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Abstract: The importance of designing efficient and secure post-quantum cryptographic algorithms is reinforced in the
recent National Institute of Standards and Technology (NIST)’s Post-Quantum Cryptography (PQC) compe-
titions. Seeking to complement existing studies that evaluate the performance of various PQC algorithms,
we explore current hardware implementations of third-round finalist key-establishment algorithms (i.e., Ky-
ber, McEliece, NTRU, and SABER) and the five alternate algorithms (i.e., BIKE, FrodoKEM, HQC, NTRU
Prime, and SIKE) on Field Programmable Gate Array (FPGA) platforms. Further, we present our pure-VHDL
implementation of Kyber and compare it with the hardware implementations of the NIST finalists. Our design
offers one universal Kyber component that can operate in 6 different modes. The evaluation findings show that
our pure-VHDL Kyber provides less latency than current VHDL-based implementations.

1 INTRODUCTION

In recent years, there have been efforts from the re-
search community to design quantum-resistant key
establishment, public-key encryption, and digital sig-
nature protocols and schemes, as well as implement-
ing protocols from the NIST’s PQC competition on
FPGA platforms (Nejatollahi et al., 2019; Malina
et al., 2019; Basu et al., 2019; Zhang et al., 2020;
Bisheh-Niasar et al., 2021; Dang et al., 2020; Dang
et al., 2021). It is expected that such quantum-
resistant schemes will eventually replace those based
on the discrete logarithm, RSA and/or other conven-
tional assumptions that are known to be vulnerable to
attacks from a functional quantum computer. It is also
known that post-quantum cryptography schemes are
usually more robust in their parameters and cycles.
Therefore, hardware-based implementations of PQC
schemes should facilitate acceleration, reduce latency,
and increase the number of operations per second.
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1.1 Related Work

In the systematization of knowledge (SOK) study of
(Basu et al., 2019), the High-Level Synthesis (HLS)-
based hardware design methodology was used to im-
plement 26 NIST PQC Competition Round 2 KEM
and Signature algorithms on FPGA platforms, with
the aim of assessing the latency and hardware require-
ments associated with their implementations. How-
ever, the implementation did not use the pure VHSIC
Hardware Description Language (VHDL), a widely
used hardware description language, or evaluate the
security levels. In a more recent study, (Bisheh-Niasar
et al., 2021) empirically evaluated the performance
of SIKEp434 (at Virtex-7), Frodo-640 (at Artix-7),
LightSaber (at UltraScale+) and their Kyber imple-
mentation (at Artix-7). Their findings suggested that
Frodo-640 requires the lowest area (6.8k LUTs, 16
DSPs) but their Kyber implementation is the fastest
with 31 µs (12/19 µs encapsulation/decapsulation).

In the evaluation work undertaken by (Dang
et al., 2021), the authors focused on high-speed hard-
ware architectures for four lattice-based CCA-secure
Key Encapsulation Mechanisms (KEMs), represent-
ing 3 NIST PQC finalists: CRYSTALS-Kyber, NTRU
(with two distinct variants, NTRU-HPS and NTRU-
HRSS), and Saber. Their analysis revealed that all
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four NIST PQC finalists significantly outperform the
other alternate candidates in terms of speed on the
hardware platforms. They also found that SABER
and Kyber are more efficient in the main phases in
comparison to both NTRU and McEliece schemes.
However, the security of KEMs is not within the
scope of their evaluation.

1.2 Contributions

Seeking to contribute to the knowledge gaps, we will
focus on both efficiency and security of KEM PQC
NIST finalists and especially on the hardware imple-
mentations of the CRYSTALS-Kyber scheme in this
paper. Specifically, we seek to answer the follow-
ing research questions: (1) What is the current state
of hardware-based PQC KEMs implementations on
FPGA platforms? (2) Which PQC KEM finalist(s)
is/are most suitable for FPGA platforms in terms of
efficiency and security? (3) How efficient can Kyber
be when implemented on FPGA platforms, and if it is
coded solely in VHDL?

