
Triangular Expansion Revisited: Which Triangulation Is The Best?

Jan Mikula1,2 a, Miroslav Kulich2 b

1Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague,
Karlovo náměstı́ 13, 12135 Praha 2, Czech Republic

2Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague,
Jugoslávských partyzánů 1580/3, 16000 Praha 6, Czech Republic

Keywords: Autonomous Agents, Visibility Region, Triangular Expansion Algorithm, Triangulation, TriVis.

Abstract: Visibility region is a classic structure in computational geometry that finds use in many agent planning prob-
lems. Triangular expansion algorithm (TEA) is the state-of-the-art algorithm for computing visibility regions
within polygons with holes in two dimensions. It has been shown that it is two orders of magnitude faster
than the traditional rotation sweep algorithm for real-world scenarios. The algorithm triangulates the under-
lying polygon and recursively traverses the triangulation while keeping track of the visible region. Instead
of the constraint Delaunay triangulation used by default, this paper introduces the idea of optimizing the
triangulation to minimize the expected number of triangle edges expanded during the TEA’s traversal while
assuming that every point of the input polygon is equally likely to be queried. The proposed triangulation is
experimentally evaluated and shown to improve TEA’s mean query time in practice. Furthermore, the TEA is
modified to consider limited visibility range of real-life sensors. Combined with the proposed triangulation,
this adjustment significantly speeds up the computation in scenarios with limited visibility. We provide an effi-
cient open-source implementation called TriVis which, besides the mentioned, includes determining visibility
between two points and other useful visibility-related operations.

1 INTRODUCTION

Visibility is a fundamental concept in computational
geometry, security, and mission planning for mobile
robots. In general, we say that a point is visible by
an agent from its configuration if the agent is phys-
ically capable of seeing the point. All points visi-
ble from that particular configuration form a visibil-
ity region. Visibility regions are useful when one
needs to guard an art gallery by a set of static ob-
servers (O’Rourke, 1987), establish a watchman’s
route from which the whole boundary or interior of
an area is visible (Ntafos, 1992; Mikula and Kulich,
2022), or provide a guarantee that a room is free of
intruders (Guibas et al., 1997). The classic formu-
lation assumes the configuration is a point in poly-
gon with holes W ⊂ R2, also called polygonal do-
main or polygonal map, and two points q, p ∈W are
visible to each other if segment qp ⊂W . The vis-
ibility region usually takes the form of star-shaped
polygon, but in some exceptional cases, the polygon

a https://orcid.org/0000-0003-3404-8742
b https://orcid.org/0000-0002-0997-5889

can have attached one-dimensional antennae (Bungiu
et al., 2014). However, the antennae can be often
neglected; thus, visibility region V (q) ⊂W is fre-
quently denoted just as visibility polygon.

Although computing visibility polygon V (q) for
given query point q ∈W can be done in polynomial
time, frequent employment of this computation as a
sub-routine in algorithms often solving NP-hard prob-
lems (such as those mentioned earlier) causes the im-
mense need for an efficient implementation. The cur-
rent state of the art is the triangular expansion algo-
rithm (TEA) by (Bungiu et al., 2014). TEA’s worst-
case query time complexity is O(n2), where n denotes
the number of W ’s vertices. However, the authors
show that in real-world scenarios the TEA can be
by two orders of magnitude faster than the rotational
sweep algorithm (RSA) by (Asano, 1985) which runs
in O(n logn) in the worst case. The reason is that ba-
sic operations performed by the TEA are extremely
fast compared to the RSA’s, and the polygonal map
on which TEA actually runs in O(n2) has a unique
structure quite dissimilar to practical scenarios.

The TEA is based on a simple idea of triangulat-
ing the underlying polygonal map in a preprocess-

Mikula, J. and Kulich, M.
Triangular Expansion Revisited: Which Triangulation Is The Best?.
DOI: 10.5220/0011278700003271
In Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO 2022), pages 313-319
ISBN: 978-989-758-585-2; ISSN: 2184-2809
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

313

Figure 1: An example of a visibility region computed by
the TEA. Borders and holes of the input polygon W are
black. The query point q is green. Triangle edges (not) ex-
panded by the TEA are (orange) red. (Un)visited triangles
are (gray) white. The restricted views around q are translu-
cent blue and form the output visibility polygon V (q).

