
Adding Support for Reference Counting in the D Programming
Language

Răzvan Niţu, Eduard Stăniloiu, Răzvan Deaconescu and Răzvan Rughiniş
Faculty of Automatic Control and Computer Science,University Politehnica, Bucharest, Romania

Keywords: Dlang, Reference Counting, Memory Safety, Functional Style, Language Design, Purity, Garbage Collection.

Abstract: As more and more software products are developed daily, the security risks imposed by the growing code
bases increase. To help mitigate the risk, memory safe systems programming languages, such as D and Rust,
are increasingly adopted by developers. The D programming language uses, by default, a garbage collector
for memory management. If the performance of a program is bottle-necked by it, or a system is resource
constrained, as is the case for the ever-growing Internet of Things devices, the user has the option opt out and
employ a custom allocation strategy. However, in this situation, the programmer needs to manually manage
memory - a complex and error-prone task. An alternative is represented by a middle ground solution in the
form of automatic reference counting. This strategy offers simplicity and performance for a small cost in
expressiveness. However, due to the transitive nature of type qualifiers in D and purity-based optimizations, it
is impossible to implement a library solution. In this paper, we present the problems introduced by transitive
type qualifiers to reference counting and we propose the addition of a new storage class for members of
aggregate declarations that breaks the transitivity of type qualifiers. We present our design and show that it
can be used to implement a generic automatic reference counting mechanism without disabling purity based
optimizations.

1 INTRODUCTION

As more and more software products are developed
daily, the security risks imposed by the growing code
bases increase. In 2019, Microsoft reported that the
cause for 70% of security bugs were memory re-
lated(Cimpanu, 2019). The costs incurred due to se-
curity flaws and their exploitation are in the billions
(Bannister, 2021), with the IBM System Science In-
stitute stating that patching costs 100 times more than
the development costs (Dawson et al., 2010).

To help mitigate the risk, memory safe systems
programming languages, such as D and Rust, are in-
creasingly adopted by developers. A significant area
where memory safe languages are desirable is repre-
sented by the Internet of Thnigs (IoT). IoT devices
have become a popular target for attackers to com-
promise and use as an IoT Botnet army (Dange and
Chatterjee, 2020) that is used to carry attacks against
businesses, governments and even entire countries
(McMillen, 2021) (Whittaker, 2016). In order to sat-
isfy the needs of IoT devices, the programming lan-
guages used must also produce fast programs and be
resource considerate.

D is a modern, systems-level programming lan-
guage that aims to provide both high performance and
memory safety in a simple, intuitive and expressive
manner. Although it is an imperative language, D pro-
vides functional style concepts such as pure functions
and transitive type qualifiers (Ullrich and de Moura,
2019). In addition, it is able to inter-operate with C
and C++ code out of the box, thus providing a simple
migration path for legacy code.

D provides a garbage collector (GC) (Lee, 1991)
for built-in features that use heap memory, such as
dynamic arrays and classes, but also supports man-
ual memory management via raw pointers and mal-
loc/free. Therefore, for situations where the garbage
collector is unsuitable due to resource scarcity (small
memory, small number of computation units or both)
or real-time constraints, users have the possibility to
implement a custom allocation strategy. Note that in
this scenario ease of use is sacrificed for performance,
since the user needs to manually manage memory.
This has proven to be a complex, time consuming and
error prone endeavour (Knuth, 1997).

A third option is represented by automatic refer-
ence counting (ARC) in the form of a library solu-

Nit¸u, R., Staniloiu, E., Deaconescu, R. and Rughinis¸, R.
Adding Support for Reference Counting in the D Programming Language.
DOI: 10.5220/0011290000003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 299-306
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

299

1 struct RC(T)
2 {
3 T* data;
4 size_t count = 0;
5

6 // constructors
7 this(T data);,
8 this(T data) immutable;
9

10 // methods of RC
11 }
12

13 void main()
14 {
15 // a.count is mutable
16 auto a = RC!(int)(2);
17 // b.count is immutable
18 auto b = immutable RC!(int)(2);
19 }

Listing 1: Typical reference counting implementation
where a pointer to allocated data is stored alongside the its
reference count.

tion (McBeth, 1963). ARC is lightweight in terms
of resource utilization, since it typically stores an
extra counter field for each allocated instance. In
terms of computation, the added overhead consists
of simple addition or subtraction operations. In ad-
dition, the usage of ARC is almost transparent to the
user: an object needs to be declared as being refer-
ence counted and everything will be taken care of be-
hind the scenes. Providing support for such an op-
tion is important because it offers maximum flexibil-
ity in terms of allocation strategies: for the major-
ity of cases, the GC should be sufficient; for con-
strained scenarios where the GC cannot be supported,
ARC is to be used; for extreme situations, where not
even ARC is sufficient to attain the performance guar-
antees, manual memory management should be em-
ployed.

