted Q-iteration (FQI) (Damien et al, 
2005) and a basic linear regression model. The 
impetus for the work presented in (Georgios et al., 
2015) is that current ad suggestion algorithms do not 
distinguish between a visit and a visitor and presume 
that all visits to a website are from new visitors. As a 
result, they claim that, while click-through rate (CTR) 
is a realistic choice for greedy performance, life-time 
value (LTV), denoted as (total number of clicks/total 
number of visitors) ×	100, is a true choice for long-
term performance. To address the off-policy 
evaluation problem in the RS field, they employ a 
model-free approach dubbed HCOPE, developed by 
the same authors in (Philip et al., 2015), which 
computes a lower bound on a policy's expected return 
using a concentration inequality.  

6.2 DRL-based Methods 

In this part, we look at DRL-based RSs that employ 
DL to approximate the value function or policy. For 
policy optimization, these methods employ three 
essential RL algorithms: Q-learning, actor-critic, and 
REINFORCE. There are also other works that test 
and compare the performance of various RL 
algorithms for policy optimization.  

6.2.1 Q-learning Methods 

Slate-MDP (Peter, 2015) is possibly the first study to 
use DQN for a slate recommendation. To deal with 
the combinatorial action space caused by slates 
(tuples) of actions, they present agents that use a 
sequential greedy strategy to learn the value of whole 
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slates. In fact, it is anticipated that the item slates have 
the sequential presentation attribute, which means 
that recommended things are given to the user one at 
a time. This assumption is paired with another, in 
which it is assumed that one of the primitive acts will 
be performed. They also employ an attention 
mechanism based on DDPG for each slot in the slate 
to direct the search to a tiny area of action space with 
the highest value. However, as mentioned in (Eugene 
et al., 2019), the second assumption is not very 
realistic in frequent recommendation scenarios 
because it is akin to the condition in which we can 
force a user to eat a specific item. 

DQN is used in (Shamim et al., 75) to optimize 
heparin dosage advice. They first represent the 
problem as a partially observable MDP (POMDP) and 
then estimate the belief states using a discriminative 
hidden Markov model. The policy is then optimized 
using DQN. A variation of DQN is employed in 
another clinical application (Aniruddh et al., 2017) to 
optimize dosage recommendations for sepsis 
treatment. They employ a continuous state space as 
well as a discrete action space. They alter DQN as 
follows due to intrinsic flaws in the original DQN 
algorithm, including the overestimation of Q values. 

The fundamental idea of (Xinshi et al., 2019) is to 
utilize generative adversarial networks (GANs) to 
develop a user model and then use a cascade DQN 
algorithm to recommend the best things. A mini-max 
optimization strategy is used in user modeling to 
simultaneously learn user behavior and the reward 
function. DQN is then used to learn the optimal 
recommendation strategy using the learned user 
model. Unlike other approaches, instead of tackling 
the combinatorics of proposing a list of items (k 
items) with a single Q-network, k Q-networks are 
employed in a cascaded fashion to identify k best 
actions. To be more specific, the ideal actions are 
determined by the following fact: ݉ܽݔభ:ೖܳ∗(ݏ, ܽଵ:) = ,ݏ)∗ܳ	మ:ೖݔܽ݉)భݔܽ݉	 ܽଵ:)) 
6.2.2 Actor-Critique Methods 

Wolpertinger (Nima et al., 2007) is an actor-critic 
framework capable of dealing with huge action 
spaces (up to one million). The goal is to create a 
method that is sub-linear in terms of action space and 
generalizable across activities. Wolpertinger is 
divided into two components. The first is action 
production, and the second is action refinement. In 
the first half, the actor generates proto-actions in 
continuous space, which are subsequently mapped to 
discrete space using the k-nearest neighbor approach. 
In the second section, outlier actions are filtered using 

a critic, which chooses the best action with the highest 
Q value. DDPG is also utilized to train their method. 
Wolpertinger is not primarily intended for RSs, 
although it can handle a recommendation task in a 
simulation study. 

DDPG is also used for parameter training. One 
issue with this work is that it does not handle the 
combinatorics of action space when generating a list 
of items rather than proposing a single item. They 
later propose page-wise advice in (Nima et al., 2007). 
By recommending a group of complementary things 
and displaying them on a website, they mean 
recommending a set of complementary items and 
displaying them on a page. The actor is in charge of 
creating a page of stuff. To begin, two encoders are 
utilized to produce initial and current states. The 
actions are then generated by a decoder, namely a 
deconvolutional neural network. On the other hand, 
the current state (as determined by the same 
approach) and action was taken by the actor are sent 
into the critic, which employs a DQN architecture. 
DDPG is employed for model training once more. 
They also expand their work in e-commerce to a 
whole-chain recommendation (Xiangyu et al., 2019). 
Instead of having many scenarios in a user session, 
such as a welcome page and item pages, they employ 
a multiagent system with shared memory that 
optimizes all these situations at the same time (in fact, 
they only consider two pages in their studies: entry 
and item pages). Agents (actors) interact with the user 
sequentially and collaborate with one another to 
optimize the cumulative reward. On the other side, it 
is the global critic's responsibility to exert control 
over these actors. The global critic employs an 
attention method to capture user preferences in 
various settings, and each attention is active only in 
its specific scenario. 