To answer the first two questions, we will map
existing hardware implementations of all PQC KEM
NIST finalists and discuss the current security attacks
and potential problems of PQC-KEM hardware im-
plementations in Sections 3 and 4. To answer the third
question, we will present and discuss the findings of
our pure VHDL-implementation of the CRYSTALS-
Kyber scheme (Avanzi et al., 2017), as well as present
a comparative summary of its performance with other
related works.

2 BACKGROUND:
HARDWARE-BASED
CRYPTOGRAPHY AND FPGA
PLATFORMS

Hardware-based implementations on FPGA plat-
forms are a common trend, partly due to their po-
tential in outperforming software implementations
in speed, power consumption, and/or energy usage.
In addition, there have been attempts to explore
hardware-based implementations that are high-speed
or lightweight.

Generally, high-speed implementations seek to
minimize the execution times of major opera-
tions via protocol optimization and operations/sub-
components parallelization, whereas lightweight im-
plementations tend to achieve minimum resource uti-
lization (by not exceeding predefined maximum ex-
ecution time). Resource utilization can be repre-

sented by the number of Logic Cells, Look-Up Tables
(LUTs), Flip-Flops (FFs), Digital Signal Processor
(DSP) slices, and Block Random Access Memories
(BRAMs). It is also observed that many FPGA-based
applications seek to find a balance between efficiency
and having minimal hardware resources.

Table 1 describes the hardware requirements of
chosen Xilinx FPGA platforms in various hardware
implementation studies. We note that small and
medium FPGA platforms are typically used for ac-
celerating some particular operations and processes
at end nodes (embedded devices, user nodes, routers,
servers, etc.), where these boards provide the accel-
eration of particular cryptography schemes. Large
FPGA platforms are often used for high-speed data
processing and high-speed communication. These
platforms can facilitate dense processing of various
computationally heavy cryptography schemes and
protocols, e.g., in cloud-based solutions, backbone
active network devices, and central servers.

3 PQC KEM SCHEMES:
THIRD-ROUND NIST
FINALISTS AND
ALTERNATIVES

In this section, the current size requirements of the
NIST KEM finalist are summarized. Memory con-
sumption is an essential feature that needs to be
taken into account, particularly when we consider
resource-constrained devices since if the scheme is
too memory-demanding, it cannot be directly imple-
mented on such devices. Table 2 describes the private
key, the public key, and the ciphertext sizes of NIST
KEM schemes which are given in bytes. Note that
only the SIKE scheme presents memory consumption
close to traditional cryptography standards, followed
by Kyber and SABER schemes. In general, lattice-
based schemes require smaller key-pair and ciphertext
sizes compared to code-based schemes.

From Tables 1 and 2, we observe that for a
NIST KEM protocol to be run on an FPGA plat-
form, the device needs to store at least the protocol’s
keys. In other words, the McEliece scheme requires
medium- to large-sized platforms. In fact, Spartan-
6 XC6SLX45T and Artix-7 XA7A12T have 261 000
bytes and 90 000 bytes of total memory, respectively,
and McEliece key size exceeds these values. The to-
tal available memory can be computed by multiplying
the number of BRAMs for the block size. It is essen-
tial to consider that the keys are just one of the compo-
nents that need to be stored in the memory. During the
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Table 1: Hardware specifications of Xilinx FPGA platforms: A comparative summary.

Platform Logic Cells / LUTs FFs DSP BRAMs / Block Size Used in

Large platforms
Virtex UltraScale+ XCVU7P 1 724 100 / 788 160 1 576 320 4 560 1 440 / 36 Kb Our work
Zynq UltraScale+ XCZU9EG 599 550 / 274 080 548 160 2 520 912 / 36 Kb (Dang et al., 2020)
Virtex-7 VC707 XC7VX485T 485 760 / 303 600 607 200 2 800 1 030 / 36 Kb (Huang et al., 2020)
Zynq UltraScale+ ZU7EV-3 504 000 / 230 400 460 800 1 728 312 (96 Ultra BRAMs) (Dang et al., 2021)