Since D also supports functional style type qual-
ifiers, such as immutable and const, implementing a
general solution for ARC is not possible. Listing 1
provides a typical library implementation of a refer-
ence counted object using the D language. The RC
struct is templetized with the type T that is reference
counted. It stores a pointer to a heap allocated in-
stance of type T, next to the reference count. Nor-
mally, RC also defines functions to handle the refer-
ence and to forward the T specific operations to the
underlying type - for brevity, we have not included
these functions. When instantiating a mutable version
of RC we can successfully track the reference. How-
ever, once we construct an immutable instance, due to
the functional transitivity of type qualifiers, both the
data and count fields will be immutable. This makes
it impossible to ever update the reference count, and

thus to implement generic ARC.
In this paper, we propose the addition of a new

storage class for variable declarations, metadata,
that may be used to tag aggregate declaration mem-
ber fields. We describe the primary language changes
and design decisions that were taken to integrate

metadata into the language. Further, we analyze the
implications of our decisions and show that with our
design it is possible to implement ARC in the func-
tional contexts of the D programming language.

The remainder of this paper is organized as fol-
lows: Section 2 presents the background and moti-
vation for this work, Section 3 presents the design of

metadata and Section 4 presents our evaluation. We
conclude with Section 5.

2 BACKGROUND AND
MOTIVATION

In this section we will discuss the benefits and down-
sides of garbage collection and automatic reference
counting. We then provide insight on how type qual-
ifiers, purity and memory safety are implemented in
D. Throughout this section we also motivate the need
for metadata.

2.1 GC vs. ARC

Garbage collection is a well studied concept (Wilson,
1992) (Jones et al., 2016) (Bacon et al., 2004). Typi-
cally, garbage collection is implemented as a run-time
library. Whenever an object is created, the new ex-
pression is rewritten to a call to the allocation method
of the garbage collector. As such all of the objects are
registered on the GC heap. In various moments the
GC performs an analysis to decide which objects are
still living and which may be freed.

Multiple types of allocation and reachability
strategies have been developed: mark-sweep (Mc-
Carthy, 1960) (Hayes, 1991), mark-compact (Clark
and Green, 1977) (Clark, 1979) (Cohen and Nicolau,
1983), copying collection (Cheney, 1970) (Fenichel
and Yochelson, 1969) (Larson, 1977) and non-
copying implicit (Baker, 1992). Although a large
range of techniques and implementations exist, most
require large amounts of memory to store information
about the memory blocks and are non-deterministic
with regards to when the memory is freed (Went-
worth, 1990).

Automatic reference counting, on the other hand
is very light-weight in terms of resource utilization
because it simply requires an extra field to store the
number of references to a specific object (Deutsch

ICSOFT 2022 - 17th International Conference on Software Technologies

300

and Bobrow, 1976) (Goldberg, 1991). However, it
suffers from an effectiveness problem: no circular
references are supported (Bobrow, 1980). The refer-
ence count is typically modified whenever an object
is copy constructed, assigned or destroyed. There-
fore, a library solution needs to overload these op-
erators to make sure that the object is properly refer-
ence counted. Reference counting is transparent for
the user of the data structure.

Garbage collection has been shown to have the
same performance as manual memory management
and reference counting in the majority of cases. How-
ever, it comes with a memory consumption cost and
may do a collection cycle and hence stop-the-world
in critical moments (Romanazzi, 2018). To alleviate
this problem, ARC may be used as a lighter alterna-
tive at the cost of not supporting circular references.

D implements a stop-the-world mark and sweep
garbage collector. The fact that the GC may, at some
point, stop the program execution to do a collection
cycle is a deal breaker for real time applications. Us-
ing an ARC based management technique is desirable
in such situations, however, it is not possible to im-
plement a library solution due to D’s transitive type
qualifiers.