The recommender receives these states and uses a 
basic closest neighbor algorithm to provide 
recommendations. Finally, a historical critic is 
employed in order to limit the number of infractions 
to the user's preferences as specified in the user's 
earlier comments. While the use of multimodal data 
in this work is innovative, a thorough explanation of 
the actor-critic paradigm is lacking. 

6.2.3 REINFORCE Methods 

Authors in (Claudio et al., 2017) create a 
conversational RS based on hierarchical RL (Tejas, et 
al., 2016). There is a module in the framework called 
meta-controller that receives the dialogue state and 
anticipates the goal for that state. The work supports 
two types of goals: chitchat and recommendation. 
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The dialogue state is converted to a score vector by a 
goal-specific representation module, which is then 
refined by an attention module to highlight more 
relevant areas. Finally, a module known as the 
controller employs these revised scores to take action 
in order to meet the provided goal. In the framework, 
there are two critics: an external critic reviews the 
reward for the meta controller created by the 
environment, and an internal critic rewards the 
controller based on the aim set. 

Ref. (Minmin et al., 2019) presents a useful study 
in the field of video recommendation using RL. The 
work's key contribution is the adaptation of the 
REINFORCE method to a neural candidate generator 
with a very wide action space. In an online RL scena-
rio, the policy gradient estimator can be written as: 

 ܴ௧∆ఏ log ||(௧ݏ|௧ܽ)ఏߨ
௧ୀ ఛ	~	గഇ  (1)

where Rt is the total reward, ߨఏ	 is called the 
parametrized policy, and ߬= (s0, a0, s1, …). Because, 
unlike in conventional RL situations, online or real-
time interaction between the agent and environment 
is infeasible  and frequently only logged feedback is 
provided, applying the policy gradient in Eq. (1) is 
biased and requires rectification. The policy gradient 
estimator that has been off-policy-corrected is then: 

 (߬)ߚ(߬)ఏߨ ܴ௧∆ఏ log ||(௧ݏ|௧ܽ)ఏߨ
௧ୀ ఛ	~	ఉ  (2)

where ߚ is the importance weight and 
గഇ(ఛ)ఉ(ఛ)  is the 

behavior policy Because this adjustment yields a 
large variance for the estimator, they utilize first-
order approximation, resulting in the biased estimator 
with the reduced variance: 

 ߨఏ(ܽ௧|ݏ௧)ߚ(ܽ௧|ݏ௧) ܴ௧∆ఏ log ||(௧ݏ|௧ܽ)ఏߨ
௧ୀ ఛ	~	ఉ  (3)

The work's last contribution is top-K off-policy 
rectification. Setting (top-K) recommendations result 
in an exponentially increasing action space. The off-
policy adjusted estimator described in Eq. (3) is 
modified to the following estimator for top-K 
recommendation under two assumptions: 

 ߨఏ(ܽ௧|ݏ௧)ߚ(ܽ௧|ݏ௧) (௧ݏ|௧ܽ)ߨ߲(௧ݏ|௧ܽ)ߙ߲ ܴ௧∆ఏ log ||(௧ݏ|௧ܽ)ఏߨ
௧ୀఛ	~	ఉ (4)

where ߙ is the likelihood that an item ߙ appears in 
the final non-repetitive set A (top-K items). 

Finally, in (Huizhi, 2020), the environment is 
represented as a heterogeneous information network 
(graph) composed of persons, items, and other 
information sources such as content, tags, reviews, 
friends, and so on. The goal is to find a path in the 
graph between a user and an unobserved item. As 
shown below, the article employs a multi-iteration 
training procedure. A meta-path base (similar to a 
knowledge base) stores the meta-path computed at 
each iteration. The meta-path base is initially empty 
and is filled with meta-paths provided by experts. The 
meta-paths tried by the RL agent in each iteration are 
then added to the meta-path base. At the next 
iteration, the revised meta-path base is used to train 
the RL agent. This procedure is continued until no 
new information can be gathered or the maximum 
number of iterations is reached. The nearest neighbor 
algorithm is utilized for the top-K recommendation. 

6.2.4 Compound Methods 

Authors in (Su et al., 2018) utilize RL to recommend 
learning activities in a smart class, which is an 
unusual but intriguing use. Specifically, a cyber-
physical-social system is constructed that monitors 
students' learning state by gathering multi-modal data 
such as test results, heartbeat, and facial expression, 
and then offers a learning activity that is appropriate 
for them. 

