
Learning Optimal Robot Ball Catching Trajectories Directly from the
Model-based Trajectory Loss

Arne Hasselbring1, Udo Frese1,2 and Thomas Röfer1,2

1Deutsches Forschungszentrum für Künstliche Intelligenz, Cyber-Physical Systems, Bremen, Germany
2Universität Bremen, Fachbereich 3 – Mathematik und Informatik, Bremen, Germany

Keywords: Trajectory Optimization, Machine Learning, Robot Dynamics.

Abstract: This paper is concerned with learning to compute optimal robot trajectories for a given parametrized task. We
propose to train a neural network directly with the model-based loss function that defines the optimization
goal for the trajectories. This is opposed to computing optimal trajectories and learning from that data and
opposed to using reinforcement learning. As the resulting optimization problem is very ill-conditioned, we
propose a preconditioner based on the inverse Hessian of the part of the loss related to the robot dynamics.
We also propose how to integrate this into a commonly used dataflow-based auto-differentiation framework
(TensorFlow). Thus it keeps the framework’s generality regarding the definition of losses, layers, and dataflow.
We show a simulation case study of a robot arm catching a flying ball and keeping it in the torus shaped bat.
The method can also optimize “voluntary task parameters”, here the starting configuration of the robot.

1 INTRODUCTION

Motion planning (LaValle, 2006) is one of the most
central issues for moving autonomous systems, let it
be robot manipulators (Singh and Leu, 1991), autono-
mous vehicles (Lim et al., 2018) or spacecraft (Niko-
layzik et al., 2011). In some scenarios, obstacle ge-
ometry is the most difficult part, e.g. when a robot
mounts a bulky part in a motor compartment. Some-
times it is closed-loop reactivity, e.g. when balancing.
And sometimes the dynamics of the system pose the
largest challenge, e.g. when the system is operated
close to its technical and physical limits and motion
planning shall get the best performance out of these
limits. Our long term goal is to perform ball sports
tasks with a two-arm robot (Fig. 1), such as catching,
throwing, or juggling. These require very dynamic
movements, as “gravity is not waiting for you”, and
bring typical industrial robots to their limit.

1.1 An Optimization View

Often such a planning task is formulated as an opti-
mization problem:

q∗(a) = argmin
q1...T∈RT×D

L(a,q) (1)

Here q1...T is the trajectory, defining a D-dimensional
(joint) position vector per discretized timestep and

f(q)
Rz(q)

Figure 1: Our long term goal is to perform ball sports tasks,
like throwing, catching, juggling, with this two-arm robot.
The abstract and passive design of the torus-shaped bat im-
poses constraints to avoid losing the ball.

L(a,q) is the loss function that defines the optimiza-
tion goal. The loss function includes a model of the
system (here robot dynamics) and a formalization of
the task to be achieved, e.g. catching a ball. It also
includes constraints, e.g. position, velocity, accelera-
tion, or torque limits, abstractly by setting L(a,q) =
∞ for infeasible q, or concretely by including a barrier
function. The loss depends on some task parameters a
describing the concrete task instance, e.g. a goal pose
or – in our case – the trajectory of an incoming ball.

Hasselbring, A., Frese, U. and Röfer, T.
Learning Optimal Robot Ball Catching Trajectories Directly from the Model-based Trajectory Loss.
DOI: 10.5220/0011279000003271
In Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2022), pages 201-208
ISBN: 978-989-758-585-2; ISSN: 2184-2809
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

201

If the task input a is not available beforehand, this
optimization creates a delay before the motion can
start and is computationally challenging despite mod-
ern algorithms and libraries, e.g. CasADI (Andersson
et al., 2019) and WORHP (Nikolayzik et al., 2011).
Because of this and the recent success of machine
learning, it is promising to learn a mapping from
a 7→ q∗, e.g. with a neural network. One could use
supervised learning with computed (a,q∗(a)) pairs:

θ
∗ = argmin

θ

Ea

[∥∥qθ(a)−q∗(a)
∥∥2
]

(2)

Here θ are the learned parameters of a neural net-
work qθ(a) that maps a 7→ q∗. The Ea is an expected
value with respect to a distribution (practically a set)
of training data for a. Alternatively, one could also
run reinforcement learning with L(a,q) as reward.