2.2 Type Qualifiers

D implements 4 type qualifiers: const, immutable,
shared and inout. They all apply transitively, mean-
ing that both the reference and all the fields accessible
(directly or indirectly) through it are considered qual-
ified.

mutable

const

const inout

inout immutable

const inout shared

const shared

inout shared

shared

Figure 1: Qualifier conversions in D (dlang.org, 2012).

const objects may not be modified through the cur-
rent reference. Figure 1 depicts the implicit conver-
sion between qualifiers. It can be observed that mu-
table is implicitly convertible to const. This implies
that a mutable reference may modify an object that is
also reachable through a const reference.

immutable objects can never be modified, once
constructed. As a consequence, such instances may
be placed in read only memory. No other qualifier
may be implicitly converted to immutable.

The inout keyword forms a wildcard that can be
replaced with any of mutable, const and immutable.

Functions that differ only in how their parameters are
qualified can be merged into a single function with
inout parameters. The compiler will then substitute it
with the appropriate qualifiers, depending on the mu-
tability of the arguments.

shared is used for variables that are needed in mul-
tithreaded environments. As opposed to C, D implic-
itly considers global variables as being thread-local.
To create a variable shared among threads, the shared
type qualifier is used in the variable declaration. In
addition, the compiler will error out on any shared
object that is being accessed without an appropriate
synchronisation mechanism. immutable objects are
implicitly shared and do not require any synchronisa-
tion.

When implementing reference counting, the tran-
sitivity of type qualifiers makes it impossible to up-
date the reference count, as depicted in Listing 1.

2.3 Purity

In functional languages, a function is considered pure
if it does not have any side effects. As a consequence,
a pure function will yield the same result for the same
set of arguments. Purity enables various compiler op-
timizations such as common sub-expression elimina-
tion, elision of function calls and statement reordering
(Barnett et al., 2004).

D provides the ability to write functionally pure
code by using the pure keyword. Once a function is
annotated with pure, the compiler will check that it
does not access any global mutable data. Such func-
tions are not allowed to call other functions that are
not marked as pure.

Although pure functions may not access any
global mutable data, they can still alter the global state
through parameters that contain indirections. Since
requiring pure functions to not modify parameters
would have been very restrictive, D implements two
types of purity: weak and strong. A weakly pure func-
tion is capable of modifying global state through its
parameters, whereas a strongly pure function is not.
A strongly pure function may call a weakly pure func-
tion. From a user’s perspective, there is no difference
between the two: both are annotated with the same
keyword. However, from the compiler’s perspective,
strongly pure functions are subject to purity optimiza-
tions whereas weakly pure functions are not. The
compiler is able to distinguish between the two types
of pure functions just by analysing the signature. If
the types of the parameters of a pure function do not
contain any mutable indirections, then the function is
strongly pure.

As mentioned in the previous section, when per-

Adding Support for Reference Counting in the D Programming Language

301

forming reference counting for a non-mutable ob-
ject a mechanism to modify the counter is needed.

metadata is used exactly for that, however, this
might affect the purity level of certain functions.
Consider the following function signature: int
func(ref immutable S x) pure. Prior to the ad-
dition of metadata, func would be considered
strongly pure, because there is no possibility of mod-
ifying any global data. However, with the addi-
tion of it, S might contain a metadata field. As a
consequence, the compiler has no mean of deciding
whether func is strongly or weakly pure without in-
specting the body of the function and observing that
no metadata field is modified. The safer alterna-
tive in this situation is to consider func weakly pure,
however, that would exempt it from purity based op-
timizations.

In this paper, we provide a solution that allows the
use of metadata without losing the possibility of ap-
plying purity based optimizations.

2.4 Memory Safety

D offers the possibility to mechanically check for
memory safety issues at compile time. Functions that
are annotated with the @safe keyword will be ana-
lyzed and if any unsafe operations - pointer arithmetic
or taking the address of a local variable - are per-
formed, it will issue a compile time error. Functions
are considered by default to be unsafe.

There are situations where unsafe operations do
not pose any threats. For such scenarios, D provides
the @trusted keyword. @trusted is used to anno-
tate functions that have been manually analyzed by
the user and have been proven to be safe despite do-
ing unsafe operations. This design makes it easier to
scan for issues when doing code review, since only
@trusted functions need to be analyzed.