Ref. (Floris et al., 2019) proposes and applies a 
task-oriented dialogue management system to various 
recommendation tasks. For dialogue management, 
two approaches are proposed: segmentation-based 
and state-based. The former separated the user 
population depending on the context, such as 
demographics and buying history, and each category 
has its own policy. The latter strategy is based on the 
concatenation of agent beliefs about past dialogues, 
user intents, and context. This belief vector is then 
loaded into a unique policy for all users. The work is 
evaluated using a benchmark (Inigo et al., 2017) in 
the field, which consists of a variety of 
recommendation tasks, such as recommending 
eateries in Cambridge or San Francisco. 

7 ALGORITHMS OVERVIEW 

7.1 RL-based Methods Recap 

This section's RL approaches can be separated into 
tabular and approximation methods. DP approaches 
are typically impracticable among tabular methods 
due to their high computing cost and the requirement 
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for a perfect understanding of the environment. While 
the number of states in these algorithms is 
polynomial, implementing even one iteration of 
policy or value iteration methods is frequently 
infeasible (Andrew, 1995). DP is only used by two 
RS approaches in the RLRS literature (Guy et al., 
2005; Changxi et al., 2019). To make it more 
practical, (Guy et al., 2005) employs a few features in 
their state space and employs some approximations. 
Similarly, (Tariq and Francesco, 2007) limits the 
number of policy iterations that can be conducted. 
Unlike DP, MC approaches do not require a perfect 
understanding (or model) of the environment. 
However, MC approaches have several 
disadvantages, such as the fact that they do not 
bootstrap. TD approaches, on the other hand, have 
been quite popular in the RS community (Thorsten et 
al., 1997; Anongnari and Pisit, 2005) The 
fundamental reason for their appeal is their 
simplicity; they are online, model-free, require little 
processing, and can be stated using a single equation 
(Richard and Andrew, 2017). In general, while 
tabular approaches may find the exact answer, i.e., the 
optimal value function and policy, they suffer from 
the curse of dimensionality as the state and action 
spaces grow, rendering them ineffective in learning. 
RLRSs that use DP and TD approaches attempt to 
address this issue by limiting the state space as small 
as possible. Methods based on MCTS must likewise 
preserve only the information from a sampling event, 
not the entire environment. 

On the other hand, aside from the SARSA (ߣ ) 
approach employed by (Mircea and Dan, 2005), the 
sole sort of approximate method used by RL-based 
RSs is the fitted Q method, which is a flexible 
framework that can fit any approximation 
architecture to the Q-function (Philip et al., 2015). As 
a result, any batch-mode supervised regression 
algorithm that can scale effectively to high 
dimensional spaces can be utilized to approximate the 
Q-function (Richard and Andrew, 2017). However, 
when the number of four-tuples ((xt, ut, rt, xt+1), where 
xt represents the system state at time t, ut the control 
action taken, rt the immediate reward, and xt+1 the 
next state of the system) increases (Damien et al., 
2005), the computational and memory cost may grow. 
Several RLRSs have used this algorithm (Yufan et al., 
2011; Susan et al., 2011; Georgios et al., 2015). 

7.2 DRL-based Methods Recap 

The establishment of DRL marked a watershed 
moment in the history of RLRSs. This trend is clearly 
depicted in Fig. 1. DRL's unique ability to handle 

high-dimensional spaces makes it ideal for RSs with 
huge state and action spaces. DQN has been the most 
widely used DRL algorithm by RLRSs (Peter et al., 
2015; Shamim et al., 2016; Su et al., 2018; Floris et 
al., 2019). DQN modified the original Q-learning 
algorithm in three ways, according to (Richard and 
Andrew, 2017): 1) It employs experience replay, a 
mechanism first introduced in (Long-Ji, 1992) that 
stores agents' experiences over various time steps in a 
replay memory and uses them to adjust weights 
throughout the training phase. 2) To simplify the 
complexity of updating weights, the current updated 
weights are fixed and fed into a second (duplicate) 
network, the outputs of which are utilized as Q-
learning objectives. 3) To minimize the scale of error 
derivatives, the reward function is trimmed to be 1 for 
positive rewards, -1 for negative rewards, and 0 for 
no rewards. All of these changes proved to increase 
DQN's stability. However, as previously stated, DQN 
has certain issues. first, following the Q-learning 
method, DQN overestimates action values in some 
cases, making learning inefficient and perhaps 
leading to suboptimal policies (Sebastian and Anton, 
1993). To address this issue, DDQN was proposed 
and is used by numerous RLRSs (Aniruddh et al., 
2017). Second, DQN chooses events to replay at 
random, regardless of their significance, making the 
learning process slow and inefficient. Only four 
RLRS algorithms use an upgraded version of DQN's 
original experience replay mechanism, while the 
majority of DQN-based RLRSs use the original 
method. References (Aniruddh et al., 2017) employ 
prioritized experience replay (Jiahuan et al., 2019), 
ref. (Shi-Yong et al. 2018) uses stratified sampling 
rather than uniform sampling, and ref. (Tong et al., 
2019) leverages cross-entropy of user interest to 
prioritize experiences. Third, DQN cannot handle 
continuous domains because it requires an iterative 
optimization process at each step, which is 
computationally prohibitively expensive. To address 
this issue, DDPG, which combines DQN and DPG, 
has been proposed. 

