
COAST: A Conflict-free Replicated Abstract Syntax Tree

Aäron Munsters a, Angel Luis Scull Pupo b and Jens Nicolay c

Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, Brussels, Belgium

Keywords: Conflict-free Replicated Data Types, Software Evolution, Abstract Syntax Trees, Distributed Collaboration.

Abstract: Remote real-time collaborative text editing enables collaboration of distributed parties which improves an
agile workflow, team member availability and productivity. Collaborative source-code editors are often imple-
mented as a variant of regular collaborative text editing with source code highlighting. Such approaches do not
use the structural program information to accurately merge concurrent changes on the same portions of code
for temporal network partitions. Therefore, these approaches fail to merge concurrent structural changes to
the program such as a concurrent move and edit operation. In this paper we propose an approach in which the
editor replicates not the program text but the program tree that corresponds with the program text. Propagating
source code changes as tree operations enables resolving concurrent tree changes with higher accuracy. We
evaluate our approach by reproducing a use case in which we concurrently change source code on existing
tools and our approach. We show that existing tools break the lexical structure and come up with an incorrect
program while our approach can distinctly apply the changes preserving the program structure.

1 INTRODUCTION

In collaborative real-time editing systems, multiple
replicas of a digital resource can be updated concur-
rently, while the system ensures that all replicas auto-
matically and quickly converge. An important appli-
cation of collaborative real-time editing is program-
ming. Using collaborative programming, program-
mers can work together by simultaneously writing
and editing source code, while observing edits per-
formed by other programmers in real-time and dis-
cussing ideas and issues that emerge from these con-
current activities. Enabling teams to pair program in
geographically distributed settings is known as dis-
tributed pair programming, which has been shown
to lead to software development with comparable
quality and productivity to colocated pair program-
ming (Baheti et al., 2002).

A Conflict-Free Replicated Data Type
(CRDT) (Shapiro et al., 2011b) is a data type
that enables the replication and maintenance of a dig-
ital resource in a distributed system without requiring
additional communication to resolve concurrent
changes. CRDTs that are used to support state of
the art real-time text editors both for commercial

a https://orcid.org/0000-0001-5593-1273
b https://orcid.org/0000-0003-2083-1285
c https://orcid.org/0000-0003-4653-5820

and research projects are modelling the shared data
structure as a string (Yu, 2012; Yu, 2014). For
real-time program editing, however, modelling the
data structure as a string limits the extent to which the
merge strategy can reason about merges. We noticed
that modelling the shared program as its syntax tree
would allow the CRDT to perform better in terms of
merging concurrent program changes.

In this work, we propose CoAST, a real-time col-
laborative source-code editing system supported by
an abstract syntax tree (AST) CRDT. By comput-
ing AST changes on local replicas and sharing these
with others accompanied by a logical timestamp,
all replicas can compute an equal view of the AST
by maintaining a chronologically ordered log of all
changes and querying this log to construct the same
AST. By doing so we aim to provide better sup-
port for distributed developers who experience con-
current changes which could break the syntax for de-
velopment on code editors supported by string-based
CRDTs. To the best of our knowledge CoAST is the
first system that proposes a real-time collaborative ed-
itor using a CRDT based on the program structure
(i.e., the AST) instead of the program’s text.

The contributions of the paper are the following:

• A novel approach that enables real-time code col-
laboration through modelling the program’s AST
as a CRDT.

Munsters, A., Pupo, A. and Nicolay, J.
COAST: A Conflict-free Replicated Abstract Syntax Tree.
DOI: 10.5220/0011278800003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 187-196
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

187

• A proof-of-concept implementation of a real-time
collaborative editor for a Lisp-like language based
on our AST CRDT.

The rest of the text is organized as follows. Sec-
tion 2 explains the main challenges in the state-of-the-
art collaborative editing systems and why the use of a
higher level of abstraction for the program represen-
tation may improve the performance of such collabo-
rative systems. Section 3 describes the main char-
acteristics of CoAST. Section 4 describes the de-
sign choices of our AST CRDT and Section 5 ex-
plains how we used the GumTree algorithm to com-
pute language-agnostic AST changes. In Section 6,
we explain the Scala-based implementation of our
AST CRDT. First, we explain the properties and the
interface of the CRDT. Then, we describe the imple-
mentation of the underlying AST data structure. We
discuss and validate our collaborative editor in Sec-
tion 7 for an example concurrent program edit. Fi-
nally, we discuss the ordering of operations and the
merging granularity as the current limitations of our
approach in Section 8.