Modifying a metadata field cannot be @safe by
default because, in essence, a non-mutable object is
being modified. As a consequence, the user must be
cautious when using metadata and annotate such
functions with @trusted so that the reference counted
object is usable in @safe code. In short, it is the bur-
den of the library writer to ensure that the data struc-
ture is correctly reference counted.

3 DESIGN

metadata leverages the existing concept of mutable
in C++ (cppreference, 2012). However, it extends it
so that it supports transitive type qualifiers such as im-
mutable and const. In addition, we define the seman-

tics in the presence of purity based optimizations.
We have chosen the name metadata to empha-

size the fact that such fields are not conceptually part
of the object, rather they store data that is needed to
manage it. Therefore, such fields should not be sub-
ject to the same constraints as the rest of the instance.
We wanted to avoid using a generic name, such as mu-
table, because we want to discourage the use of this
feature outside of the realm of reference counting.

3.1 Semantics

The metadata storage class modifies propagation of
type qualifiers on fields. immutable and const will
be transitive with the exception of metadata fields.
Mutating such fields has defined behavior, however,
they must be private - only the object that defines the

metadata field is allowed to modify it.
Listing 2 presents a partial implementation of ref-

erence counting of an const object using metadata.
The assignment operator is omitted because you can-
not technically assign a const field. Also, any method
that does not involve the reference count such as op-
erator overloads and underlying forwarding functions
have been omitted. The referenced counted struct is
templetized by a generic type T. The constructor al-
locates memory and initializes the reference count.
The copy constructor initializes a new copy and in-
crements the reference count. The incRef and decRef
methods modify the metadata field that would oth-
erwise have been immutable. The destructor decre-
ments the reference and frees the object if the count
reaches 0.

The following operations are not allowed:

• to define a const or immutable metadata field.
The sole purpose of metadata is to allow non-
mutable fields to be altered.

• to have a non-private metadata field. The ob-
ject that encapsulates metadata should be the one
that manages it. Any external access is forbid-
den. Ideally, such a field should be modified only
indirectly by calling the public copy constructor,
assignment operator or destructor, which in turn
would call the private methods that update the ref-
erence count.

• to define a metadata field that is not a member
of an aggregate declaration. There is no point in
having globals/locals be used in conjunction with

metadata since there is no object that could im-
pose qualifiers transitively.

• to use metadata in @safe code. This feature is
designed as an enabler for library owners to sup-

ICSOFT 2022 - 17th International Conference on Software Technologies

302

port @safe and immutable reference counted ob-
jects. It is by no means designed for general use.

3.2 Effect on Type Qualifiers

Because immutable is implicitly shared, metadata
fields of immutable instances are regarded as shared
in order to be thread-safe. Therefore, any uses a

metadata fields that come from immutable objects
should be properly synchronized if used in a multi-
threaded environment.

const references to objects may come from muta-
ble, const and immutable objects, therefore the type
system cannot infer whether the metadata field in-
side the object should be shared or not. As a con-
sequence, metadata fields of const objects will be

1 const struct RefCount(T)
2 {
3 T* payload;
4 private __metadata size_t* count;
5

6 // constructor
7 this(int size)
8 {
9 payload = malloc(size * T.sizeof);

10 count = malloc(int.sizeof);
11 this.count = 1;
12 }
13

14 // copy constructor
15 this(const ref RefCount src)
16 {
17 this.payload = src.payload;
18 this.count = src.count;
19 incRef();
20 }
21

22 // increment reference
23 private void incRef()
24 {
25 *count++;
26 }
27

28 // decrement reference
29 private void decRef()
30 {
31 *count--;
32 }
33

34 // destructor
35 ˜this()
36 {
37 decRef()
38 if(*count == 0)
39 free(p);
40 }
41 }

Listing 2: metadata semantics.