ing phase and then using the triangulation structure
in the query phase to find requested visibility regions.
Having the structure, TEA’s answer to a query starts
by locating triangle △q containing the query point q.
This can be done by a simple walk, as the authors
suggest. A recursive procedure is then initiated by
expanding the view of q through every edge ei, i ∈
{1,2,3}, of △q to the neighboring triangle (unless ei
is part of W ’s border) and restricting the view by ei’s
endpoints. As the recursion proceeds only the edges
that are at least partially in the current restricted view
are expanded and the view can be further restricted
by the endpoints of next expanded edges. A branch
of the recursion ends when either all edges that are
candidates for expansion are part of the W ’s border
or the restricted view angle is reduced to zero (may
lead to creating an antenna). After all branches of the
recursion have ended, the resulting V (q) is the col-
lection of all the restricted views around q acquired
up to that time. See Figure 1 for illustrations of some
of these concepts.

TEA’s query time is clearly proportional to the
number of edge expansions η during the computation
of V (q). In some sense, the TEA is output-sensitive
because η partially depends on the complexity of the
output, but as the authors state, not strictly because the
algorithm may traverse an edge even though the edge
does not contribute to the boundary of V (q) (Bungiu
et al., 2014). Preprocessing, i.e., constructing the tri-

angulation of W , can be done at best in O(n logn) by
efficient construction of the constraint Delaunay tri-
angulation (CDT) as suggested by (Shewchuk, 2002),
although TEA’s authors use a CDT implementation
that runs in O(n2). The TEA will work correctly with
any valid triangulation. However, the influence of
particular triangulation choice on η and thus TEA’s
query time has escaped researchers’ attention so far.
Yet, assuming every point in W is equally likely to be
queried, it can be shown that certain triangulations are
less or more suited for usage in the TEA than others.

The best triangulation is clearly the one minimiz-
ing the expected (mean) number of edge expansions
during the progress of the algorithm. In this paper, we
design a simple heuristic procedure to obtain a good
approximation of such triangulation. The proposed
procedure is run on several benchmark instances to
obtain the new type of triangulation for each. These
triangulations are then experimentally evaluated in
the query phase of the TEA and compared to the CDT
shown to significantly reduce mean number of expan-
sions η̄ and thus mean query times for all studied
cases and one million random query points.

This work does not evaluate TEA’s preprocessing
time, significantly increased by the triangulation opti-
mization, which is partially caused by a naive imple-
mentation of some of its sub-procedures. Instead, the
primary purpose of this work is to draw attention to
the interesting observation that the particular triangu-
lation matters to TEA’s query times.

Overall, the contribution of this work is three-fold.

1. We propose a new type of triangulation to improve
TEA’s query time,

2. modify the TEA to efficiently cope with more re-
alistic visibility regions, and lastly,

3. provide an efficient open-source TEA’s imple-
mentation tailored for some of the most common
visibility-related tasks, e.g., computing visibility
regions, finding all W ’s vertices visible from q,
and determining visibility between two queries.

2 PROBLEM DEFINITION

In this section, we formalize the search for a trian-
gulation that approximately minimizes the expected
number η̄ of edge expansions done by the TEA while
assuming that query points are drawn from a known
probability distribution. The approximation is based
on a further assumption that the number of edge ex-
pansions η is the same as that of expanded edges µ.
In general, the assumption is not valid because TEA
can expand some triangle edges more than once. (See

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

314

Figure 1, where the six left-most expanded (red)
edges are actually expanded twice because they are
visible through two of the (blue) restricted views.)
However, as we show in our experiments, the assump-
tion makes a good approximation because in real-
world scenarios the two values are similar, i.e., η∼ µ.

Note that exactly those triangle edges that are (at
least partially) visible from query point q but do not
contribute to the boundary of W are expanded by
the TEA (see Figure 1). Therefore, the number of
edges expanded by the TEA at least once given query
point q and triangulation T can be computed as

µ(q,T) = ∑
e∈E(T) : e /∈∂W

Visible(e,q), (1)

where E(T) denotes the set of T ’s edges, ∂W the
border of W , and

Visible(uv,q) =

1 if exists any p ∈ uv

visible from q,
0 else.