Small and medium platforms
Artix-7 XC7A200T 215 360 / 134 600 269 200 740 365 / 36 Kb (Chen et al., 2021)
Artix-7 XC7A100T 101 440 / 63 400 126 800 240 135 / 36 Kb (Henson et al., 2021)
Artix-7 XA7A12T 12 800 / 8 000 16 000 40 20 / 36 Kb (Xing and Li, 2021)
Spartan-6 XC6SLX45T 43 661 / 27 288 54 576 58 116 / 18 Kb (Chen et al., 2020)

Table 2: Traditional cryptography memory consumption
compared with NIST PQC KEM finalists and alternate can-
didates with 128-bit level of security. The sizes are given in
bytes.

Traditional Cryptography

Scheme Total Key Size Ciphertext
RSA encryption 384 384

Encryption/KEM NIST PQC Finalists

Scheme Type Private Key Public Key Ciphertext
Kyber lattice 1 632 (or 32) 800 768

McEliece code 6 452 261 120 128
NTRU lattice 1 452 1 138 1 138

SABER lattice 1 568 672 736

KEM NIST PQC Alternate Candidates

BIKE code 249 2 541 2 541
FrodoKEM lattice 19 888 9 616 9 720

HQC code 252 6 170 6 234
NTRU Prime lattice 1 125 897 1 025

SIKE isogeny 374 330 346

protocol, there could be more temporary components
that need more memory. Moreover, the numbers of
available LUTs, FFs, and DSP need to be taken into
account. See Section 5 for a more detailed analysis.

3.1 Quantum Resistant Key
Establishment Mechanisms at
FPGA

Several partial or whole FPGA implementations of
NIST KEM schemes are currently published. The
designs can be split into three types, namely: HLS-
based design (e.g., ANSI C/C++, and Matlab),
software-hardware (SW-HW) co-design, and RTL-
based design (e.g., VHDL, Verilog, Chisel). Hard-
ware implementations generally outperform software
ones in at least one of the following aspects: latency
(operation speed), power consumption, or energy us-
age. We refer the interested reader to (Dang et al.,
2020) for more information.

(Basu et al., 2019) implement 11 NIST PQC
semifinalists by using the HLS method and assess
them on Virtex-7. Among the NIST finalist schemes,

Table 3: Hardware/Software co-design, HLS, and pure
Hardware implementations of NIST PQC KEM finalists and
alternate candidates. The table shows the number of found
implementations per scheme with the year of publication.

Encryption/KEM NIST PQC Finalists

Scheme HW/SW HLS method Pure Hard-
ware

Kyber 3 (2019, 2020) 2 (2019,
2021)

2 (2021)

McEliece 1 (2021) 1 (2019) 7

NTRU 1 (2018) 7 1 (2018)
SABER 3 (2019, 2020) 1 (2019) 3 (2020, 2021)

KEM NIST PQC Alternate Candidates

BIKE 7 7 3 (2020, 2021)
FrodoKEM 2 (2019) 1 (2019) 2 (2019, 2021)
HQC 7 1 (2018) 7

NTRU Prime 7 7 2 (2020, 2021)
SIKE 1 (2020) 7 3 (2017, 2020,

2021)
Note: 7– no implementation could be found.

the article covers Kyber, McEliece, SABER, and
FrodoKEM. CRYSTALS-Kyber is recognized as the
fastest KEM under pipelining directives.