1.2 Learning Directly from the
Trajectory’s Loss

However, in this paper we investigate to use the model
based L(a,q) directly as loss for the learning process:

θ
∗ = argmin

θ

Ea [L (a,qθ (a))] (3)

The system and task model are part of L and thus part
of the learning optimization. Typically, such losses
are differentiable as needed for gradient descent. This
approach appears promising, because:

First, unlike (2), (3) considers which direction
of deviation from the optimum affects the loss how
much. So it aims for the best solution, not the one
closest to the optimum. This is very relevant for loss
terms depending on derivatives of q (Sec. 4.1).

Second, in reinforcement learning every roll-out
produces – roughly speaking – a single total loss
value. The distribution of the loss over timesteps is
not that helpful, because of the delayed reward prob-
lem. In contrast, gradient descent on (3) produces one
derivative with respect to every entry of q. Thus the
approach takes more information from the loss, utiliz-
ing that a model-based loss can be differentiated.

Third, sometimes the task input has a voluntary
part av that can be chosen by the system but only
before the remaining av̄ arrives (a = (av,av̄)). For
instance, we can choose the starting configuration
av = q0, but only before the ball approaches, i.e. in-
dependent of av̄, best on average. These parameters
can be optimized along in (3) as argminθ,av . . ., which
is not possible in (1), that considers only a single task
instance.

However, (3) is more difficult to optimize than (2),
because it is conditioned worse (Sec. 4.1). Therefore,
we propose an inverse Hessian preconditioning of the

robot dynamics to make it tractable for common gra-
dient optimizers. Overall, this paper contributes:

• A method to learn trajectory optimization prob-
lems directly from the trajectory’s loss and opti-
mizing voluntary task inputs along for loss func-
tions involving robot dynamics.

• The concept and implementation, how this
method can be integrated into a common dataflow
auto-differentiation framework (TensorFlow).

• A simulation case study, for the task of catching
flying balls, including full robot dynamics, choice
of starting configuration, and the mechanical con-
straints for the ball to stay in the bat (Fig. 1).

The paper is structured as follows: After related work
we introduce the generic parts of a robot trajectory
loss refering to joint velocities and torques (Sec. 3),
and propose the inverse Hessian preconditioner and
its integration into TensorFlow (Sec. 4). Then, we
study the case of ball catching (Sec. 5), and conclude.

2 RELATED WORK

Rao (2014) gives a survey on trajectory optimization.
He distinguishes between indirect methods, where the
control action is the variable to be optimized, and di-
rect methods, where the trajectory itself is optimized.
This part is relevant here, as we substitute the non-
linear trajectory optimizer by a neural network. As
Rao says, “Typically, optimal trajectory generation
is performed off-line, that is, such problems are not
solved in real time nor in a closed-loop manner.”,
showing the need for efficient approximations.

Toussaint (2017) gives an excellent tutorial on
the Newton method applied to trajectory optimiza-
tion. He highlights relations to other fields, which all
use minimization of quadratic functions as a common
core, namely Simultaneous Localization and Map-
ping (SLAM), optimal control and probabilistic infer-
ence. In particular, he points out the bandmatrix struc-
ture of the Hessian, which we utilize in Section 4.1.

Kurtz et al. (2022) developed a controller that
makes a falling Mini Cheetah robot always land on
its feet, as cats do. They use an offline trajectory op-
timizer to either map the current state to joint torques
or to map the initial state to a whole trajectory (the
so-called reflex) and trained two neural networks on
that. Experiments showed that the second network
performed much better. This resembles the approach
presented in this paper, but optimizing (2), not (3).

Mansard et al. (2018) confirm these findings.
They use a neural network inside a probabilistic

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

202

roadmap framework to learn a mapping from task in-
put (start state, goal state, environment) to a) a control
action and b) a trajectory. They use supervised learn-
ing with ground truth from a model-based optimizer
and report that b) works better. Overall they aim at a
good initial guess to speed up convergence.

Schüthe and Frese (2015) use full dynamic Model
Predictive Control in real-time at 50 Hz to bat a ball.
However, their robot only has three joints.