(2)

Let the location of the query point be described by
random variable Q with a known two-dimensional
probability density function (PDF). Then, the ex-
pected number of expanded edges is given by

µ̄(T) = ∑
e∈E(T) : e /∈∂W

P(Visible(e,Q) = 1), (3)

where P(Visible(e,Q) = 1) is the probability that seg-
ment e is visible from the point value taken by Q.
The optimal triangulation T ⋆ is the one minimizing
µ̄(T), i.e.,

T ⋆ = argmin
T ∈T (W)

µ̄(T), (4)

where T (W) denotes the set of all possible triangu-
lations of W .

Let us further assume that every point in W
is equally likely to be queried. This assumption
known in the literature as the principle of indif-
ference (Keynes, 1921) implies modeling the query
point’s location by random variable Q following PDF
that is uniform inside W and zero outside. This yields
a specific formula for computing the probability of
segment e being visible from the value taken by Q:

P(Visible(e,Q) = 1) =
Area(V (e))
Area(W)

, (5)

where Area(V (e)) is the area of a region visible
from e, and Area(W) is the area of the whole polyg-
onal map. An example of region V (e) visible from
segment e is shown in Figure 2. Substituting (5)
into (3) and the result into (4) while removing the con-
stant factor 1/Area(W) from the optimization, we get

T ⋆ = argmin
T ∈T (W)

{
∑

e∈E(T) : e /∈∂W
Area(V (e))

}
. (6)

Figure 2: Regions visible from segment e while assuming
different maximal visibility ranges. Borders and holes of
the input polygon W are black. Segment e is green. The re-
gion visible from e is white, while the unvisible part of W is
gray. Borders of the d-visible regions for restricted visibil-
ity ranges d = 3, 6, and 12 meters are red, blue, and orange,
respectively.

We call the resulting T ⋆ minimum visibility triangu-
lation (MinVT).

3 SOLUTION APPROACH

3.1 Constructing the New Triangulation

Finding the MinVT is a special case of finding a tri-
angulation minimizing the sum of values (weights) on
its edges; a problem known as the minimum weight
triangulation (MWT), which is NP-hard for a gen-
eral set of points on a plane and arbitrarily defined
weights (Mulzer and Rote, 2008). For the proposed
MinVT, the weight of candidate edge e is w(e) =
Area(V (e)) (see (6)).

Unlike the triangulation of a set of points, a tri-
angulation of polygonal map W always contains the
edges that contribute to the boundary of W . In ad-
dition, a segment is an edge candidate only if its
endpoints are vertices of W and are visible to each
other. Although there are known methods for com-
puting the MWT of a simple (without holes) poly-
gon P (Grantson et al., 2008), the MWT of a poly-
gon with holes W was not yet addressed in the lit-
erature. Therefore, we approximate the MWT of W
by an iterative improvement of its CDT. Starting with
T ← CDT(W), in each iteration i, random triangle

Triangular Expansion Revisited: Which Triangulation Is The Best?

315

(a) MaxVT (b) MaxLT (c) CDT (d) MinLT (e) MinVT

Figure 3: Different triangulations of the same input polygon ordered according to their (increasing) efficiency in the TEA.

△i ∈ T is selected first. A simple polygon Pi is then
generated from△i by gradually adding random adja-
cent triangles from T . The process of forming Pi is
finished when no triangle can be added to it, i.e., when
adding an arbitrary triangle violates simplicity of the
polygon (i.e., adds a hole). Triangles forming Pi are
then substituted in T by the MWT of Pi. This process
converges typically in less than 10 iterations.

The MWT of simple polygon P has a recursive
substructure, which allows to employ dynamic pro-
gramming (Grantson et al., 2008) depicted in Algo-
rithm 1. Assuming that polygon vertices are num-
bered consecutively around the polygon boundary,
i.e., P = ⟨p1, . . . , pn⟩, a tree of weights Wi, j of sub-
polygons with vertices between pi and p j is build
starting from triangles and ending when W1,n is deter-
mined. Weights of non-trivial sub-polygons defined
by pair of indices (i, j) are evaluated considering all
possible triangles △i, j,k. Each triangle divides the
polygon into three parts: the triangle itself, the sub-
polygon to the left, and to the right. Weight Wi, j is
the minimal sum of weights of these parts and k is
stored in Ki, j. The weight of triangle △i, j,k is com-
puted as

Weight(△i, j,k) =

· · ·

1/2

(
w(pi p j)+

w(p j pk)+
w(pk pi)

) if pi, p j, pk are
pairwise visible

to each other,
∞ else.