Policy gradient methods, as opposed to action-
value methods such as DQN, learn a parameterized 
policy without the use of a value function. When 
compared to action-value techniques, policy-based 
systems have three advantages (Richard and Andrew, 
2017). 1) Policy approximate approaches can 
approach determinism; 2) Policy approximation may 
be simpler than value function approximation; and 3) 
Policy approximation methods can find stochastic 
optimal policies, whereas value-based methods 
cannot. REINFORCE and actor-critic approaches are 
two major policy gradient methods utilized by RSs. 
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REINFORCE is a Monte Carlo (MC) stochastic 
gradient approach that directly changes policy 
weights. The high variance and delayed learning of 
the REINFORCE algorithm is a key issue. These 
issues stem from REINFORCE's MC nature, as it 
takes samples at random. To address the high 
variance problem in the REINFORCE-based RLRSs 
reviewed, various techniques were used, including a 
neural network-based baseline (Yikun et al., 2019), 
first-order approximation (Satinder et al., 2000), 
REINFORCE with baseline algorithm (Inigo et al., 
2017), weight capping. However, it is unclear how 
other REINFORCE-based RLRSs, such as (Huizhi, 
2020), deals with this issue. Instead of a baseline, the 
actor-critic algorithm employs a critic to address the 
difficulties of REINFORCE. To be more specific, the 
critic is used to criticize the policy established by the 
actor; that is, it computes the value of the state-action 
pair provided by the actor and provides feedback on 
how good the action chosen is. The policy gradient 
approach now includes bootstrapping. While this 
creates a tolerable bias, it minimizes variance and 
speeds up learning (Richard and Andrew, 2017). As 
previously stated, DDPG is a well-known DRL 
technique that employs the actor-critic algorithm to 
handle continuous spaces. It is worth noting that 
among RLRSs, actor-critic is the second most 
common RL algorithm (Nima et al., 2007).  

8 DISCUSSION AND FURURE 
WORKS 

To begin, RL algorithms were designed to select one 
action from a set of possible actions. However, in the 
RS field, it is highly common to recommend a list of 
products. This is also known as slate, top-K, or list-
wise recommendation. Except for a few (Georgios et 
al., 2015; Peter et al., 2015; Wacharawan et al., 2018; 
Eugene et al., 2019; Minmin et al., 2019), the vast 
majority of the algorithms examined to consider the 
problem of single item recommendation. Only 
references (Minmin et al., 2019; Georgios et al., 
2015) properly study this topic and adapt their RL 
technique to deal with a number of issues. The 
problem of recommending a list of objects should be 
investigated more in the future when the RL agent 
confronts a wide combinatorial action space. 
Nonetheless, there is no apparent justification for 
employing a specific RL algorithm in an RS 
application. As a result, finding a relationship 
between the RL algorithm and the RS application is 
an important research direction for the future. 

Explainable recommendation refers to an RS's 
capacity to not only make a recommendation but also 
to explain why that recommendation was made 
(Yongfeng and Xu, 2018). Explanation of 
recommendations made may improve user 
experience, increase trust in the system, and assist 
users in making better selections (Dan et al., 2003; Li 
and Pearl, 2005; Nava and Judith, 2007). Explainable 
approaches can be classified into two categories: 
model-intrinsic and model-agnostic (Zachary, 2018). 
In the former, an explanation is offered as part of the 
recommendation process, but in the latter, the 
explanation is supplied after the suggestion has been 
made. The method we discussed before (Yikun et al., 
2019) could be an inherent explanatory method. In 
contrast, as a model-agnostic example (Xiting et al., 
2018), RL is used to explain various recommendation 
approaches. The method employs a pair of agents, 
one of which is in charge of generating explanations 
and the other predicts whether the given explanation 
is satisfactory to the user. Debugging the 
unsuccessful RS (Xiting et al., 2018) is one intriguing 
application of explainable suggestion. That is, with 
the explanations supplied, we can follow the cause of 
problems in our system and determine which sections 
are malfunctioning. Only ref. (Yikun et al., 2019) 
supports an explainable recommendation among the 
RLRSs assessed in this survey, indicating that there is 
a gap in this area and that further attention is needed 
in the future. In conclusion, we feel that explainable 
recommendations are essential in the future 
generation of RSs, and that RL may be effectively 
used to generate better explanations. 

Finally, RLRS evaluation should be enhanced. To 
learn what to do, an RL agent must directly interact 
with the environment. This is analogous to an online 
study for an RS; that is, the RS algorithm creates 
recommendations and receives user responses in real-
time. Nonetheless, with the exception of a few 
approaches discussed (Eugene et al., 2019; Minminet 
al., 2019), the majority of the works use an offline 
study for evaluation. This is especially because of the 
high price of online research, as well as the high risk 
of implementing an RLRS to optimize its 
recommendation strategy for most organizations. As 
a result, offline evaluation, utilizing accessible 
datasets or simulation, is critical for RLRSs 
evaluation.  