Bäuml et al. (2010) optimize a ball catching tra-
jectory for a 7-DOF arm utilizing the redundancy both
of the robot itself and the task in 10 ms on average
(2.2 GHz quad-core Xeon). The optimization is kine-
matic, with joint acceleration instead of torque limits.
Hence, they actually optimize the catching configura-
tion using the optimal trapezoidal trajectory.

A large body of work considers kinematic motion
planning, without taking dynamics into account but in
geometrically complex environments. An example of
this class is Schulman et al. (2013) and Ratliff et al.
(2009), who showed how to integrate geometric ob-
stacles into an optimization-based approach.

3 DYNAMIC ROBOT LOSS

Every trajectory that is executed on a robot should
comply with the robot’s physical limits and also min-
imize the required control effort. This is encoded in
the dynamic robot loss defined in terms of torques
and joint velocities. Besides the optimization variable
q1...T , this depends on boundary conditions as well.
The trajectory is extended by q−1...0 at the start, which
represent the current state of the robot (in this pa-
per initial configuration, no velocity). The robot shall
stop finally, so qT is repeated in the end qT+1 = qT
forcing the last velocity to zero. Given the now ex-
tended discrete trajectory q−1...T+1, the continuous
q(t) is defined by linear interpolation:

q(t) = frac(t)q⌊t⌋+1 +(1− frac(t))q⌊t⌋ (4)

q̇(t) is then the difference quotient of the adjacent qi.

q̇(t) =
q⌊t⌋+1 −q⌊t⌋

∆T
(5)

and similarly, the accelerations (which are only
needed at integer timesteps) are

q̈(t) =
qt+1 +qt−1 −2qt

∆T 2 . (6)

τ : RD ×RD ×RD → RD is the vector of torques per
joint that can be obtained via inverse dynamics from
the joint angles, velocities, and accelerations. In the
following, τ∗ ∈ RD and q̇∗ ∈ RD are the specified
maximum joint torques and velocities, respectively.

The main loss component that smoothens the en-
tire trajectory is the sum of squared torques, normal-
ized by their maximum values:

Lτ(q) =
1
2

T

∑
t=0

D

∑
j=1

(
τ j(q(t), q̇(t), q̈(t))

τ∗j

)2

(7)

The other two components address the hard limits on
torques and velocity. Define the function

clip(x,c) =
max(x− c,0)

1− c
(8)

that maps values below c to 0 and scales them to map
1 to 1. Then, the following loss component penalizes
violations of the maximum torques and velocities:

Lτ∗(q) =
1
2

T

∑
t=0

D

∑
j=1

clip

(
|τ j(q(t), q̇(t), q̈(t))|

τ∗j
,cτ∗

)2

(9)

Lq̇∗(q) =
1
2

T

∑
t=0

D

∑
j=1

clip

(
|q̇ j(t)|

q̇∗j
,cq̇∗

)2

(10)

The thresholds cτ∗ ,cq̇∗ < 1 define a fraction of the
actual limits at which the penalty starts, as the terms
only define a soft, not a hard limit (cf. Sec. 5.2).

The complete dynamic loss is constructed as a
weighted sum of its components:

Ldyn(q) = ατLτ(q)+ατ∗Lτ∗(q)+αq̇∗Lq̇∗(q) (11)

4 INVERSE HESSIAN
PRECONDITIONING

4.1 The Conditioning Problem

The dynamic loss Ldyn has directions of very large
curvature due to the terms related to q̈ (and τ), while
typical task losses related to q create directions of
much smaller curvature. To see this, consider as illus-
tration the following simplified loss for just one joint:(q1

1◦

)2
+
(q100

1◦

)2
+

99

∑
t=2

(
q̈(t)

100◦/s2

)2

(12)

It demands q1, q100 and q̈ to be zero and punishes 1◦

as much as 100 ◦ s−2. The optimum is clearly qt = 0.
If we change all qt together by δq/10 (a change
of norm δq), the loss grows by 2/100 δq2. If we
change one qt in the middle by δq, the loss grows by
12+(−2)2+12

(100◦/s2 ∆T 2)2 δq2 ≈ 1.5 · 105 δq2, with ∆T = 125s−1.
This is called bad conditioning and the ratio between
the smallest and the largest curvature is the condition

Learning Optimal Robot Ball Catching Trajectories Directly from the Model-based Trajectory Loss

203

number ≈ 7 · 106. For our actual dynamic loss (Ldyn
(11) with weights given in Section 5.4) the condition
number is even ≈ 2 ·1010.