(7)

Finally, the MWT of P is reconstructed from K in
linear time. Starting with pair (1,n) we recursively
traverse matrix K. In each step, pair (i, j) determines
the base of the triangle△i, j,Ki, j , which is reported and
the reconstruction is called subsequently for its edges
(i,Ki, j) and (j,Ki, j).

The construction procedure described above can
be employed to generate various triangulations of in-
put polygon with holes W depending on the used
weights:

• MinVT : w(e) = Area(V (e)),

• MinLT : w(e) = Length(e),

Algorithm 1: MWT for simple polygon P .
1 Let P = ⟨p1, . . . , pn⟩.
2 for i = 2, . . . ,n do
3 Wi−1,i← 0

4 for δ = 2, . . . ,n−1 do
5 for i = 1, . . . ,n−δ do
6 j← i+δ

7 Wi, j← ∞

8 for k = i+1, . . . , j−1 do
9 val←Wi,k +Wk, j +Weight(△i, j,k)

10 if val <Wi, j then
11 Wi, j = val
12 Ki, j = k

• MaxVT : w(e) =−Area(V (e)),

• MaxLT : w(e) =−Length(e);

see Figure 3 for examples of these triangulations and
CDT, all computed on the same input.

3.2 d-TEA Modification

Visibility regions are a general concept to model
agent’s ability to visually cover part of the environ-
ment in which it operates. So far, we have consid-
ered the most idealized case of omnidirectional vision
with an unlimited visibility range. However, in real-
life applications, visibility regions can be subject to
some additional constraints. Take robotics, for exam-
ple. Although omnidirectional sensors are common
in robotics, their resolution over longer distances is
limited to finite range d. A straightforward solution,
in this case, is to compute the standard visibility re-
gion V (q) by the TEA and then intersect the result
with a circle of radius d centered in q to obtain re-
gion V (q,d). Nevertheless, if the area of V (q,d) is
much smaller than the area of the original V (q) this
approach is highly inefficient because the TEA ex-
pands many edges that do not contribute to the output.

To be more efficient with a limited visibility range,
we suggest an early exit strategy for the TEA, called
d-TEA. During the recurring procedure, only edges

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

316

Table 1: Properties of the polygonal maps.

map n h x [m] y [m] a [m2] comment

ar 938 11 45.1 43.7 782 AR0018SR (MAI)
c4 632 5 31.6 31.6 623 artificial
de 362 4 25.2 30.8 391 den312d (MAI)
dr 864 14 57.2 47.8 692 dr_dungeon (MAI)
e1 483 1 18.8 18.9 153 expl. data (sim.)
ec 1126 7 24.4 19.7 212 expl. data (real)
jh 278 9 20.6 23.2 460 real
la 331 35 40.0 40.0 1153 artificial
pb 92 3 133.3 104.9 1504 real
ph 153 23 20.0 20.0 367 artificial
ta 87 2 39.7 46.9 731 real

ar de dr e1 ec

jh la pb ph ta

Figure 4: Polygonal maps used in the experiments.

that either are inside or intersect the circle of radius
d centered in q are expanded, and those that do not
are added to the boundary of output region V ′(q,d).
To obtain the requested V (q,d)⊂V ′(q,d), the circle
intersection is computed efficiently by rotating around
q utilizing the star shape of V ′(q,d).

Although the extension from TEA to d-TEA may
seem trivial, we need to contemplate that the pro-
posed early exit strategy directly affects how many
edges are expanded by the algorithm and thus also
the criterion optimized when constructing the pro-
posed triangulation MinVT. The best triangulation for
TEA may not be the same for d-TEA with various
values of d. Therefore, we need to adapt MinVT’s
edge weight w(e) from Area(V (e)) to Area(V (e,d)),
where V (e,∞)=V (e) and region V (e,d) is d-visible
from segment e for d ∈ (0,∞). d-visibility extends the
concept of visibility, whereas two points are visible
to each other if and only if the line segment between
them lies entirely in W and is no longer than d. Fig-
ure 2 shows examples of d-visible regions from par-
ticular segment e in 20m×20m W for d = 3, 6, and
12 meters. Considering d-visibility, the MinVT trian-
gulation is denoted as d-MinVT.