The future research could focus on different areas. 
For instance, dealing with one of the most significant 
issues is keeping track of all users' global and local 
states. Proposing and implementing RLRSs capable 
of managing large state space is a research subject 
that is rarely explored. 
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9 CONCLUSIONS 

We offered a complete and up-to-date survey of 
RLRSs in this work. We emphasized the importance 
of DRL in changing the research direction in the 
RLRS field and, as a result, categorized the 
algorithms into two broad categories: RL- and DRL-
based approaches. Following that, each broad group 
was subdivided into sub-categories based on the RL 
algorithm employed, such as Q-learning and actor-
critic. We feel that research on RLRSs is in its infancy 
and that significant progress is needed. Both RL and 
RSs are active research topics that are of particular 
interest to large corporations and industries. As a 
consequence, we may anticipate new and intriguing 
models to emerge each year. Finally, we believe that 
our survey will help researchers understand crucial 
concepts and progress in the field in the future. 

REFERENCES 

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, 
Senthil Yogamani (2017). Deep reinforcement learning 
framework autonomous driving. Electronic Imaging, 
2017(19):70-76. 

Arthur Guez, Robert D Vincent, Massimo Avoli, Joelle 
Pineau (2008). Adaptive treatment of epilepsy via batch-
mode reinforcement learning. In AAAI, pages 16711678. 

Aleksandra Klasnja-Milicevic, Mirjana Ivanovic (2015), 
Alexandros Nanopoulos. Recommender systems in e 
learning environments: a survey of the state of the art and 
possible extensions. Artficial Intelligence Review, 
44(4):571-604. 

Alex Krizhevsky, Ilya Sutskever, and Georey E Hinton 
(2012). Image net classification with deep convolutional 
neural networks. Neural information processing systems, 
pages 1097-1105. 

Andrew G Barto (1995). Reinforcement learning and 
dynamic programming. In Analysis, Design and 
Evaluation of Man Machine Systems, pages 407-412. 
Elsevier.  

Aniruddh Raghu, Matthieu Komorowski, Imran Ahmed, Leo 
Celi, Peter Szolovits, and Marzyeh Ghassemi (2017). 
Deep reinforcement learning for sepsis treatment. arXiv 
preprint arXiv:1711.09602. 

Anongnart Srivihok and Pisit Sukonmanee (2005). E-
commerce intelligent agent: personalization travel 
support agent using q learning.7th international 
conference on Electronic commerce, pages 287-292. 

Bamshad Mobasher, Robert Cooley, and Jaideep 
Srivastava(2000). Automatic personalization based on 
web usage mining. ACM, 43(8):142-151. 

Bellogin, I. Cantador, F. Diez, P. Castells, E. Chavarriaga 
(2013), An empirical comparison of social, collaborative 
filtering, and hybrid recommenders, ACM Transactions 
on Intelligent Systems and Technology (TIST), 4 1-29. 

Burke (2002), Hybrid recommender systems: survey and 
experiments, User Model User-Adap Inter, 12 331-370. 

Ben Schafer, Joseph Konstan, John Riedl (1999). 
Recommender systems in e-commerce. ACM conference 
on Electronic commerce, pages 158-166. 

Billsus, M. Pazzani (2000), User modeling for adaptive news 
access, User Model User-Adap Inter, 10 147-180. 

Burke (2007), Hybrid web recommender systems, in: P. 
Brusilovsky, A. Kobsa, W. Nejdl (Eds.) The Adaptive 
Web, Springer-Verlag, Berlin Heidelberg, pp. 377-408. 

Changxi You, Jianbo Lu, Dimitar Filev, Panagiotis Tsiotras 
(2019). Advanced planning for autonomous vehicles 
using reinforcement learning and deep inverse 
reinforcement learning. Robotics and Autonomous 
Systems, 114:118. 

Christopher John Cornish Hella by Watkins(1989). Learning 
from delayed rewards. 

Claudio Greco, Alessandro Suglia, Pierpaolo Basile, and 
Giovanni Semeraro (2017). Converseet-impera: 
Exploiting deep learning and hierarchical reinforcement 
learning for conversational recommender systems. 
Italian Association for Artificial Intelligence, pages 372-
386. Springer. 

Damien Ernst, Pierre Geurts, and Louis Wehenkel (2005). 
Tree-based batch mode reinforcement learning. Journal 
of Machine Learning Research, 6(Apr):503-56. 

Dan Cosley, Shyong K Lam, Istvan Albert, Joseph A 
Konstan,, John Riedl (2003). Is seeing believing  how 
recommender system interfaces a ect users' opinions. 
conference on Human factors in computing systems, 
pages 585-592. 