This impedes first-order methods, e.g. gradient de-
scent, because the step rate is limited by the direction
of highest curvature, making steps in the direction of
lowest curvature extremely small.

While first-order methods are typical for deep
learning (and hence well supported in prominent soft-
ware frameworks), trajectory optimization therefore
commonly uses second-order methods (Toussaint,
2017). Properly using Newton’s method requires the
full Hessian of the loss function w.r.t. the parameters.
This can, in general, be intractable. Therefore, many
quasi-Newton methods exist, such as L-BFGS (Liu
and Nocedal, 1989), which estimate an approximate
inverse Hessian from a sequence of gradients. Modi-
fications (Schraudolph et al., 2007) are also applicable
to stochastic problems.

4.2 Preconditioning

However, we can take a different approach: Recall
that Ldyn is a sum of squares, so it can be written as

Ldyn(q) =
1
2
∥r(q)∥2 (13)

with r(q) ∈ R3(T+1)D being a “residual” vector, each
element corresponding to one of the summands in
Equations 7–10. This residual function has a Jaco-
bian Jr(q), which has to be calculated anyway for the
gradient and we can construct the pseudo-Hessian

H = Jr(q)⊤Jr(q) (14)

of Ldyn w.r.t. the trajectory q in the common Gauß-
Newton approach. The idea is then to use this matrix
as a preconditioner for the gradient of the loss w.r.t.
q and propagate the preconditioned gradient further
back through the neural network as in first-order gra-
dient descent. Fortunately, H is symmetric banddiag-
onal with a 3D−1 wide band, because each timestep
only relates to its two neighbors (Toussaint, 2017,
§2.3). This allows to solve for this matrix with a com-
putation time linear in T .

The idea to only compute the pseudo-Hessian of
the dynamics loss and not of the total loss corresponds
to CHOMP’s (Ratliff et al., 2009) idea to only include
a smoothing loss in the pseudo-Hessian, however we
refer to the torques instead of joint accelerations, i.e.
consider the robot dynamics. As they say: “[..] It is
useful to interpret the action of the inverse operator
[H−1] as spreading the gradient across the entire tra-
jectory so that updating by the gradient decreases the
cost [..] while retaining trajectory smoothness.”

t

projectile
motion

tcatch

(pcatch , ·pcatch)

(p0 , ·p0)

task
loss

dyn.
loss

q0

loss

Figure 2: Dataflow of the system during training. The
shaded boxes contain learnable parameters while clear
boxes are model-based. During execution, the loss boxes
are removed.

Note that while only the dynamic part of the loss
function Ldyn is used to construct the Hessian, the
whole loss function (Ldyn +Ltask) needs to be mul-
tiplied with the inverse Hessian, because

0 = ∇(Ldyn +Ltask)⇔ 0 = H−1
∇(Ldyn +Ltask)

⇎ 0 = H−1
∇Ldyn +Ltask, (15)

i.e. optima can change otherwise.

4.3 Integration into TensorFlow

There is a software engineering challenge in inte-
grating the presented preconditioning into a dataflow
driven auto-differentiation framework, such as Ten-
sorFlow (Abadi et al., 2015). We want to develop the
neural network part qθ(a), define task loss functions
with specific formulas, and use predefined optimizers
as usual. Still, we want to use the established C++
library Pinocchio (Carpentier et al., 2021) to compute
τ (inverse robot dynamics) and ∇τ and use special-
ized C++ code to efficiently build and decompose the
band matrix H for the preconditioner. The solution is
a “robot dynamics” block (Fig. 2) that takes the tra-
jectory q including initial conditions q−1,q0, along
with some attributes such as the path to the URDF
robot model. In the forward pass, the block just cal-
culates the dynamic losses Lτ,Lτ∗ , and Lq̇∗ . However,
it additionally outputs a copy of the input q, which
further loss calculations must use, such as Ltask. Be-
cause of this output, the block receives ∇Ltask during
the gradient computation in the backward pass and
can apply H−1 to it. The user must take care that
the loss outputs of this function appear only linearly
in the total loss function, as otherwise the pseudo-
Hessian will be wrong. The block is technically a
Python wrapper function with custom gradients for
two TensorFlow C++ ops, one each for the forward
and backward pass. The implementation is available
at https://github.com/DFKI-CPS/tf-dynamics-op.