3.3 TriVis: The Implementation

C++ implementation of the TEA, d-TEA, and MWT
is publicly available along with the data and configu-
ration files that we used in our experiments.1 The im-
plementation is available in many variants tailored for
computing visibility regions, finding all environment
vertices that are visible from a query point, or deter-
mining visibility between two query points. For com-
puting the CDT, TriVis uses Triangle (Shewchuk,
1996).

4 EXPERIMENTAL EVALUATION

The proposed triangulation (MinVT) has been eval-
uated on 11 polygonal maps obtained from various
sources. The maps and some of their properties are
listed in Table 1. Here, n denotes the number of map’s
vertices, h the number of its holes, x and y its dimen-
sions, and a its area. Maps ar, de, and dr are based
on 2D grid maps from Moving AI (MAI) Lab web-
sites2 (Sturtevant, 2012) that we converted into polyg-
onal representation. Full names of the MAI maps are
in the comment column of the table. Maps e1, and
ec are based on mobile robot exploration data (Kulich
et al., 2018) obtained from simulation, and real robot,
respectively. Maps jh, pb, ta, la, and ph are robot
mission planning benchmarks from which the first
three are inspired by real indoor environments, an the
last two are artificial. All maps mentioned so far are
shown in Figure 4 (not in scale). Finally, c4 is the
map designed specifically for this paper to manifest
differences between the considered triangulations and
is shown in Figure 3.

The MinVT, CDT, and the other triangulations
discussed in Section 3 have been constructed for all
the considered maps. Then, the triangulations were
tested in the query phase of the TEA. One million
uniformly random query points were generated in-
side each map, and then visibility regions for all these
points were computed by the TEA using the stored
triangulations. During the computations, the num-
bers of expansions were stored and then averaged to
obtain metric η̄. The results in Table 2 show the
values of η̄ and average computational times t̄ for
all the triangulations and maps. In addition, for the
MinVT, the table displays the estimated value of η̄,
µ̄, computed solely from the triangulation (according
to (3) and (5)) and the percentage improvement over
the CDT (η̄CDT

imp). The best value of t̄ and η̄ per line

1http://imr.ciirc.cvut.cz/Research/TriVis
2https://movingai.com/benchmarks/grids.html

Triangular Expansion Revisited: Which Triangulation Is The Best?

317

Table 2: Efficiency of computing visibility regions by the TEA with different underlying triangulations.

map
MaxVT MaxLT CDT MinLT MinVT

t̄ [ns] η̄ t̄ [ns] η̄ t̄ [ns] η̄ t̄ [ns] η̄ t̄ [ns] η̄ µ̄ η̄CDT
imp [%]

ar 13,331 299.0 12,167 259.7 10,086 179.3 9,308 173.6 8,804 157.8 155.5 12.0
c4 10,147 206.3 8,818 175.4 9,019 137.1 7,437 104.3 5,615 99.1 98.0 27.7
de 3,460 69.5 3,293 63.4 2,888 46.6 2,719 46.1 2,666 43.4 42.6 6.9
dr 5,338 105.7 5,103 97.3 4,602 72.1 4,232 71.7 4,123 66.0 64.3 8.5
e1 8,200 185.9 8,087 175.7 7,540 127.4 6,673 119.2 6,260 111.1 109.6 12.8
ec 30,096 723.6 27,713 620.5 22,590 383.6 19,715 356.3 18,898 336.8 325.6 12.2
jh 4,299 102.7 4,147 95.6 3,227 60.5 3,126 61.2 3,027 55.2 52.6 8.8
la 2,957 64.5 2,861 60.0 2,406 42.3 2,303 40.3 2,245 38.4 37.3 9.3
pb 974 18.1 959 17.6 849 12.5 817 12.4 822 11.8 11.7 5.3
ph 7,273 180.2 7,207 180.4 5,665 119.0 5,404 113.7 5,401 111.6 105.1 6.1
ta 1,474 29.9 1,441 28.1 1,339 22.0 1,279 23.1 1,237 20.5 20.3 7.0

is shown in bold. Note that all the best values ex-
cept one value of t̄ belong to the MinVT. On aver-
age, the MinVT is by 10.6%, and 6.6% more efficient
than the CDT, and MinLT, respectively. The results
for MaxVT and MaxLT triangulations are the worst,
which is not surprising. We evaluated them to show a
counterpoint to those good triangulations and empha-
size triangulation choice’s importance. Since MaxVT
and MaxLT are not expected to provide any good re-
sults, these two triangulations are excluded from fur-
ther experiments.