2 PROBLEM

Over the years, many collaborative editors (Mi-
crosoft, 2022; Atom, 2022; Ghorashi and Jensen,
2016; Nicolaescu et al., 2015; Salinger et al., 2010;
Yu, 2012; Yu, 2014; Ball et al., 2015; Nichols et al.,
1995) for software development have been proposed.
However, while surveying the existing approaches,
we observed that a considerable number of existing
collaborative code editors are string-based. String-
based editors handle the consistency of concurrent
changes of the source code at the level of sequences of
individual characters. Handling concurrent changes at
the textual level of a program source code is problem-
atic when replicas disconnects and reconnect while
concurrent changes are being made.

In our work, we use Lisp’s S-expression syntax
(also used by other Lisp-like languages such as Clo-
sure and Julia) for conciseness and simplicity, but our
findings are also valid for other syntax families (e.g.,
C syntax). For example, assume a local and a remote
replica of source code that are synchronized (i.e., have
the same program text). The content of two synchro-
nized replicas is depicted in the green area at the top
of Figure 1. Next, imagine that the two replicas are
disconnected, for example because of a network par-
tition, during which two edits happen concurrently.
A local edit changes the string “apple” into “banana”,
while on the remote replica the two expressions in the
body of the begin switch places. In Figure 1, this is

 (begin
 (eat "apple")
 (touch "nose"))

 (begin
 (eat "banana")
 (touch "nose"))

(begin
 (touch "nose")
 (eat "apple"))

 (begin
 (touch "nose")
 (eat "banana"))

Local Remote

Synchronized

time

Synchronized

Figure 1: A sample Lisp-like program that evolves through
different machines that temporarily break synchronization.
This example shows that reasoning over the code structure
is required to successfully merge the two separate opera-
tions.

depicted in the pink area. Finally, assume that con-
nectivity between the replicas is restored. We believe
the desired outcome would be that both the local and
remote changes are correctly applied at each replica,
preserving both replicas their intent as shown in the
blue Synchronized state of Figure 1.

However, in string-based collaborative code edi-
tors such as Yjs(Nicolaescu et al., 2015), the outcome
is unpredictable and often wrong (unexpected, some-
times with syntax errors), depending on how and pre-
cisely when the two replicas connect again. An ex-
ample result that can be observed after reconnection
for the diverging changes depicted in the pink area in
Figure 1 is shown in Listing 1.

Listing 1: An example solution proposed by existing string-
based CRTS to the merge conflict shown in Figure 1, show-
ing how the syntactical structure of the program breaks.
(beginbanana

(touch "nose")
(eat "apple"))

In addition to being incorrect with respect to the
two changes, the program in Listing 1 is also no
longer syntactically correct.

In an attempt to avoid unexpected and incorrect
merge results stemming from string-based synchro-
nization of programs, it is possible to synchronize at
higher levels of syntactic abstraction, even taking into
account the semantic properties of programs. It is for
example possible to synchronize at the lexical level
(tokens) or at the level of abstract syntax (typically
a tree). A system could choose to only synchronize
when code is free from certain syntactic or even se-
mantic errors. An example is the work of (Goldman

ICSOFT 2022 - 17th International Conference on Software Technologies

188

et al., 2012), where synchronization occurs when the
code compiles. However, when the level of abstrac-
tion of the source code model is high and the condi-
tions for merging are strict, it may be the case that
in typical development scenarios there may be long
times between replica updates. This may result in
a system that is closer to working with a traditional
version control system, where programmers are sup-
posed to only commit “working code”. Although
working with a version control system is also a form
of collaborative editing, it is a more asynchronous
workflow that does not directly support real-time syn-
chronization between source code replicas.

3 APPROACH

In this paper we explore an approach, called COAST,
for collaborative source code editing that enables
near-real-time updates and avoids some of the incon-
sistencies that result from string-based synchroniza-
tion mechanisms. More precisely, our approach fo-
cuses on several aspects:

• Structure and Consistency
Raising the abstraction level from programs as
strings to programs as syntactically structured en-
tities, permits COAST to make changes to the
content of the program while upholding the syn-
tactical integrity ensuring that the program main-
tains a valid structure by performing merges on a
syntactical abstraction level.