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

204

5 BALL CATCHING CASE STUDY

As a case study for our trajectory optimization ap-
proach, we consider a ball catching robot. This is a
challenging task because several constraints have to
be met: The ball must be hit at the right time, with the
right velocity and rotation, and be kept from leaving
the bat again. This is on top of the general dynamic
feasibility and “elegance” of the trajectory.

Our scenario is episodic, i.e. the robot starts from
a stationary initial joint configuration q0, which is the
same for all attempts, and included in the optimiza-
tion. As input, the system gets the initial ball posi-
tion p ∈ R3 and velocity ṗ ∈ R3, e.g. from a tracking
system not considered here. The output of the sys-
tem is a trajectory, i.e. a sequence of T sets of joint
angles q1...T ∈ RT×D that catches the ball and subse-
quently balances the ball until stopping. The system
can choose when to catch the ball, and therefore the
state along the ball trajectory. For instance, a later
time will make the ball be closer and lower and its
velocity faster and steeper (Fig. 2).

5.1 Robot Model

Although this work is carried out entirely in simu-
lation, we still model the setup after the real robot
in Figure 1. It is a pi4 workerbot with two 6-DOF
Universal Robots UR10 CB2 collaborative robot arms
mounted on its “shoulders”. They can be controlled at
125Hz (∆T = 0.008s), with joint velocity commands.
The robot has three types of motors: The first type
is used for the two shoulder joints (v∗1,2 = 120 ◦ s−1,
τ∗1,2 = 330Nm), the second for the elbow joint (v∗3 =
180 ◦ s−1, τ∗3 = 150Nm), and the third for the three
wrist joints (v∗4,5,6 = 180 ◦ s−1, τ∗4,5,6 = 56Nm). A
model of the mass distribution is available, but to
match the torques the UR10 itself calculates, addi-
tional torques proportional to the accelerations have
to be added, probably to account for motor inertia. We
determined those factors experimentally to be 7kgm2

for the shoulder joints, 2kgm2 for the elbow joint,
and 0.62kgm2 for the wrist joints. Considering the
torques instead of plain joint accelerations is neces-
sary, because the upper arm joints need to lift a sig-
nificantly higher weight. Keeping the torque limits
is particularly important, because the real UR10, in-
stead of just limiting the current, will enter an error
state upon violating these.

The “hands” of the robot are torus-shaped with
rmajor = 47mm and rminor = 12.5mm.

Given a joint configuration q ∈ RD, f, Rz and J
represent the forward kinematics of the manipulator
in the global frame, specifically f : RD → R3 is the

ball’s center on the bat, Rz : RD →R3 is the direction
vector orthogonal to the torus’ plane, and J : RD →
R3×D is the Jacobian of f (Fig. 1).

5.2 Task Loss

The task loss’ inputs are the trajectory q1...T , the de-
sired catch time point tcatch, and the ball’s predicted
state at the catch time (pcatch, ṗcatch)∈R3×R3. It has
the following sum-of-squares-type components:

Position: The ball must be on the bat at the desired
catch time.

Lp(q) = ∥f(q(tcatch))−pcatch∥2 (16)

Velocity: The velocity of the ball must match the
velocity of the bat at the catch time, up to a given fac-
tor cv < 1 (we assume that some kinetic energy can be
absorbed on impact, making it an inelastic collision).

Lṗ(q) = ∥J(q(tcatch))q̇(tcatch)− cvṗcatch∥2 (17)

Rotation: The bat’s z axis must be aligned with the
ball velocity’s direction at the catch time (rotation
around the axis through the bat is arbitrary), such that
ideally, the ball touches the bat evenly.

LR(q) = ∥Rz(q(tcatch))×−ṗcatch∥2 (18)

Note this theoretically allows two optimal solutions
pointing in opposite directions, i.e. while Rz and
ṗcatch should be pointing in opposite directions, they
could as well point to the same. This is prevented by
other loss components and initial conditions.