CRYSTALS-Kyber. (Chen et al., 2021) proposed
a polynomial ring processor for Kyber by using the
HLS method for Artix-7. They developed an opti-
mized Number Theoretic Transform (NTT) that uses
a convolution-based polynomial multiplier. (Banerjee
et al., 2019) proposed a software-hardware co-design
approach based on the lattice cryptography proces-
sor with configurable parameters (i.e., sapphire) that
can be used to speed up lattice-based protocols such
as Kyber and FrodoKEM. They considered an Opal
Kelly XEM7001 FPGA development board. (Dang
et al., 2020) presented a SW-HW co-design approach
to implementing three NIST semifinalists: Kyber,
NewHope, and Round5 schemes. They combined
C code with Register-Transfer Level (RTL) design
methodology on Artix-7. Also, (Fritzmann et al.,
2020) used a SW-HW co-design with tightly cou-
pled accelerators to speed up lattice-based cryptog-
raphy. They evaluated the accelerator by comparing
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Kyber performances. (Huang et al., 2020) proposed a
Kyber hardware design with NTT optimization with
Gentlemen-Sande butterfly on the XC7A200T and
XC6SLX45T FPGA platforms. However, no spec-
ification on the used language was given. In 2021,
(Xing and Li, 2021) and (Dang et al., 2021) devel-
oped a pure VHDL implementation of Kyber. (Xing
and Li, 2021) used the XC7A12TCPG238-1 FPGA
platform, whereas (Dang et al., 2021) used Artix-7
XC7A200T-3 and Zynq UltraScale+ ZU7EV-3.

McEliece. (Kostalabros et al., 2021) proposed
a SW-H co-design acceleration of the Classic
McEliece KEM scheme on the ZCU102 heteroge-
neous CPU+FPGA platform. (Wang et al., 2018) pro-
vided the fully-RTL (Verilog) Niederreiter cryptosys-
tem implementation on the Virtex-6 XC6VLX240T.
This cryptosystem is the dual variant of the Classic
McEliece scheme. However, their solution does not
provide an end-to-end KEM implementation and can-
not be compared with those of (Basu et al., 2019;
Kostalabros et al., 2021).

NTRU. Three variants of the NTRU cryptosystem
were sent to NIST for standardization (Schanck,
2018), namely: NTRUEncrypt, NTRU-HRSS-KEM,
and NTRU Prime. In the third round, NTRU-
Encrypt and NTRU-HRSS-KEM were merged in
NTRU, which is one of the finalist, whereas NTRU
Prime is an alternate candidate. (Fritzmann et al.,
2018) presented the first hardware implementation of
NTRU using the SVE padding. They also proposed a
HW/SW co-design of NTRU where polynomial mul-
tiplication and modulo reduction run on hardware,
Zynq UltraScale+ MPSoC (ZCU102). (Dang et al.,
2021) proposed a hardware implementation of NTRU
(i.e, NTRU-HRSS and NTRU HPS scheme) on two
FPGA platforms, namely: Artix-7 XC7A200T-3 and
Zynq UltraScale+ (ZU7EV-3).

SABER. The HLS method is employed by (Basu
et al., 2019) for SABER on the Virtex-7 FPGA plat-
form. We could identify three HW/SW co-designs.
(Dang et al., 2019) propose a HW/SW co-design with
a speed-up that exceeds a factor of 7 compared to
software implementation. They consider the ZCU102
Evaluation Kit, based on the Zynq UltraScale+ MP-
SoC XCZU9EG2FFVB1156E device. Subsequently,
(Mera et al., 2020) proposed a domain-specific co-
processor to speed SABER where only the polyno-
mial multiplication, i.e., the most expensive opera-
tion, is offloaded to the co-processor to obtain a com-
pact design. They consider a Zynq-7000 ARM/FPGA

SoC platform. At last, (Fritzmann et al., 2020) ex-
plored tightly coupled accelerators to speed up lattice-
based cryptography, which was evaluated on SABER
performances. Three fully hardware implementations
of SABER were developed by (Roy and Basso, 2020),
(Dang et al., 2021) and (Zhu et al., 2021). In particu-
lar, (Roy and Basso, 2020) proposed parallel polyno-
mial multiplier architecture to overcome memory ac-
cess bottlenecks common in lattice polynomial mul-
tiplication. They employ UltraScale+ (XCZU9EG-
2FFVB1156). (Dang et al., 2021) presented four im-
plementations of SABER, where two of them out-
performed the best previous design in terms of re-
source utilization. At last, (Zhu et al., 2021) proposed
an energy-efficient configurable crypto-processor for
SABER with two improvements of the Karatsuba
framework to reduce polynomial multiplication over-
head. They considered Virtex UltraScale+ for their
performance analyses.