Next, we evaluated the remaining triangulations
the same way as before but in scenarios with more re-
alistic visibility regions that are constrained by finite
visibility range d ∈ {12,6,3}m. Limited range d was
also considered during the MWT construction as dis-
cussed in Section 3.2 in the case of d-MinVT. There-
fore, the d-MinVT must have been recomputed for
every value of d. The TEA was run in two versions:
1. the standard, and 2. with early exit considering lim-
ited visibility range d (recall Section 3.2). The results
are shown in Table 3. All values in the table corre-
spond to the metric η̄ except for the first two columns.
We emphasize the four most important observations.
First, the early exit strategy helps to reduce the num-
ber of expansions for all cases significantly. Second,
the proposed d-MinVT triangulation is the best in all
cases with early exit as shown in bold. Third, since
d-MinVT assumes early exit during its own construc-
tion, it may not be the best for the standard TEA, as
observed in the results. Fourth, the effectiveness of
MinLT gets very close to MinVT with smaller visibil-
ity ranges. The last observation can be explained us-
ing Figure 2. It is apparent that as the visibility range
gets smaller, the visible area around segment e is more
and more proportionally dependent on the segment’s
length.

Table 3: Results for limited visibility range d. All values
correspond to the η̄ metric except for the first two columns.

map
d

[m]

standard TEA d-TEA (with early exit)

CDT MinLT MinVT d-MinVT CDT MinLT d-MinVT

ar
12 162.9 101.1 95.2 92.1

6 179.3 173.6 157.8 167.8 53.0 49.4 48.3
3 171.6 26.9 24.9 24.5

c4
12 104.0 95.4 80.6 78.6

6 137.1 104.3 99.1 107.4 59.3 53.5 52.6
3 105.4 29.2 25.7 25.5

de
12 43.8 42.2 41.9 39.8

6 46.6 46.1 43.4 44.9 30.3 30.1 29.2
3 46.2 17.8 17.4 17.1

dr
12 66.8 64.5 64.4 61.4

6 72.1 71.7 66.0 69.0 47.3 42.6 41.6
3 71.4 25.1 22.5 22.2

e1
12 111.4 119.0 112.0 105.2

6 127.4 119.2 111.1 114.0 83.7 80.5 77.6
3 120.9 46.4 45.2 43.9

ec
12 339.7 336.5 314.2 301.5

6 383.6 356.3 336.8 347.6 194.9 181.3 175.6
3 354.7 80.5 73.9 72.4

jh
12 55.7 53.2 53.7 49.3

6 60.5 61.2 55.2 58.1 31.6 31.5 30.0
3 59.1 17.0 16.8 16.4

la
12 38.9 31.9 31.0 30.1

6 42.3 40.3 38.4 40.1 20.9 20.4 20.0
3 40.6 12.2 11.9 11.8

pb
12 12.2 8.0 7.9 7.8

6 12.5 12.4 11.8 12.5 6.1 6.0 6.0
3 12.6 4.7 4.6 4.6

ph
12 112.6 98.3 95.0 94.0

6 119.0 113.7 111.6 113.4 51.6 50.2 49.7
3 113.0 23.9 23.3 23.1

ta
12 21.1 17.1 17.9 16.3

6 22.0 23.1 20.5 21.6 11.0 10.8 10.5
3 22.7 6.7 6.2 6.1

ICINCO 2022 - 19th International Conference on Informatics in Control, Automation and Robotics

318

5 CONCLUSION

We have shown that when computing visibility re-
gions by the triangular expansion algorithm (TEA),
the choice of the triangulation type matters. Choos-
ing the right or lousy triangulation can shift the av-
erage query performance of the TEA significantly in
both directions. We have also shown that the con-
straint Delaunay triangulation (CDT), although it is
commonly used, is not optimal for the TEA in the
sense that it does not minimize the expected number
of edge expansions done by the algorithm. This pa-
per contributes by designing a new type of triangula-
tion called MinVT that approximately minimizes the
above criterion and improves the TEA query perfor-
mance compared to CDT by about 5-28%, depending
on the input map. In addition, the proposed triangula-
tion can adapt to TEA with early exit strategy, called
d-TEA, used when computing visibility regions con-
strained by limited visibility range d.