• Near Real-time Distributed Design
Through propagating program changes based on
the program AST, COAST is able to make more
informed merging decisions at high speeds while
abstaining from semantical analysis which we as-
sume would in turn be more costly in terms of per-
formance.

• Decentralized Setting
By building on the existing work of CRDTs,
COAST provides a decentralized implementation
of a collaborative editor featuring system scalabil-
ity, availability and performance.

• Determinism
COAST ensures a deterministic merging strategy
of concurrent operations. This means that repli-
cas that apply concurrent operations will reach the
same state, even if the operations arrive in a dif-
ferent order to different replicas.
Real-time collaborative development of text doc-

uments requires multiple replicas to agree on an iden-
tical view of the shared document while dealing with
the problems that are inherent to distributed systems.

One model that enables replicas to agree on the same
view of a distributed data structure is known as a
Conflict-Free Replicated Data Type (CRDT) (Shapiro
et al., 2011b).

While the use of string-based CRDTs has been
proven to be an effective strategy for collaborative
text editing for text in general, it ignores structural
information when the text at hand represents program
source code. This omission weakens the consistency
of the collaborative code editor. Although a pro-
gram’s source code is stored on computers as a se-
quence of characters, the programmer and the com-
puter eventually reason about the program structurally
in terms of its Abstract Syntax Tree (AST). The pro-
gram AST is a tree representation of the textual pro-
gram representation that abstracts from details such as
tokens that separate subexpressions from their parent
expression.

Designing the CRDT based on the program AST
makes it more informed about the underlying program
than handling the program as a large string, with-
out the need for semantic reasoning about the pro-
gram. Replicating the program AST allows us to face
the aforementioned weakened consistency from a dif-
ferent perspective. As ASTs manipulation prevents
breaking the syntactical structure of the code, query-
ing a CRDT from a concurrently manipulated AST
facilitates maintaining the syntactical correctness and
shifting the merge conflicts from character-based op-
erations to tree-structure changes. Because our ap-
proach relies on a CRDT, there is no need for strong
synchronization, which improves the availability of
the system (Shapiro et al., 2011a).

4 A REPLICATED
CONFLICT-FREE ABSTRACT
SYNTAX TREE

This work proposes a new approach for collabora-
tive code editing through modelling a program’s ab-
stract syntax tree as an operation-based CRDT. Our
approach consists of replicas of the program’s AST
sharing the state of the code. The CRDT operates in
different stages that depart from code changes in one
replica to converge on a changed AST on all other
replicas. First, changes to the source code text trig-
ger an event that verifies syntactical correctness (ie. an
AST can be constructed). Next, for edits resulting in
a valid AST, the changes are computed in the form
of an edit script that describes what tree transforma-
tions transform the former AST into the latter. In the
next stage, these edit scripts are bundled with a logi-

COAST: A Conflict-free Replicated Abstract Syntax Tree

189

cal timestamp and replica identifier, which is stored
on a local log and propagated over the network to
other replicas. Next, replicas that receive the incom-
ing edit scripts insert these edits in their local log in
chronological order and roll back local edits that suc-
ceed the incoming operations, after which they replay
all edits to end up with an equal view on the program
AST. Edit operations arriving in concurrent updates
may depend on earlier changes agreed upon by other
replicas. We adopt a permissive strategy to not in-
clude these operations when computing the final tree
as they would invalidate the program, yet they remain
in the log. This behaviour prevents adding invalid
nodes to the graph that could otherwise break the pro-
gram. When the state of the local replica is in a valid
AST the outcome is then reflected on the code editor.
Figure 2 provides an overview of the beforementioned
stages that take place for a single syntactically correct
code-change to become replayed on other replicas.

The design of the AST CRDT is highly in-
spired by the design of the paper “A highly-available
move operation for replicated trees” by (Kleppmann
et al., 2022). Their work discusses the design of a
tree CRDT, motivating why move operations become
complex for replicated trees. We summarize the dis-
cussion on the difficulties:

• Concurrently Moving the Same Node
Say concurrently a move operation takes place for
the same node, resulting in the node green becom-
ing the child of its sibling blue on one replica and
becoming the child of its sibling orange on an-
other replica as Figure 3 presents. Once these op-
erations merge, different operations are possible,
prioritize a single outcome (Figure 3 (a) and (b)),
or duplicate the green node so that both blue and
orange can have an instance of green as their child
(Figure 3 (c)). Another option could be to have
both nodes blue and orange have as their child
node green, however this would break the tree-
like structure (Figure 3 (d)).