BIKE. (Reinders et al., 2020) presented the first
complete implementation of BIKE on older param-
eters. However, they designed a simplification of the
grey-black decoder that makes it constant time. The
Intel Arria 10 FPGA platform was used for the analy-
sis. The first complete hardware design of the current
BIKE version was developed by (Richter-Brockmann
et al., 2021b). Moreover, the first implementation
of the black-gray-flip decoder on hardware, an opti-
mized polynomial inversion module, and a scalable
multiplier were introduced. Their implementation
can run on a low-cost Artix7 (XC7A35T) and on a
high-speed XC7A100T FPGA platforms. (Richter-
Brockmann et al., 2021a) improved their previous
work by introducing an optimized polynomial multi-
plier and a novel component for polynomial inversion
based on the extended Euclidean algorithm. Imple-
mentation results run on Artix-7.

FrodoKEM. (Basu et al., 2019) employed the HLS
approach for FrodoKEM on Virtex-7. We identified
two HW/SW co-designs. (Dang et al., 2019) pre-
sented a HW/SW co-design for FrodoKEM where
matrix multiplication and SHAKE sequence gener-
ations are offloaded to hardware, ZCU102 Evalu-
ation Kit, based on the Zynq UltraScale+ MPSoC
XCZU9EG2FFVB1156E device. Moreover, (Baner-
jee et al., 2019) proposed a lattice cryptography pro-
cessor with configurable parameters, namely sap-
phire, to speed up lattice-based protocols and can
be applied to FrodoKEM. The Sapphire crypto-
processor was coupled with an efficient RISC-V
micro-processor. They considered an Opal Kelly
XEM7001 FPGA development board. On the pure
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hardware implementation, (Howe et al., 2019) pro-
posed an alternative hardware design for FrodoKEM
that uses an unrolled Trivium as PRNG on Artix-
7. Then, (Howe et al., 2021) optimized FrodoKEM
hardware implementation by paralyzing the matrix
multiplication operation on Artix-7 (XC7A35T).

HQC. A HLS implementation of HQC was pro-
posed by (Melchor et al., 2018) on an Artix-7 FPGA
platform. However, neither HW/SW co-design nor
pure hardware implementation could be found.

NTRU Prime. (Marotzke, 2020) presented the first
hardware implementation of NTRU Prime scheme.
The author focused on optimizing the used sources,
and the implementation was run on Zynq Ultrascale+.
Following, (Peng et al., 2021) proposed two variants
of hardware implementations, namely: a high-speed
and high-area one and a slower, low-area one. In
order to improve the performance, they developed a
new batch inversion for key generation, a high-speed
schoolbook polynomial multiplier, an NTT polyno-
mial multiplier, a new DSP-free modular reduction
method, and a high-speed radix sorting module, and
new en- and decoders. They considered Zynq Ultra-
scale+.

SIKE. Due to SIKE small key size and generally
low performance of isogeny-based scheme, several
FPGA hardware implementations were presented.
The first hardware proposal is from the author of
SIKE scheme, i.e., (Azarderakhsh et al., 2017). They
used Virtex-7 (xc7vx690tffg1157-3). (Koziel et al.,
2020) proposed a fast isogeny accelerator architec-
ture that is then applied to speed up the SIKE scheme.
They employed Artix-7, Virtex-7, and Kintex Ultra-
Scale+. At last, (Elkhatib et al., 2021) focused on
the improvements Montgomery multiplication algo-
rithm and architecture for prime fields to speed up
SIKE that is also improved. They considered Artix-
7 and Virtex-7 FPGAs. Moreover, (Massolino et al.,
2020) presented a HW/SW co-design implementation
of SIKE. They focused on making the protocol com-
pact and scalable.

As shown in Table 3, Kyber and SABER schemes
have a higher number of implementations, partly be-
cause of their (practical) memory consumption and
efficiency. SIKE is also a good candidate for FPGA
acceleration due to its memory consumption that is
comparable to traditional cryptography and its need
for better performance.