David Goldberg, David Nichols,Douglas Terry, Brian M Oki 
(1992).Using collaborative filtering toweave an 
information tapestry. ACM, 35(12):61-70. 

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, 
Daan Wierstra, and Martin Riedmiller (2014). 
Deterministic policy gradient algorithms. 

Deshpande, G. Karypis (2004), Item-based top-N 
recommendation algorithms, ACM Transactions on 
Information Systems (TOIS), 22 143-177. 

Elad Liebman, Maytal Saar-Tsechansky, and Peter Stone 
(2014). Dj-mc: A reinforcement earning agent for music 
playlist recommendation. arXiv 

Emre Sezgin, Sevgi Ozkan (2013). A systematic literature 
review on health recommendersystems. E-Health and 
Bioengineering Conference (EHB), pages 1-4. IEEE. 

Eugene Ie, Vihan Jain, Jing Wang, Sanmit Narvekar, Ritesh 
Agarwal, Rui Wu, Heng-Tze Cheng, Morgane Lustman, 
Vince Gatto, Paul Covington (2019). Reinforcement 
learning for slate-based recommender systems: A 
tractable decomposition and practical methodology. 
arXiv preprint arXiv:1905.12767. 

Floris Den Hengst, Mark Hoogendoorn, Frank Van 
Harmelen, and Joost Bosman (2019). Reinforcement 
learning for personalized dialogue management. 
International Conference on Web Intelligence. 

Francesco Ricci, Lior Rokach, Bracha Shapira (2011). 
Introduction to recommender systems handbook. In 
Recommender systems handbook, pages 1-35. 

Gabriel Dulac-Arnold, Richard Evans, Peter Sunehag, Hado  
 

Recommender System using Reinforcement Learning: A Survey

157



van Hasselt, Timothy Lillicrap, Timothy Mann, Jonathan 
Hunt, Theophane Weber, Ben Coppin, 

Georgios Theocharous, Philip S Thomas, and Mohammad 
Ghavamzadeh (2015). Personalized ad recommendation 
systems for lifetime value optimization with guarantees. 
In Twenty-Fourth International Joint Conference on 
Artificial Intelligence. 

Guy Shani, David Heckerman, Ronen I Brafman (2005). An 
mdp based recommender system. Machine Learning 
ResearchJournal , 6 (Sep) : 1265-1295. 

Huizhi Liang. Drpro ling (2020): deep reinforcement user 
pro ling for recommendations in heterogenous 
information networks. IEEE on Knowledge and Data 
Engineering. 

Inigo Casanueva, Pawe l Budzianowski, Pei-Hao Su, Nikola 
Mrk si c, Tsung-Hsien Wen, Stefan Ultes, Lina Rojas-
Barahona, Steve Young, and Milica Ga si c (2017). A 
benchmarking environment for reinforcement learning 
based task oriented dialogue management. arXiv preprint 
arXiv:1711.11023. 

Jens Kober, J Andrew Bagnell, Jan Peters (2013). 
Reinforcement learning in robotics: A survey. Journal of 
Robotics Research, 32(11) : 1238 - 1274. 

Jianhua Han, Yong Yu, Feng Liu, Ruiming Tang, and 
Yuzhou Zhang (2019). Optimizing ranking algorithm in 
recommender system via deep reinforcement learning. In 
2019 International Conference on Arti cial Intelligence 
and Advanced Manufacturing (AIAM), pages 22-
26.IEEE. 

Joel Tetreault and Diane Litman (2006). Using 
reinforcementlearning to build a better model ofdialogue 
state. European Chapter ofthe Association for 
Computational Linguistics. 

Li Chen, Pearl Pu (2005). Trust building in recommender 
agents Workshop on Web Personalization, 
Recommender Systems and Intelligent User Interfaces at 
the 2nd International Conference on E-Business s, pages 
135-145. Citeseer. 

Lixin Zou, Long Xia, Zhuoye Ding, Dawei Yin, Jiaxing 
Song, and Weidong Liu (2019). Reinforcement learning 
to diversify top-n recommendation. International 
Conference onDatabase Systems for Advanced 
Applications, pages 104-120. Springer. 

Michael J Pazzani and Daniel Billsus (2007). Content-based 
recommendation systems. In The adaptive web, pages 
325341. Springer. 

Minmin Chen, Alex Beutel, Paul Covington, Sagar Jain, 
Francois Belletti, Ed H Chi (2019). Top-k offpolicy 
correction for a reinforce recommender system. ACM 
International Conference on Web Search and 
DataMining, pages 456464. 

Mircea Preda and Dan Popescu (2005). Personalized web 
recommendations: supporting epistemic information 
about end-users. In The 2005 IEEE/WIC/ACM 
International Conference on Web Intelligence (WI'05), 
pages 692-695. IEEE. 