1 shared int* q;
2 int* r;
3

4 struct RefCounted
5 {
6 private __metadata int* p;
7 bool isImmutable;
8

9 this(shared int *p) immutable
10 {
11 this.p = p;
12 isImmutable = true;
13 }
14

15 void incRef() const
16 {
17 // typeof(p) => int*
18 if (isImmutable)
19 q = cast(shared int*) p;
20 else
21 r = p;
22 }
23 }
24

25 void main()
26 {
27 shared int* p;
28 immutable A ia = immutable A(p);
29 const A ca;
30 ia.fun();
31 ca.fun();
32 }

Listing 3: metadata fields from const objects are treated
as unshared mutable. The user needs to handle this case
appropriately.

type checked as being mutable, leaving upon the user
to reason upon the code to make the appropriate casts.
Listing 3 provides an example how this situation
should be handled. Whenever an object is created,
the underlying type qualifier should be saved -in this
situation, the isImmutable variable is used. Depend-
ing on the value of this variable, the user may cast it
to the appropriate type qualifier.

inout references to objects may come from mu-
table, const and immutable objects. This similarity
to const objects makes inout object instances with

metadata fields to be treated exactly the same as
const ones.

3.3 Interaction with pure

The addition of metadata should not alter the prop-
erties of strongly pure functions. To address this issue
we propose a set of rules and transformations that pre-
serve the same semantics of strongly pure functions.

Next, we list the properties of strongly pure func-
tions and discuss whether each is affected and what

Adding Support for Reference Counting in the D Programming Language

303

are the design decisions that preserve the semantics.
A strongly pure function that returns a type with-
out indirections will return the same result when
applied to the same immutable arguments, regard-
less of how many intermediate actions happen.
Listing 4 presents a code sample that illustrates this
property: foo may not access any global data and arg
will never be modified.

1 // foo -> strongly pure
2 auto a = foo(arg);
3 auto b = foo(arg);

.
Listing 4: Srongly pure function result memoization. The
result of the first call to foo may be memoized and reused at
the second call.

Therefore, a potential optimization is to cache the
result of the first call and reuse it for subsequent calls.
Essentially, the declaration of b is rewritten to auto
b = a, where a is a cached version of the initial re-
sult. With the addition of metadata, this property no
longer holds, because arg could contain a metadata
field. If any actions are performed between the two
declarations that modify the metadata field of arg,
then the optimization should not be applied, other-
wise the reference count will be invalidated. To ad-
dress this issue, we never cache the value of arg and
when we rewrite to auto b = a, we consider the latest
version of a. This rewrite is correct since arg cannot
be modified, except for the metadata. For foo the
existence of any metadata field is transparent and
therefore should not affect its execution.
The set of references returned from strongly pure
functions can be safely converted to immutable or
shared. A reference can be returned from a strongly
pure function if it was created during its execution or
if it was passed from one of its parameters. Since
a strongly pure function may not receive parameters
that have non-immutable indirections, it means that
the returned reference is either immutable, if created
from one of the parameters, or mutable but it was
constructed inside the strongly pure function. Since
the value could not escape the scope of the strongly
pure function, it means that the reference returned is
unique and therefore may be converted to immutable.
This aspect does not suffer any modifications with the
addition of metadata.
A strongly pure function whose result is not used
may be safely elided. Calling a function without side
effects and ignoring its result has the same conse-
quences as if the function would not be called at all.
With the addition of metadata, it is possible to have
side-effects when calling strongly pure functions.

Consider Listing 5. foo is a strongly pure func-

1 struct S
2 {
3 private int __metadata x;
4

5 void incX () immutable
6 {
7 ++x;
8 }
9

10 int getX() immutable
11 {
12 return x;
13 }
14 }
15

16 void foo(immutable ref S s) pure
17 {
18 s.incX();
19 }
20

21 void main()
22 {
23 immutable S s;
24 // optimized away
25 foo(s);
26 // cannot rely on this
27 assert(s.getX() == 1);
28 }

Listing 5: Wrongfully optimizing away a pure function.

tion that returns void. There is no point in executing
it since it should not produce any effects. However, S
has a metadata field which is modified. In this con-
text, we cannot rely on the value of the metadata
field. Unfortunately, there is no mechanism to pre-
vent this situation, however, we note that metadata
is designed with the sole purpose to allow for the
implementation of non-mutable automatic reference
counted objects. As such, there is no reason for an
external function to manually update or read the ref-
erence count. The feature is designed to be used by
library writers to provide a mechanism to manage
memory for their objects. Users of said objects should
not have the ability to modify the internal state that
tracks the allocation. Therefore, in this situation, we
rely on users to design their data structures such that
the methods that modify the reference count are only
usable from within the object.