Balance: Once the ball has collided with the bat, the
ball must be kept in position by a reaction force from
the bat, which can only act from within the torus. Oth-
erwise it would fall out. This imposes an upper bound

rball

θmax

rminor

rmajor

Fr

Rz

θ

Figure 3: Cross-section of the tilted bat with a ball. The
reaction force acting on the ball’s center (here only counter-
ing gravity) must stay within the θmax cone around Rz.

Learning Optimal Robot Ball Catching Trajectories Directly from the Model-based Trajectory Loss

205

θmax on the angle between the direction Rz(q(t)) and
the reaction force Fr(t), where

cos(θmax) =

√
(rminor + rball)2 − r2

major

rminor + rball
(19)

and (with g being the gravity vector):

Fr(t)
m

= p̈(t)−g (20)

p̈(t) is calculated as second-order difference quotient
in Cartesian space (to avoid needing the Hessian of
the forward kinematics) and implicitly captures q(t),
although we actually do not backpropagate the gradi-
ent through this:

p̈(t) =
f(q(t +1))+ f(q(t −1))−2f(q(t))

∆T 2 (21)

As hard constraint, the balance condition is (Fig. 3)

cos(θ) =
Fr(t)⊤Rz(q(t))

∥Fr(t)∥
≥ cos(θmax). (22)

Again, q is implicitly captured in θ, although here it
does receive a gradient. For differentiability, the loss
is a penalty, i.e. it is 0 below a specified fraction (cb)
of the limit angle θmax:

Lb(q) =
T

∑
t=⌈tcatch⌉

max
(
∥Fr(t)∥

m
(cos(θmax)− cb cos(θ)),0

)2

(23)

The complete task-specific loss function is:1

Ltask = αpLp +αṗLṗ +αRLR +αbLb (24)

5.3 Network Architecture

There are two neural networks in the system (Fig. 2):
One produces the desired catch time point tcatch from
the initial ball state, while the other produces the tra-
jectory from the catch time point and the predicted
ball state at that time.

By choosing a catch time, the network can utilize
an additional degree of freedom, namely a shift along
the trajectory to find the point where it is most con-
venient to catch the ball. It has to output this time
explicitly and the loss assesses whether the ball and
trajectory at tcatch are suitable for that.

The prediction of the catch time is subdivided into
an analytic component that calculates a base time, and
a neural network adding an offset. The base time is

1To prevent self-collisions, we added another quadratic
term limiting the shoulder lift angle.

Table 1: Layers of the trajectory network. Residual lay-
ers add their input to their output. The last column states
whether the catch time is concatenated to the layer’s input.

Layer Units Activation Residual Time
1 20 leaky ReLU no no
2 100 leaky ReLU no yes
3 101 leaky ReLU yes yes
4 102 leaky ReLU yes yes
5 150 leaky ReLU no yes
6 D ·T linear no no

chosen as the time when the ball crosses the z = 0
plane (a bit below shoulder level).

tbase =−
ṗ0,z +

√
ṗ2

0,z −2p0,zgz

gz
(25)

The initial ball state is then propagated to this time
and fed into a neural network together with tbase. All
values are shifted to lie around 0. The catch time net-
work has three dense layers with 10, 5, and 1 units, re-
spectively. The first two layers are activated by leaky
ReLU, while the last one uses tanh. This offset is then
scaled to a certain range (we used the factor 0.15) and
added to tbase to obtain tcatch.

After tcatch has been determined, the actual ball
state at catch time (pcatch, ṗcatch) is calculated, which
is used as input for the trajectory network and refer-
ence for the task loss.

The architecture of the trajectory network is de-
scribed in Table 1. The input layer gets only the ball
state, and tcatch is injected in later layers. The out-
put of the last layer is added to the broadcasted start
angles to form the trajectory that enters the loss func-
tion. This way, both the start angles and the trajectory
network receive gradients. The length of the trajec-
tory is fixed to T = 225 timesteps (1.8s).