• Introducing Cycles
While move operations may uphold the guaran-
tees of the tree remaining as an acyclic structure
on individual replicas, their combination may in-
troduce cycles. Figure 4 shows the distinct out-
comes possible. The figure illustrates the possible
choices when two sibling nodes are concurrently
made a parent of one another. It allows for either
move operation to remain (Figure 4 (a) and (b)),
a duplicate instance of both nodes to enable both
move operations (Figure 4 (c)) or to introduce a
cycle to enable both operations without duplica-
tion, but this would break the tree requirement
(Figure 4 (d)).

The work of (Kleppmann et al., 2022) proposes to
accompany each operation with a timestamp such that
incoming operations that are out of order, allow the
CRDT to determine the point at which these should
have been applied. It then performs a rollback using
the undo op operation up until the point where the in-
coming operation can be applied after which all latter
operations can be replayed using the redo op oper-
ation. The authors formally validate their approach
by implementing their approach in the Isabelle/HOL
language, which allows proving the correctness of the
implementation.

Building on their approach we subsequently moti-
vate the correctness of our approach, although we do
not include formal correctness.

5 COMPUTING AST CHANGES

Before propagating AST changes over the network,
they need to be determined locally. AST changes can
also be derived from projectional editors, which allow
the user to develop their programs through manipulat-
ing an AST directly rather than having the program-
mer type the program in an open space for charac-
ters. The benefit of projectional editors is that the
programmer can make no syntactic mistakes. The
drawback is the number of different building blocks
needed to construct a program can become complex
for languages with a rich syntax. Another option to
compute AST changes is through a tree differencing
algorithms (Chawathe et al., 1996; Fluri et al., 2007;
Falleri et al., 2014; Huang et al., 2018; Dotzler and
Philippsen, 2016; Frick et al., 2018).

Whereas projectional editors come with the disad-
vantage that they are specialized per language, AST
tree differencing algorithms exist with language ag-
nostic specifications. This work has adopted the
GumTree algorithm (Falleri et al., 2014), a language-
agnostic algorithm to compute the changes between
two ASTs.

The output of the GumTree algorithm is an edit
script, which is an ordered set of edit operations that
transform the source AST into the destination AST.
An AST edit script is composed of operations of the
following kinds (Chawathe et al., 1996):

• update(n,v) to update the content of node n with
the value v.

• add(t, p, i, l,v) to add node t with label l and value
v to parent p at index i.

• delete(t) to delete node t.

• move(t, p, i) to move node t in tree to be a child of
p at index i.

ICSOFT 2022 - 17th International Conference on Software Technologies

190

 (begin
 (eat "apple")
 (touch nose))

b'

f'

a'

c'

d' e'

e

f g

b

c d

a

 1.

 2.

 Delete f

 Move 0b e

a a'

b c'

c d'

d e'

e b'

g f'

Monaco Editor Headed AST GumTree Algorithm Minimum Edit Script

 (begin
 ((touch nose) "apple"))

Conflict Free Replicated
AST

Conflict Free Replicated
AST

Monaco EditorReplicated Operation

 1. Add a b 0
 2. Add c b 0
 3. Add d b 1
 4. Add e a 1

 m. Set c "eat"
 n. Set g "nose"
 o. Delete f
 p. Move b e 0

 1.

 2.

 Delete f

 Move 0b e

Local changes log

e

g

a

b

c d

a

b

a

...

change 1

change 2

change n

Before

After

 (begin
 (eat "apple")
 (touch nose))

 (begin
 ((touch nose) "apple"))

Before

After

Compute edit script4Compute AST mapping3Construct changed AST2Detect change1

Propagate serialized changes5 Update local log of changes6 Rollback & apply changes7 Reflect changes8

insert

serialize

Replica

Replica

Replica
Replica

Replica

per replica

Figure 2: An overview of the stages that flow through different components working together to make up a distributed
conflict-free replicated abstract syntax tree. Changes detected by the javascriptMonaco Editor trigger the construction of a
new HeadedAST, which is then mapped onto the previous HeadedAST through the GumTreeAlgorithm allowing to compute
the changes that took place as a MinimumEditScript. These AST changes are serialized and propagated over the wire as
ReplicatedOperations, as the CRDT is an operation-based CRDT. The incoming operations allow each replica to roll back the
local AST to then reapply all known changes in order. The final computed AST is displayed by the javascriptMonaco Editor
which then reflects the converging AST to the developer.