4 ON SECURITY OF
HARDWARE-BASED
IMPLEMENTATIONS OF
QUANTUM RESISTANT KEY
ESTABLISHMENT
MECHANISMS

In this section, we present the recent hardware imple-
mentations of finalists that add countermeasures and
protection into their design.

CRYSTALS-Kyber. (Jati et al., 2021) focused on
configurable Kyber hardware implementation with
side-channel protection. The authors claimed that
their implementation is the first side-channel at-
tack protected and consumes only 5% of HW re-
sources. Their implementation includes various fault
protection techniques such as Fault Detection Hashes
(FDH), protecting critical signals using Complemen-
tary Duplicate Logic (CDL), and protection against
control flow (FSM state) modification. The solution
also deploys a solid true random number generator
and side-channel protection techniques such as ran-
dom delays, address randomization, and instruction
randomization.

SABER. (Abdulgadir et al., 2021) presented a hard-
ware implementation of the Saber scheme that is
resistant against side-channel attacks. Their hard-
ware implementation of SABER deploys the masked
SABER.KEM.Decaps phase that contains masked
CBD Sampler, protected datapath, and masked log-
ical shifting. The complete protection increases
approximately 2.9× LUTs and 1.4× latency com-
pared to the baseline unprotected implementation
of SABER.KEM.Decaps. The authors used mainly
VHDL for hardware description and Chisel for SHA-
3.

McEliece. (Colombier et al., 2022) introduced a
message recovery attack on the Classic McEliece
cryptosystem. They studied power consumption-
based side-channel analysis and machine learning
techniques. The error weight t is small and is report-
edly the Classic McEliece cryptosystem’s main weak-
ness; thus, masking can be used instead to have an er-
ror vector having a more general pattern. The attack
and countermeasure are only general, and the study
does not focus more on hardware-based implementa-
tions.
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NTRU. (Braun et al., 2018) proposed a compact, se-
cure hardware-based architecture of NTRU for Zynq-
7000. The NTRU architecture is secure because it
avoids CCA attacks by including the SVES padding
scheme, defined in IEEE-1363.1, and the protection
against SCA attacks using a constant time convolu-
tion.

Currently, there are few first hardware-based im-
plementations of Kyber, SABER, and NTRU that
should resist side-channel attacks, but require addi-
tional hardware resources. Future studies could focus
on the detailed practice verification of these imple-
mentations and their optimization.

5 ON HARDWARE-BASED
IMPLEMENTATIONS OF
CRYSTALS-KYBER

In this section, we present our implementation design
of the CRYSTALS-Kyber scheme on FPGA, results
and comparison.

5.1 Our Design and Hardware
Implementation

Our CRYSTALS-Kyber implementation is written
solely in VHDL. We design our implementation
to be compact, efficient, and optimized. In or-
der to save HW resources, there is only one
universal component that can operate in 6 dif-
ferent modes - CPAPKE.KeyGen, CPAPKE.Enc,
CPAPKE.Dec, CCAKEM.KeyGen, CCAKEM.Enc
and CCAKEM.Dec. The concrete mode is set through
the input interface and is reset once all data are out-
putted. Our proposed architecture of the universal
component and connections of its internal modules is
shown in Figure 1. To increase throughput, all coef-
ficients are passed in batches of 4 and processed in
a parallel manner. The NTT component used for a
polynomial conversion to and from the NTT domain
is used from the previous work. We assume that NTT
can be further optimized for the Kyber scheme in our
future work. To reduce resources utilization, the NTT
component is used only once. In the related work of
(Dang et al., 2021) NTT is used K times, and opera-
tions as polynomials sampling and polynomials mul-
tiplications are then performed in parallel while NTT
is running to reduce waiting. Each internal part and
function e.g. Keccak, NTT was carefully optimized.
To achieve high frequency, the design was checked
multiple times for critical paths, and techniques like
registering were used to remove those.