5.4 Training Process

From the external perspective (ignoring the precon-
ditioner hidden in the dynamics block), the entire
computation graph (i.e. including both neural net-
works and the start configuration) is trained with
plain stochastic gradient descent for 8000 epochs
over batches of 16 elements. The inputs (p0, ṗ0)
are generated as follows: First a target position is
sampled from a subregion of the reachable space
of the bat [0.8,1.2]× [0,0.6]× [−0.1,0.2] [m]. In-
dependently, a target velocity is uniformly sam-
pled from the range [−3.7,−2.7] × [−0.5,0.5] ×
[−4.1,−3.9] [ms−1]. These are traced back by a fixed
time (1s) according to projectile motion. Note that
this does not exactly cancel out with the projectile

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

206

Figure 4: Kinematic visualization of three generated trajectories (from left to right) with different initial ball states. Contact
dynamics are not simulated here, instead the ball is attached to the bat at the catch time. The balance constraint is visualized
by the direction of the force (−Fr) with a green arrow in the right two frames. A video of multiple trajectories can be found
at https://tinyurl.com/e4dk7m6d.

motion block in the system, since the system can ad-
just the time point and actual catch position.

The learning rate starts at 5 · 10−4 and decays ev-
ery 100 epochs by a factor of 0.9. The training suc-
cess is highly sensitive to these learning rate(s).

The weights of the velocity loss αṗ and balance
loss αb are gradually blended in during training. They
start at 0 and increase by 0.01 in every epoch in which
Lp is below 0.002, up to a maximum value of 10. The
idea is that in the first epochs, the optimizer should
mainly try to get the trajectory to a rougly right po-
sition and rotation (i.e. solve inverse kinematics first)
before turning to velocity and balance, which could
otherwise prevent the optimizer from getting there.
Similarly, the learning rate for the catch time network
is increased, so it starts learning only after the opti-
mizer has roughly reached the right position.

The other loss weights are fixed at ατ = 1, ατ∗ = 1,
αv∗ = 5, αp = 1000, αR = 33. cτ∗ , cq̇∗ and cb are set to
0.9 (penalties starting at 90% of the respective limits).
These values have been determined by trial and error.

5.5 Results

First of all, qualitative results in form of visualized
example trajectories and a video link are given in Fig-
ure 4. The trajectories are generally smooth and the
bat manages to arrive at the ball in time with suitable
rotation and velocity. However, as this is just a vi-
sualization without contact dynamics, we can’t draw
conclusions about the real ball-bat interaction.

Quantitatively, we can examine some metrics on
a “test set”, i.e. a grid over the input space consisting
of 50000 states. The mean loss (with αṗ = αb = 10)
over this set is 10.92. No trajectory violates the maxi-

mum torque/velocity constraints. However, the mean
error in catch position is quite high with 17.3mm. We
assume that position errors larger than 10mm would
cause the ball to bump out of the bat.

To improve the precision, we can calculate the a-
posteriori error pcatch − f(q(tcatch)) and run the tra-
jectory network again with a modified target position
2pcatch − f(q(tcatch)). This assumes that the network
behaves locally consistent. Indeed, this reduces the
mean position error to 10.5mm.

In order to assess the influence of letting the op-
timizer choose the catch time, we train the system
(i.e. trajectory network and start configuration) with-
out the catch time offset, i.e. setting tcatch = tbase. This
results in a mean loss of 11.17. Similarly, we can dis-
able optimization of the start configuration and leave
it at a reasonable default guess. The resulting mean
loss over the test set is 10.96, which seems insignifi-
cant compared to the value of 10.92 for the full prob-
lem. However, now some of the trajectories violate
the velocity limits. This indicates that the optimizer
actually utilizes the additional degrees of freedom.

The inference time using TensorFlow on a note-
book CPU is about 2ms including the refinement step.

6 CONCLUSIONS & OUTLOOK

We have shown that it is possible to learn a mapping
from task input to optimal trajectory directly from
the trajectory’s loss, when the inverse Hessian of the
robot dynamics loss is used as preconditioner. This
can be implemented as a block in TensorFlow with
a special bypass output that allows to apply the pre-

Learning Optimal Robot Ball Catching Trajectories Directly from the Model-based Trajectory Loss

207

conditioner also to the other parts of the loss defined
outside that block. The simulated ball catching case
study showed that this approach works in practice and
can optimize voluntary task parameters along with
learning the network, in our case the starting configu-
ration of the robot arm.