Mobasher, X. Jin, Y. Zhou (2004), Semantically enhanced 
collaborative filtering on the web, in: B. Berendt, A. 
Hotho, D.Mladenic, M. Someren,ˇ M. Spiliopoulou, G. 

Stumme (Eds.) From Web to Semantic Web, Springer, 
pp. 57-76. 

Mozhgan Karimi, Dietmar Jannach, Michael Jugovac(2018). 
News recommender systems survey and roads ahead. 
Information Processing and Management, 54(6):1203-
1227. 

Nava Tintarev, Judith Mastho (2007):  Exective 
explanations of recommendations: usercentered 
design.ACM conference on Recommender systems, 
pages 153-156. 

Nima Taghipour, Ahmad Kardan, Saeed Shiry Ghidary 
(2007). Usage based web recommendations:a 
reinforcement learning approach. ACM conference on 
Recommender systems, pages 113-120. 

Paul Resnick and Hal R Varian (1997). Recommender 
systems. ACM, 40(3):56-58. 

Pasquale Lops, Marco De Gemmis, Giovanni Semeraro 
(2011). Content-based recommender systems: State of 
the art and trends. In Recommender systems handbook, 
pages 73-105. Springer. 

Pazzani (1999), A framework for collaborative, content 
based and demographic filtering, Artificial Intelligence 
Review, 13 393-408. 

Pazzani, D. Billsus (2007), Content-based recommendation 
systems, in: P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.) 
The Adaptive Web, Springer Berlin Heidelberg, pp. 325-
341. 

Peter Sunehag, Richard Evans, Gabriel Dulac-Arnold, Yori 
Zwols, Daniel Visentin, and Ben Coppin (2015). Deep 
reinforcement learning with attention for slate markov 
decision processes with high dimensional states and 
actions. arXiv preprint arXiv:1512.01124. 

Philip S Thomas, Georgios Theocharous, and Mohammad 
Ghavamzadeh (2015). High-con dence off-policy 
evaluation. In Twenty-Ninth AAAI Conference on 
Artficial Intelligence. 

Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl 
(1994). GroupLens : an open architecture 
forcollaborative filtering of netnews, ACM Conference 
on Computer Supported Cooperative Work, ACM, 
Chapel Hill, North Carolina, USA, , pp. 175-186. 

Richard S Sutton and Andrew G Barto (2017). Introduction 
to reinforcement learning, volume 2. MIT press 
Cambridge. 

Richard Meyes, Hasan Tercan, Simon Roggendorf, Thomas 
Thiele, Christian Buscher, Markus Obdenbusch, 
Christian Brecher, Sabina Jeschke, and Tobias Meisen 
(2017). Motionplanning for industrial robots using 
reinforcement learning. Procedia CIRP, 63:107-112. 

Ronald J Willams (1992). Simple statistical gradient 
following algorihms for connectionist reinforcement 
learning. Machine learning, 8(3-4):229-256 

Roderick JA Little and Donald B Rubin (2019). Statistical 
analysis with missing data, volume 793. John Wiley  

Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott 
Stroup, Joelle Pineau, and Susan A Murphy (2011). 
Informing sequential clinical decision making through 
reinforcement learning:an empirical study. Machine 
learning, 84(1-2):109-136. 

DeLTA 2022 - 3rd International Conference on Deep Learning Theory and Applications

158



Satinder P Singh, Michael J Kearns, Diane J Litman, Marilyn 
A Walker (2000). Reinforcement learning for spoken 
dialogue systems. Neural Information Processing 
Systems, pages 956-962. 

Sarwar, G. Karypis, J. Konstan, J. Riedl (2001), Item-based 
collaborative filtering recommendation algorithms, 10th 
International Conference on World Wide Web, ACM, 
pp. 285-295. 

Sebastian Thrun and Anton Schwartz (1993). Issues in using 
function approximation for reinforcementlearning. 
Connectionist Models Summer School Hillsdale, NJ. 
Lawrence Erlbaum. 

Shambour, J. Lu (2011), A hybrid trust-enhanced 
collaborative filtering recommendation approach for 
personalized government-to-business eservices, 
International Journal of Intelligent Systems, 26 814843. 

Shamim Nemati, Mohammad M Ghassemi, and Gari D Cli 
ord (2016). Optimal medication dosing fromsuboptimal 
clinical examples:A deep reinforcementlearning 
approach. Engineering in Medicine and Biology Society, 
pages 2978-2981. IEEE. 

Shi-Yong Chen, Yang Yu, Qing Da, Jun Tan, Hai-Kuan 
Huang, and Hai-Hong Tang (2018). Stabilizing 
reinforcement learning in dynamic environment with 
application to online recommendation. In Proceedings of 
the 24th ACM SIGKDD International Conference on 
Knowledge Discovery & Data Mining. 

Shuai Zhang, Lina Yao, Aixin Sun, Yi Tay (2019). Deep 
learningbased recommender system :A survey and new 
perspectives. Computing Surveys (CSUR), 52(1):1-38,  

Smyth, P. Cotter (2000), A personalised TV listings service 
for the digital TV age, Knowledge-Based Systems. 