Keccak

Reject UniformCBD

NTT

INTT

Decode 
Decompress

Compress 
Encode

Input Interface

Output Interface

Key FIFO

Controller

Figure 1: Proposed architecture of universal Kyber compo-
nent.

5.2 Performance Evaluation and
Comparison

Table 4 serves for the performance assessment of our
Kyber-768 scheme and all its modes. The results are
based on theoretical operating frequency 533.9 MHz
obtained using the synthesis targeting the Virtex Ul-
traScale+. Table 5 compares our results with the pre-
vious works presenting PQC KEMs at FPGA. We
show also our results on the Kintex UltraScale+ with
operating frequency 618.8 MHz. *.Enc represents
Encapsulation and *.Dec represents Decapsulation.
The comparison introduces resources utilization (e.g.,
LUTs, FFs, DSP slices, and BRAMs) and latency that
is based on known frequencies and the number of cy-
cles per operation. The compared results are for set-
ting in the security level 3 which is roughly equivalent
to AES-192.

Table 4: Our Kyber-768: Performance of individual modes.

Component Clock cycles Op [µs] # Ops / s

CPAPKE.KeyGen 3297 6.14 162824
CPAPKE.Enc 4059 7.60 131534
CPAPKE.Dec 2339 4.38 228259

CCAKEM.KeyGen 3400 6.36 157029
CCAKEM.Enc 4688 8.78 113886
CCAKEM.Dec 6554 12.27 81461
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Table 5: Comparison of PQC KEM NIST finalists for the security level (3). Notation for FPGA families - A7: Artix-7, K7:
Kintex-7, VUS+: Virtex UltraScale+, KUS+ Kintex UltraScale+, ZUS+: Zynq UltraScale+. * implemented by the Chisel
language.

Work Component FPGA LUT FF DSP BRAM Clock cycles Op [µs]