A more constrained form of an edit script is a mini-
mum edit script, which is the smallest set of edit op-
erations that is still a valid edit script. In the context
of our CRDT AST, computing a minimum edit script
is desirable since it directly affects the network load.

The GumTree algorithm consists of a top-down
phase and bottom-up phase to compute a set of map-
pings between both ASTs, while it leaves the algo-
rithm to determine an edit script open to the imple-
mentor. The GumTree implementation used in this

work is based on the work of (Chawathe et al., 1996).

6 IMPLEMENTATION

We used Scala to implement COAST, opting for de-
pendencies such that the implementation can compile
to run on the JVM but also to JavaScript such that it
supports our prototype browser-based web IDE. The
implementation for of the CRDT is discussed in Sec-

COAST: A Conflict-free Replicated Abstract Syntax Tree

191

d

Make a
child of

Make a
child of

Desired outcome

Replica 2

Replica 1

c

ba

Concurrent operations

Figure 3: A case in which concurrent move operations
take place for a node to become the child of either one of
its siblings, including the possible outcomes. The shown
outcomes illustrate there is either an operation-discarding
choice, a duplicating choice or a tree-structure breaking
choice that must be made. Inspired by the illustrations de-
signed by (Kleppmann et al., 2022).

tion 6.1 and the implementation for modeling the AST
is discussed in Section 6.2.

6.1 Implementing the Local CRDT

We define an interface for operation-based CRDT
classes that defines three methods:

• update to propagate external changes (operations)
to the local replicas model of CRDT

• query to yield the data structure that is known so
far, modeled by the local replica

• merge for combining incoming operations from
other replicas across the network

The concrete implementation of our AST CRDT
interface that supports COAST yields the AST upon

Make a
child of

Make a
child of

Desired outcome

Replica 2

Replica 1

c d

ba

Concurrent operations

Figure 4: A case in which concurrent move operations take
place for two nodes to become each other’s descendant, in-
cluding the possible outcomes. The shown outcomes illus-
trate there is either an operation-discarding choice, a dupli-
cating choice or a tree-structure breaking choice that must
be made. Inspired by the illustrations designed by (Klepp-
mann et al., 2022).

invoking the query method by applying all received
edit operations in order on an empty AST. Ordering
the edit operations is possible by accompanying each
with a logical timestamp and replica owner identity,
making an arbitrary but deterministic ordering deci-
sion possible when the logical timestamp for two edits
is equal.

The application of edit operations to a program’s
AST is deterministic but permissive, thus when the
application of operations is not possible (such as mov-
ing a node that cannot be found) the operation is ig-
nored. By making both the ordering and the appli-
cation of the edit operations deterministic, we ensure
converging ASTs among all replicas with an equal set
of edit operations.

Upon invocation of the update method, the CRDT
propagates the local edit operations over the network

ICSOFT 2022 - 17th International Conference on Software Technologies

192

by publishing these changes on its local Transmitter,
which in the prototype is implemented using a third-
party peer-to-peer JavaScript networking library us-
ing the WebRTC standard. This Transmitter invokes
the merge method upon receiving remote edit opera-
tions from the network, which expands the local log
of edit operations with the new operations.

6.2 Implementing the Local AST

The AST itself is implemented in a functional code
style by representing the tree as a mapping from node
identities to nodes. This implies that the data struc-
tures are immutable which ensures that the replicated
application of the same edit script results in the same
AST outcome.

An intuitive implementation of the AST would be
to implement the tree structure as a root with pointers
to other nodes (that in their turn point to other nodes),
but opting for this indirection through identities eases
serialization of AST nodes, as pointers are avoided
in a distributed setting where replicas do not share a
memory space.

The prototype implementation limited the types
of nodes to numbers, strings, identifiers and expres-
sions. This set of nodes is relatively small but is suf-
ficiently large to provide a prototype that covers all
source-code edit operations for a language supporting
primitive values and nodes with descendants, showing
support for arbitrary nested setups.

For the browser-based prototype, whenever the
code is changed the AST is kept formatted in the
browser to ensure all replicas with the same opera-
tions have the same view.