In future work, we plan to address the preprocess-
ing time, i.e., the time needed for constructing the
proposed triangulation, which was not addressed here
but appeared slow due to naive approaches used in
some of the sub-procedures. Furthermore, a promis-
ing direction for future research is generalizing from a
triangulation optimization to an optimization of gen-
eral collection of convex polygons, also called a nav-
igation mesh. A computation similar to TEA’s com-
putation of visibility regions but using a general nav-
igation mesh appears in (Shen et al., 2020). Here,
Polyanya (Cui et al., 2017), a state-of-the-art optimal
solver for computing geometric shortest paths in nav-
igation meshes, was adapted to compute all convex
obstacle vertices visible from a query mesh vertex.
Adapting the ideas of this paper to navigation meshes
used in Polyanya may result in a similar average im-
provement of query times as for TEA with optimized
triangulation.

ACKNOWLEDGMENTS

This work was supported by the European Regional
Development Fund under the project Robotics for In-
dustry 4.0 (reg. no. CZ.02.1.01/0.0/0.0/15003/000
0470) and by the Grant Agency of the Czech Tech-
nical University in Prague, grant No. SGS21/185/OH
K3/3T/37.

REFERENCES

Asano, T. (1985). An efficient algorithm for finding the
visibility polygon for a polygonal region with holes.
IEICE Transactions, 68(9):557–559.

Bungiu, F., Hemmer, M., Hershberger, J., Huang, K., and
Kröller, A. (2014). Efficient Computation of Visibility
Polygons. arXiv:1403.3905.

Cui, M., Harabor, D. D., and Grastien, A. (2017).
Compromise-free pathfinding on a navigation mesh.
In Proceedings of the Twenty-Sixth International Joint
Conference on Artificial Intelligence, IJCAI-17, pages
496–502.

Grantson, M., Borgelt, C., and Levcopoulos, C. (2008).
Fixed parameter algorithms for the minimum weight
triangulation problem. International Journal of Com-
putational Geometry & Applications, 18(03):185–
220.

Guibas, L. J., Latombe, J.-C., Lavalle, S. M., Lin, D.,
and Motwani, R. (1997). Visibility-based pursuit-
evasion in a polygonal environment. In Dehne, F.,
Rau-Chaplin, A., Sack, J.-R., and Tamassia, R., ed-
itors, Algorithms and Data Structures, pages 17–30,
Berlin, Heidelberg. Springer Berlin Heidelberg.

Keynes, J. M. (1921). The Principle of Indifference. In A
Treatise on Probability, volume 4, chapter IV, pages
41–64. Macmillan and Co.

Kulich, M., Kozák, V., and Přeučil, L. (2018). An inte-
grated approach to autonomous environment model-
ing. In Modelling and Simulation for Autonomous Sys-
tems (MESAS 2017), volume 10756 of Lecture Notes
in Computer Vision. Springer International Publishing
AG.

Mikula, J. and Kulich, M. (2022). Towards a continuous
solution of the d-visibility watchman route problem in
a polygon with holes. IEEE Robotics and Automation
Letters, 7(3):5934–5941.

Mulzer, W. and Rote, G. (2008). Minimum-weight triangu-
lation is np-hard. J. ACM, 55(2).

Ntafos, S. (1992). Watchman routes under limited visibility.
Computational Geometry: Theory and Applications,
1(3):149–170.

O’Rourke, J. (1987). Art Gallery Theorems and Algorithms.
Oxford University Press.

Shen, B., Cheema, M. A., Harabor, D., and Stuckey, P. J.
(2020). Euclidean pathfinding with compressed path
databases. In Proceedings of the Twenty-Ninth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-20, pages 4229–4235.

Shewchuk, J. R. (1996). Triangle: Engineering a 2d qual-
ity mesh generator and delaunay triangulator. Applied
Computational Geometry Towards Geometric Engi-
neering, 1148:203–222.

Shewchuk, J. R. (2002). Delaunay refinement algorithms
for triangular mesh generation. Computational Ge-
ometry, 22(1):21–74.

Sturtevant, N. (2012). Benchmarks for grid-based pathfind-
ing. Transactions on Computational Intelligence and
AI in Games, 4(2):144 – 148.

Triangular Expansion Revisited: Which Triangulation Is The Best?

319