Future work will be to improve spatial precision
by a more general iteration and also to include a mov-
ing horizon scheme, which can handle “infinite” tasks
such as juggling and can adapt to sensor input, e.g. a
change in ball prediction.

ACKNOWLEDGEMENTS

This work is partially funded by the German BMBF
– Bundesministerium für Bildung und Forschung
project Fast&Slow (FKZ 01IS19072).

REFERENCES

Abadi, M. et al. (2015). TensorFlow: Large-scale machine
learning on heterogeneous systems. Software avail-
able from tensorflow.org.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B.,
and Diehl, M. (2019). CasADi: a software framework
for nonlinear optimization and optimal control. Math-
ematical Programming Computation, 11(1):1–36.

Bäuml, B., Wimböck, T., and Hirzinger, G. (2010). Kine-
matically optimal catching a flying ball with a hand-
arm-system. In 2010 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, pages 2592–
2599. IEEE.

Carpentier, J., Valenza, F., Mansard, N., et al. (2015–
2021). Pinocchio: fast forward and inverse dy-
namics for poly-articulated systems. https://stack-of-
tasks.github.io/pinocchio.

Kurtz, V., Li, H., Wensing, P. M., and Lin, H. (2022).
Mini Cheetah, the falling cat: A case study in ma-
chine learning and trajectory optimization for robot
acrobatics. In 2022 IEEE International Conference
on Robotics and Automation (ICRA).

LaValle, S. M. (2006). Planning Algorithms. Cambridge
University Press.

Lim, W., Lee, S., Sunwoo, M., and Jo, K. (2018). Hierar-
chical trajectory planning of an autonomous car based
on the integration of a sampling and an optimization
method. IEEE Transactions on Intelligent Transporta-
tion Systems, 19(2):613–626.

Liu, D. C. and Nocedal, J. (1989). On the limited memory
BFGS method for large scale optimization. Mathe-
matical Programming, 45:503–528.

Mansard, N., del Prete, A., Geisert, M., Tonneau, S., and
Stasse, O. (2018). Using a memory of motion to effi-
ciently warm-start a nonlinear predictive controller. In

2018 IEEE International Conference on Robotics and
Automation (ICRA).

Nikolayzik, T., Büskens, C., and Wassel, D. (2011). Nonlin-
ear optimization in space applications with WORHP.
Technical Report Berichte aus der Technomathematik,
11-10, University of Bremen.

Rao, A. V. (2014). Trajectory optimization: A survey. In
Waschl, H., Kolmanovsky, I., Steinbuch, M., and del
Re, L., editors, Optimization and Optimal Control in
Automotive Systems, volume 455 of LNCIS, pages 3–
21. Springer.

Ratliff, N., Zucker, M., Bagnell, J. A., and Srinivasa, S.
(2009). CHOMP: Gradient optimization techniques
for efficient motion planning. In 2009 IEEE In-
ternational Conference on Robotics and Automation
(ICRA).

Schraudolph, N. N., Yu, J., and Günter, S. (2007). A
stochastic quasi-Newton method for online convex op-
timization. In 11th International Conference on Arti-
ficial Intelligence and Statistics (AIstats), volume 2 of
PMLR, pages 436–443.

Schulman, J., Ho, J., Lee, A., Awwal, I., Bradlow, H., and
Abbeel, P. (2013). Finding locally optimal, collision-
free trajectories with sequential convex optimization.
In Robotics: Science and Systems, volume 9.

Schüthe, D. and Frese, U. (2015). Optimal control with
state and command limits for a simulated ball batting
task. In 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 3988–
3994. IEEE.

Singh, S. K. and Leu, M. C. (1991). Manipulator motion
planning in the presence of obstacles and dynamic
constraints. The International Journal of Robotics Re-
search, 10(2):171–187.

Toussaint, M. (2017). A tutorial on Newton methods for
constrained trajectory optimization and relations to
SLAM, Gaussian process smoothing, optimal con-
trol, and probabilistic inference. In Laumond, J.-P.,
Mansard, N., and Lasserre, J.-B., editors, Geometric
and Numerical Foundations of Movements, volume
117 of STAR, pages 361–392. Springer.

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

208