7 DISCUSSION AND
VALIDATION

We leverage the existing work of (Kleppmann et al.,
2022) and (Falleri et al., 2014) to support the correct-
ness of our approach, however, we lay out the high-
level editor properties below.
Preventing Interfering Changes: When multiple
replicas add new code to the main program during
a network partition, the eventually merged program
will contain both additions without interleaving these
changes. This is guaranteed as the newly added
code is logged as an edit script that constructs a sub-
tree (i.e., the AST of the new code) which will con-
tain nodes that uniquely identify the replica that con-
structed this subtree.
Ensuring Syntactical Correctness: The eventual
data structure that is present on each replica is the

merged log of edit operations, which when queried
will result in an identical AST that represents the
merged program. To ensure this program is a syntac-
tically valid program tree, it should (a) be a valid tree
and (b) not break constraints that ensure syntactical
correctness.

Ensuring the program represents a valid tree re-
quires ensuring the created AST does not introduce
cycles, where node a would be the parent of node b
while b is also the parent of node a or that it does not
add a node without a parent. This requirement is not
implemented at the level of the edit script but when
constructing the AST, where these requirements are
asserted and when not met the operation is ignored,
which allows for local resolution of conflicts.

Ensuring syntactical correctness requires the guar-
antee that the requirements of each node are met. An
example would be an if -node that requires an expres-
sion as its condition field and two more statements,
one for its consequent field and another for its alter-
native field. Consequent edit statements should not
result in failing to meet these requirements. The re-
sulting edit scripts from COAST update nodes exclu-
sively whenever their label matches which is a prop-
erty that follows from GumTree. In case the labels
are not equal the edit script deletes the old node and
adds the new node, resulting in two nodes that differ
in their identity which avoids interleaving of correct-
ness properties for different types of nodes. Despite
we do not provide a formal proof we believe this strat-
egy prevents constructing a tree which is an invalid
AST after a merging operation is done.
Tests:
The implementation of COAST comes with a test
suite of 54 tests to exercise the problems arising from
the example described in The IntelliJ Test Cover-
age Tool reports 100% Scala code coverage for our
test suite. Although it is limited, this testing suite
paired with the high amount of code coverage aims
to demonstrate the effort in verifying the correctness
of the codebase.

The test suite includes a setup in which we repli-
cate the behaviour of multiple replicas performing
the concurrent changes shown in Figure 1. This test
case simulates a temporal network partition and as-
serts that all permutations of the received operations
result in an equal output program for each replica.
These preliminary results show that our approach for
COAST can preserve the syntactical structure while
including both concurrent changes shown in Figure 1,
which the string-based CRDT could not.

COAST: A Conflict-free Replicated Abstract Syntax Tree

193

8 LIMITATIONS

There are a number of limitations in our current im-
plementation that can be further developed in future
work.

Lack of Heuristics to Pick a Winning Operation
for Conflicting Operations. The merge strategy of
our approach performs an ordering of concurrent op-
erations deterministically. However, the ordering is
based on the replica’s identity which prevents know-
ing which replica will perform the winning opera-
tions. An improvement to our current ordering of
concurrent operations could be the assignment of de-
veloper roles through the user interface. The system
should order roles such that operations of hierarchi-
cally higher roles are prioritized to win over other op-
erations. Alternatively, the system could prompt the
user with conflicting changes asking to agree on a sin-
gle change, which is more in line with the work of
traditional version control systems.

Lack of Merge Granularity. Currently, the merg-
ing of ASTs happens on a per-node basis. Although
this merge strategy is sufficiently powerful, additional
merging strategies based on the types of nodes that
are being affected can improve our current prototype.
For example, for string literal nodes, two concurrent
updates on a single string literal will result in an ar-
bitrary choice to dominate based on the replica iden-
tity. It would be more optimal to delegate the concur-
rent changes to the node which could further decide
on a better merge strategy, in this case opting for a
string-based CRDT. An additional example would be
for literal set nodes, two concurrent additions of an
expression value would duplicate the content, while
this does not make sense for set nodes thus it would
be the desired effect to prevent the double addition of
the content.

As addressed in Section 7 the interfering changes
happen for concurrent modifications to nodes present
on both replicas, local changes to locally created
nodes introduce no conflicts.

9 RELATED WORK

In this section, we describe recent and close related
work to CoAST.