For example, defining a reference counted object
as in Listing 2 makes it impossible to manually up-
date a metadata field. In that scenario, the reference
count may be modified only indirectly by assigning,
copy constructing or destroying a reference counted
instance. As a consequence, strongly pure functions
that receive such an object may modify the reference
count inside their body, but they cannot escape the
new created objects. As a result, once the function
execution is over, the reference count will be unmod-

ICSOFT 2022 - 17th International Conference on Software Technologies

304

ified, preserving the immutability of the object. In
these conditions, the elision of the function may take
place.
A strongly pure function invocation can always ex-
change order with an adjacent function invocation,
provided that data transitively reachable from the
arguments of the functions do not overlap and the
second function does not take as argument the re-
sult of the first function. Since a strongly pure func-
tion does not have any side effect, it can be safely
swapped with a different strongly pure function. Ac-
tually, in such a scenario, the two could be run in par-
allel. In the case of a strongly pure function that is ad-
jacent to an impure function, we know that the impure
function cannot modify the argument to the strongly
pure one.

4 EVALUATION

To evaluate our approach, we have implemented
metadata in a fork of the official D frontend. Our

objective was to validate the correctness of the design
and implementation and to quantify the gains of us-
ing reference counted objects instead of the garbage
collector.

To validate the correctness of our method we have
updated the D standard library implementation of the
RefCounted object to use metadata. Prior to our
work, this library solution worked correctly only for
mutable objects and could not be used in generic
code that is heavily based on templates and leverages
the benefits of type qualifiers. After the addition of

metadata we have created a singly linked list im-
plementation that can accommodate immutable and
const RefCounted objects. We ran these versions us-
ing a program that copy constructed instances of the
singly-linked list and compared the results with the
mutable version. We have tested that the reference
count is correctly updated, according to the mutable
version, at each step.

Next, we wanted to measure what are the bene-
fits of using the RefCounted implementation with re-
gards to performance. To that end, we have imple-
mented two versions of the following data structures:
a singly-linked list, a red-black tree, a binary heap and
an array. The first version of these data structures
uses the garbage collector as the underlying alloca-
tor, whereas the second version uses instances of the
RefCounted implementation. Next, we created a pro-
gram that inserts 40MB of data in each data structure
and measured the overall execution time.

The results can be observed in Figure 2. All four
data structures have a significant performance im-

Figure 2: Speed-up when using reference counted objects
instead of GC managed instances.

provement, roughly 2x, when using reference counted
objects as an alternative to the GC. This constitutes
a hint that the garbage collector implementation in
D has room for improvement. Until the improve-
ments are implemented, ARC could be employed in
performance-critical applications.

5 CONCLUSIONS

Garbage collection is very attractive due to its trans-
parency to the user. However, in some scenarios the
GC might have an impact on performance and the use
of resources. Automatic reference counting is, in this
situation, a viable alternative, provided that circular
references are not required.

To enable the implementation of automatic ref-
erence counting as a library solution in the D pro-
gramming language, we have designed, implemented
and tested a new feature, metadata. This storage
class attribute is used to break the transitivity of type
qualifiers on specific aggregate declaration fields. We
have shown that metadata can be integrated in the
language without impacting the application of purity
based optimizations, thus enabling the implementa-
tion of fast, immutable and safe reference counted
data structures.

We believe that integrating high-level concepts
such as purity into low level languages represents a
good opportunity to write safer programs. By proving
that it is possible to implement a memory allocation
strategy that is fast, safe and pure at the same time,
we hope that this work paves the way to adding more
functional style concepts into low level languages

REFERENCES

Bacon, D. F., Cheng, P., and Rajan, V. (2004). A unified
theory of garbage collection. In Proceedings of the
19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and ap-
plications, pages 50–68.

Adding Support for Reference Counting in the D Programming Language

305

Baker, H. G. (1992). The treadmill: Real-time garbage col-
lection without motion sickness. ACM Sigplan No-
tices, 27(3):66–70.

Bannister, A. (2021). Substandard software costs
us economy $2tn through security flaws,
legacy systems, abandoned projects. URL:
https://portswigger.net/daily-swig/substandard-
software-costs-us-economy-2tn-through-security-
flaws-legacy-systems-abandoned-projects.

Barnett, M., Naumann, D. A., Schulte, W., and Sun, Q.
(2004). 99.44% pure: Useful abstractions in speci-
fications. In ECOOP workshop on formal techniques
for Java-like programs (FTfJP). Citeseer.