This work
Kyber.KeyGen

VUS+ / KUS+ 15504 15125 182 16
3400 6.36 / 5.49

Kyber.Enc 4688 8.78 / 7.58
Kyber.Dec 6554 12.27 / 10.59

(Xing and Li, 2021)
Kyber.KeyGen

A7 7412 4644 2 3
6316 39.2

Kyber.Enc 7925 47.6
Kyber.Dec 10049 62.3

(Huang et al., 2020)
Kyber.Enc

A7
97085 - 36 200.5 77481 499.88

Kyber.Dec 110260 - 292 202 102113 658.79

(Dang et al., 2021)
* Kyber.KeyGen

ZUS+ 10590 10458 6 6.5
2600 5.9

Kyber.Enc 3700 8.3
Kyber.Dec 4900 10.9

(Dang et al., 2021)
NTRU.KeyGen

ZUS+
50347 44281 45 6.5 67157 268.6

NTRU.Enc 33698 30551 0 5.5 4576 18.3
NTRU.Dec 38642 33003 45 2.5 10211 24.0

(Peng et al., 2021)
NTRU.KeyGen.HS

ZUS+
39200 25536 23 33.5 64026 447.7

NTRU.Enc.HS 40879 22382 6 4.5 5007 34.8
NTRU.Dec.HS 36789 22700 9 3.5 10989 80.2

(Dang et al., 2021)
SABER.KeyGen

ZUS+
20496 13939 0 1.5 2709 7.3

SABER.Enc 21069 14074 0 1.5 3735 10.1
SABER.Dec 21342 14233 0 1.5 4682 12.7

(Roy and Basso, 2020)
SABER.KeyGen

ZUS+ 23686 9805 0 2
5453 21.8

SABER.Enc 6618 26.5
SABER.Dec 8034 32.1

(Abdulgadir et al., 2021)
SABER.Enc

A7
6713 7363 32 0

46705 373.1
SABER.Dec.U 52758 422.1
SABER.Dec.P 19299 7363 64 0 72005 576.0

(Wang et al., 2018)
McEliece460896cpa.KeyGen

A7 38669 74858 0 303
5002044 46704.4

McEliece460896cpa.Enc 3360 31.4
McEliece460896cpa.Dec 31005 289.5

(Wang et al., 2018)
McEliece460896cpa.KeyGen

V7 109484 168939 0 446
515806 3943.5

McEliece460896cpa.Enc 3360 25.7
McEliece460896cpa.Dec 17931 137.1

The most recent (Xing and Li, 2021)’s hardware
implementation of Kyber has been designed for the
small Artix-7 FPGA chips and achieved interesting
results in terms of required hardware resources (7.4k
LUTs and 4.6k FFs for all levels). Nevertheless, the
frequency of their implementation is only 161 MHz
and the execution times of the phases are higher than
(Dang et al., 2021) and our implementation. To be
noted that (Dang et al., 2021) use Chisel that is an al-
ternative to classic Hardware Description Languages
(HDLs), e.g., VHDL, and it adds hardware construc-
tions to the Scala programming language. Dang’s
Kyber implementation requires fewer clock cycles
than our work. Nevertheless, our design is encoded
solely in VHDL and is currently the fastest among
pure VHDL implementations, to our best knowledge.
There are also more Kyber’s and other scheme im-
plementations in the literature, but we do not include
them in Table 5 as their security level differs. For
instance, (Guo et al., 2021)’s HW-based implementa-

tion of Kyber-1024 (Sec. level 5) evaluated on the
Artix-7 FPGA platform achieves 49.1/52.8/66.0 µs
delay when performing KeyGen/encaps/decaps, re-
spectively, with consumption of 7.9k LUTs, 3.6k FFs,
2.3k slices, 4 DSPs and 16 BRAMs. This implemen-
tation aims at the low usage of HW-resources and is
similar to the (Xing and Li, 2021)’s work, but the la-
tency is less efficient than recent works.

(Jati et al., 2021) present the smallest hardware
implementation of Kyber-1024 requiring only 5269
LUTs, 2422 FFs and 250 MHz at Artix-7 where the
SHA-3 core is deployed as the co-processor. To
be noted that authors also implement multiple side-
channel countermeasures, which consume less than
5% of the HW resources. Nevertheless, their im-
plementation is significantly slower than other im-
plementations and performs KeyGen/encaps/decaps
operations in 4.59 ms /4.94 ms /4.69 ms. Further-
more, we compare Kyber implementations with other
NIST finalists. Table 5 also presents the recent imple-
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mentations of Saber, NTRU and McEliece460896cpa

schemes. (Dang et al., 2021)’s implementation of
Saber can be competitive with Kyber in the combi-
nation of HW resources and execution times. (Abdul-
gadir et al., 2021)’s implementation of SABER adds
side-channel countermeasures into the decapsulation
phase, marked as P (Protected). The countermeasures
require additional 12586 LUTs. On the other hand,
their unprotected version is lightweight and requires
similar numbers of HW resources as balanced Kyber
implementations. (Dang et al., 2021)’s implementa-
tion of NTRU is comparable to Kyber in the runtimes
of the encapsulation and decapsulation phases but re-
quires more HW resources. (Wang et al., 2018)’s im-
plementation of the McEliece460896cpa shows that
this scheme is not efficient in the decapsulation phase.

6 CONCLUSIONS

This work studied the current state of hardware-
based implementations of PQC KEM algorithms on
FPGA platforms, and more specifically on NIST
PQC finalists and the Kyber scheme implemented
on FPGA platforms. We observed that other than a
few studies that focused on PCQ KEMs hardware-
based implementations from side-channel attack re-
silience, most studies generally focused on perfor-
mance and explored the use of fewer HW resources
on FPGA boards. In general, we found that recent
HW-based Kyber implementations provide promising
results and Kyber is attractive for FPGA implementa-
tion. Furthermore, we presented our hardware design
of Kyber-768 in VHDL, and showed that our imple-
mentation outperforms other pure VHDL Kyber im-
plementations and it is comparable with Dang’s ef-
ficient implementation of Kyber encoded in Chisel.
Our future work will also include side-channel coun-
termeasures in our design, as well as the optimization
of hardware resources.
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