Protzenko et al. (Protzenko et al., 2015) proposed
a conflict-free merge algorithm for collaborative edit-
ing which has been deployed as a cloud-based inte-
grated development environment (Ball et al., 2015).

Similar to our approach, the algorithm works at the
AST representation of the program. The algorithm at-
taches unique identifiers to the AST nodes and tracks
the order of nodes by remembering the siblings of a
particular node. When a merge occurs, both the lo-
cal and remote AST replicas are represented as sets.
Then, the resulting tree is built by re-attaching the par-
ents of the nodes in the set of the local replica and
then, the nodes in the set of the remote replica. Con-
current updates are handled by always accepting the
changes of the local replica.

Their approach models the program as an AST di-
rectly within the editor, allowing to track tree-edit op-
erations with higher precision. This comes at the cost
of specializing the editor to model the AST and ac-
counting for the possible edit operations, while our
approach derives the edits in a separate stage. In ad-
dition to this specialization, their approach stores the
program as text in the cloud while the replicas operate
on ASTs that are modelled as Cloud Types.

The Live Share (Microsoft, 2022) extension of
Microsoft’s IDEs enables real-time collaboration ses-
sions between a host replica and guest replicas. Live
Share’s approach to synchronising replicas is un-
known as its source code is not publicly available.
In contrast to our model, a Live Share collaboration
session requires a host replica to be always online to
maintain the session of guest replicas. Our experi-
ments show that the replication of Figure 1 does not
result in the proposed solution, but breaks the syntac-
tical structure of the program through outputting the
code shown in Listing 1, demonstrating the limited
syntactical reasoning about the program.

Jimbo (Ghorashi and Jensen, 2016) uses an oper-
ational transformation (OP) algorithm to enable real-
time collaborative code development. However, the
authors do not elaborate on the characteristics of the
algorithm or how concurrent updates are handled.

Saros (Salinger et al., 2010) is a collaborative edit-
ing plug-in for Eclipse. Concurrent activities within a
collaboration session are handled by an implementa-
tion of the Jupiter (Nichols et al., 1995) algorithm,
which relies on a central server for the coordination
of such activities.

The Atom’s Teletype (Atom, 2022) plugin im-
plements a string-wise CRDT (Yu, 2012; Yu, 2014)
to enable collaborative source code development. In
contrast to our work, a string-wise CRDT enables up-
date/insert operations at random places of the source
code (i.e., the string). These random updates may en-
able the propagation of syntactically incorrect updates
to the replicas. In contrast, our approach performs its
merges on the syntactical abstraction, thus the merged
outcome prevents syntactical incorrectness by design.

ICSOFT 2022 - 17th International Conference on Software Technologies

194

The Jetbrains’ Meta Programming System (?) al-
lows developers to extend IntelliJ-based editors with
a projectional editor for a domain-specific language.
Their editors furthermore support collaborative edit-
ing, however, we are unaware of their approach to
synchronising replicas as their source code is not pub-
licly available.

10 CONCLUSION

This paper presented an alternative approach, called
COAST, to implement a real-time collaborative code
editor to overcome the limitations that arise for tradi-
tional editors that treat source code as sequences of
characters. COAST synchronizes code at the level
of the abstract syntax tree (AST) and implements this
AST as a conflict-free replicated data type (CRDT).
Our proof-of-concept implementation covers a min-
imal set of nodes, but already demonstrates the ca-
pability of the merging strategy to resolve conflicts
for different concurrent operations. The strategy is
mainly based on the inclusion of a logical timestamp
allowing for an ordering of events that allows the data
structure to recompute the AST including newly re-
ceived updates. Even so, certain optimizations are in
order to improve conflict resolution, either by the in-
clusion of developer roles or by shifting the merge
granularity.

REFERENCES

Atom (2022). atom/teletype: Share your workspace with
team members and collaborate on code in real time in
atom. https://github.com/atom/teletype. (Accessed on
03/22/2022).

Baheti, P., Gehringer, E., and Stotts, D. (2002). Exploring
the efficacy of distributed pair programming. In Wells,
D. and Williams, L., editors, Extreme Programming
and Agile Methods — XP/Agile Universe 2002, pages
208–220, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Ball, T., Burckhardt, S., de Halleux, J., Moskal, M.,
Protzenko, J., and Tillmann, N. (2015). Beyond open
source: The touch develop cloud-based integrated de-
velopment environment. In 2015 2nd ACM Interna-
tional Conference on Mobile Software Engineering
and Systems, pages 83–93.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H.,
and Widom, J. (1996). Change detection in hier-
archically structured information. SIGMOD Rec.,
25(2):493–504.