Bobrow, D. G. (1980). Managing reentrant structures using
reference counts. ACM Transactions on Programming
Languages and Systems (TOPLAS), 2(3):269–273.

Cheney, C. J. (1970). A nonrecursive list compacting algo-
rithm. Communications of the ACM, 13(11):677–678.

Cimpanu, C. (2019). Microsoft: 70 percent of all security
bugs are memory safety issues. URL: https://www. zd-
net. com/article/microsoft-70-percent-of-all-security-
bugs-are-memory-safety-issues.

Clark, D. W. (1979). Measurements of dynamic list struc-
ture use in lisp. IEEE Transactions on Software Engi-
neering, (1):51–59.

Clark, D. W. and Green, C. C. (1977). An empirical study
of list structure in lisp. Communications of the ACM,
20(2):78–87.

Cohen, J. and Nicolau, A. (1983). Comparison of com-
pacting algorithms for garbage collection. ACM
Transactions on Programming Languages and Sys-
tems (TOPLAS), 5(4):532–553.

cppreference (2012). C++ mutable. https://en.cppreference.
com/w/cpp/language/cv.

Dange, S. and Chatterjee, M. (2020). Iot botnet: the largest
threat to the iot network. In Data Communication and
Networks, pages 137–157. Springer.

Dawson, M., Burrell, D. N., Rahim, E., and Brewster, S.
(2010). Integrating software assurance into the soft-
ware development life cycle (sdlc). Journal of Infor-
mation Systems Technology and Planning, 3(6):49–
53.

Deutsch, L. P. and Bobrow, D. G. (1976). An efficient, in-
cremental, automatic garbage collector. Communica-
tions of the ACM, 19(9):522–526.

dlang.org (2012). Implicit qualifier conversions. dlang.org/
spec/const3.html#implicit qualifier conversions.

Fenichel, R. R. and Yochelson, J. C. (1969). A lisp garbage-
collector for virtual-memory computer systems. Com-
munications of the ACM, 12(11):611–612.

Goldberg, B. (1991). Tag-free garbage collection for
strongly typed programming languages. In Pro-
ceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation,
pages 165–176.

Hayes, B. (1991). Using key object opportunism to col-
lect old objects. In Conference proceedings on Object-
oriented programming systems, languages, and appli-
cations, pages 33–46.

Jones, R., Hosking, A., and Moss, E. (2016). The garbage
collection handbook: the art of automatic memory
management. CRC Press.

Knuth, D. E. (1997). The art of computer program-
ming. volume 1: Fundamental algorithms. volume 2:
Seminumerical algorithms. Bull. Amer. Math. Soc.

Larson, R. G. (1977). Minimizing garbage collection as a
function of region size. SIAM Journal on Computing,
6(4):663–668.

Lee, P. (1991). Topics in Advanced Language Implementa-
tion. MIT Press.

McBeth, J. H. (1963). Letters to the editor: on the refer-
ence counter method. Communications of the ACM,
6(9):575.

McCarthy, J. (1960). Recursive functions of symbolic ex-
pressions and their computation by machine, part i.
Communications of the ACM, 3(4):184–195.

McMillen, D. (2021). Internet of threats: Iot bot-
nets drive surge in network attacks. URL:
https://securityintelligence.com/posts/internet-of-
threats-iot-botnets-network-attacks/.

Romanazzi, S. (2018). From manual memory manage-
ment to garbage collection. ResearchGate [On-
line]. Available from: https://doi. org/10.13140/RG,
2(22961.28006).

Ullrich, S. and de Moura, L. (2019). Counting immutable
beans: Reference counting optimized for purely func-
tional programming. In Proceedings of the 31st Sym-
posium on Implementation and Application of Func-
tional Languages, pages 1–12.

Wentworth, E. (1990). Pitfalls of conservative garbage
collection. Software: Practice and Experience,
20(7):719–727.

Whittaker, Z. (2016). Mirai botnet attackers are try-
ing to knock an entire country offline. URL:
https://www.zdnet.com/article/mirai-botnet-attack-
briefly-knocked-an-entire-country-offline/.

Wilson, P. R. (1992). Uniprocessor garbage collection tech-
niques. In International Workshop on Memory Man-
agement, pages 1–42. Springer.

ICSOFT 2022 - 17th International Conference on Software Technologies

306