Su Liu, Ye Chen, Hui Huang, Liang Xiao, and Xiaojun Hei 
(2018). Towards smart educational recommendations 
with reinforcement learning in classroom. International 
Conference on Teaching, Assessment, and Learning for 
Engineering pages 1079-1084. IEEE. 

Tariq Mahmood and Francesco Ricci (2007). Learning and 
adaptivity in interactive recommender systems. 
Conference on Electronic commerce, pages 75-84. 

Thomas Degris (2015). Deep reinforcement learning in large 
discrete action spaces. arXiv : 1512.07679. 

Thorsten Bohnenberger and Anthony Jameson (2001). When 
policies are better than plans: Decision theoretic planning 
of recommendation sequences. International Conference 
on intelligent user interfaces, pages 21-24. 

Thorsten Joachims, Dayne Freitag, Tom Mitchell(1997). 
Webwatcher: A tour guide for the world wide web. In 
IJCAI (1), pages 770{777. Citeseer. 

Timothy P Lillicrap, Alexander Pritzel, Jonathan J Hunt, 
Nicolas Heess, Yuval Tassa, Tom Erez, David Silver, 
Daan Wierstra (2015). Continuous control with deep 
reinforcement learning. arXiv. 

Tong Yu, Yilin Shen, Ruiyi Zhang, Xiangyu Zeng, and 
Hongxia Jin (2019). Vision-language recommendation 
via attribute augmented multimodal reinforcement 
learning. ACM International Conference on Multimedia, 
pages 39-47. 

Vladimir Vapnik (2013). The nature of statistical learning 
theory. Springer science & business media. 

Wacharawan Intayoad, Chayapol Kamyod, and Punnarumol 
Temdee (2018). Reinforcement learning for online 
learning recommendation system. In 2018 Global 
Wireless Summit (GWS), pages 167-170. IEEE. 

Yufan Zhao, Donglin Zeng, Mark A Socinski, and Michael 
R Kosorok (2011). Reinforcement learning strategies 
forclinical trials in nonsmall cell lung cancer.  

Nima Taghipour, Ahmad Kardan, Saeed Shiry Ghidary 
(2007). Usage based web recommendations: a 
reinforcement learning approach. In Proceedings of the 
2007 ACM conferenceon Recommender systems. 

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and 
Josh Tenenbaum (2016). Hierarchical deep 
reinforcement learning: Integrating temporal abstraction 
and intrinsic motivation. Neural information processing 
systems, pages 3675-3683. 

Long-Ji Lin (1992). Self-improving reactive agents based on 
reinforcement learning, planning and teaching. Machine 
learning, 8(3-4):293-321.  

Yikun Xian, Zuohui Fu, S Muthukrishnan, Gerard De Melo, 
Yongfeng Zhang (2019). Reinforcement knowledge 
graph reasoning for explainable recommendation. ACM 
SIGIR Conference on Research and Development in 
Information Retrieval, pages 285-294. 

Wilson, B. Smyth, D. O’Sullivan (2003), Sparsity reduction 
in collaborative recommendation: A case-based 
approach, Journal of Pattern Recognition andArtificial 
Intelligence, 17863-884. 

Xiangyu Zhao, Long Xia, Dawei Yin, and Jiliang Tang 
(2019). Model-based reinforcement learning for whole-
chain recommendations. arXiv preprint 
arXiv:1902.03987. 

Xinshi Chen, Shuang Li, Hui Li, Shaohua Jiang, Yuan Qi, 
and Le Song (2019). Generative adversarial user model 
for reinforcement learning based recommendation 
system. In International Conference on Machine 
Learning, pages 1052{1061. 

Xiting Wang, Yiru Chen, Jie Yang, Le Wu, Zhengtao Wu, 
Xing Xie (2018). A reinforcement learning framework 
for explainable recommendation. Conference on Data 
Mining, pages 587-596. IEEE. 

Yongfeng Zhang, Xu Chen (2018). Explainable 
recommendation: A survey and new perspectives. 
arXiv:1804.11192. 

YuWang (2020). A hybrid recommendation for music based 
on reinforcement learning. In Pacific-Asia Conference on 
Knowledge Discovery and Data Mining, pages 91-103. 
Springer, 

Zachary C Lipton (2018). The mythos of model 
interpretability. Queue, 16(3):31-57 

Zhengyao Jiang, Dixing Xu, Jinjun Liang (2017). A deep 
reinforcement learning framework for the nancial 
portfolio management problem. arXiv. 

Zimdars, D. M. Chickering, C. Meek (2001). Using temporal 
data for making recommendations. In 17th Conference in 
Uncertainty in Articial Intelligence. 

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc 
Lanctot, Nando Freitas (2016). Dueling network 
architectures for deep reinforcement learning. In 
International conference on machine learning. 

Recommender System using Reinforcement Learning: A Survey

159