Dotzler, G. and Philippsen, M. (2016). Move-optimized
source code tree differencing. In 2016 31st
IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 660–671.

Falleri, J.-R., Morandat, F., Blanc, X., Martinez, M., and
Monperrus, M. (2014). Fine-grained and accurate
source code differencing. In Proceedings of the 29th
ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, page 313–324, New
York, NY, USA. Association for Computing Machin-
ery.

Fluri, B., Wursch, M., PInzger, M., and Gall, H. (2007).
Change distilling:tree differencing for fine-grained
source code change extraction. IEEE Transactions on
Software Engineering, 33(11):725–743.

Frick, V., Grassauer, T., Beck, F., and Pinzger, M. (2018).
Generating accurate and compact edit scripts using
tree differencing. In 2018 IEEE International Con-
ference on Software Maintenance and Evolution (IC-
SME), pages 264–274.

Ghorashi, S. and Jensen, C. (2016). Jimbo: A collaborative
IDE with live preview. Proceedings - 9th International
Workshop on Cooperative and Human Aspects of Soft-
ware Engineering, CHASE 2016, pages 104–107.

Goldman, M. et al. (2012). Software development with real-
time collaborative editing. PhD thesis, Massachusetts
Institute of Technology.

Huang, K., Chen, B., Peng, X., Zhou, D., Wang, Y., Liu,
Y., and Zhao, W. (2018). Cldiff: Generating concise
linked code differences. In 2018 33rd IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering (ASE), pages 679–690.

Kleppmann, M., Mulligan, D. P., Gomes, V. B. F., and
Beresford, A. R. (2022). A highly-available move op-
eration for replicated trees. IEEE Transactions on Par-
allel and Distributed Systems, 33(7):1711–1724.

Microsoft (2022). Faq - visual studio live share - vi-
sual studio live share — microsoft docs. https://docs.
microsoft.com/en-us/visualstudio/liveshare/faq. (Ac-
cessed on 03/02/2022).

Nichols, D. A., Curtis, P., Dixon, M., and Lamping, J.
(1995). High-latency, low-bandwidth windowing in
the Jupiter collaboration system. UIST (User Interface
Software and Technology): Proceedings of the ACM
Symposium, (October):111–120.

Nicolaescu, P., Jahns, K., Derntl, M., and Klamma, R.
(2015). Yjs: A framework for near real-time p2p
shared editing on arbitrary data types. In Cimiano,
P., Frasincar, F., Houben, G.-J., and Schwabe, D., edi-
tors, Engineering the Web in the Big Data Era, pages
675–678, Cham. Springer International Publishing.

Protzenko, J., Burckhardt, S., Moskal, M., and McClurg, J.
(2015). Implementing real-time collaboration in touch
develop using AST merges. MobileDeLi 2015 - Pro-
ceedings of the 3rd International Workshop on Mobile
Development Lifecycle, pages 25–27.

Salinger, S., Oezbek, C., Beecher, K., and Schenk, J.
(2010). Saros: An eclipse plug-in for distributed party
programming. Proceedings - International Confer-
ence on Software Engineering, pages 48–55.

Shapiro, M., Preguiça, N., Baquero, C., and Zawirski, M.
(2011a). A comprehensive study of Convergent and
Commutative Replicated Data Types. Research Re-
port RR-7506, Inria – Centre Paris-Rocquencourt ;
INRIA.

Shapiro, M., Preguiça, N., Baquero, C., and Zawirski,
M. (2011b). Conflict-free replicated data types. In

COAST: A Conflict-free Replicated Abstract Syntax Tree

195

Défago, X., Petit, F., and Villain, V., editors, Stabi-
lization, Safety, and Security of Distributed Systems,
pages 386–400, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Yu, W. (2012). A string-wise CRDT for group editing.
GROUP’12 - Proceedings of the ACM 2012 Interna-
tional Conference on Support Group Work, (Figure
1):141–144.

Yu, W. (2014). Supporting string-wise operations and selec-
tive undo for peer-to-peer group editing. Proceedings
of the International ACM SIGGROUP Conference on
Supporting Group Work, pages 226–237.

ICSOFT 2022 - 17th International Conference on Software Technologies

196

