Automatic Generation of Interoperability Connectors using Software
Product Lines Engineering

Boubou Thiam Niang1 2 Giacomo Kahn', Nawel Amokrane2, Yacine Ouzrout', Hamza Sahli2,
Mustapha Derras® and Jannik Laval'
YWniv. Lyon, Univ. Lyon 2, INSA Lyon, Université Claude Bernard Lyon 1, DISP-UR4570, 69676 Bron, France
2Berger—Levrault, 1 Pl. Giovanni da Verrazzano, 69009 Lyon, France

Keywords: Code Generation, Information System, Interoperability, Model-driven Engineering, Software Product Line
Engineering.
Abstract: Information Systems (ISs) of modern companies must be reactive and capable to communicate with third-party

IS. It is, therefore, necessary to establish agile interoperability between information systems. For this purpose,
connectors are used to ensure interactions between IS components. However, components are independently
designed and conform to different technical and domain standards that are continuously evolving. Given that
the connectors are often developed manually and are not reusable in most cases, establishing and maintaining
interoperability becomes a major challenge. In this paper we propose an approach to automatically generate
connectors, using software product line engineering to reuse common features and better manage variability.
A metamodel of the connector is proposed to show that they can be considered as first-class entities. An

industrial case study followed by a discussion is proposed to demonstrate the feasibility of our approach.

1 INTRODUCTION

Companies have to interact with many partners,
which are structurally diverse and operate in vari-
ous business sectors. In addition, companies have
to evolve from a technical and organizational point
of view through mergers, acquisition of subsidiaries
or technological migrations. Despite their diversities,
frequent changes, and independent development, the
Information Systems (ISs) of different stakeholders
and their components must remain compatible with
each other in order to work together at all times. Con-
nectors (Mehta et al., 2000) are used for this pur-
pose to enable a successful interaction between com-
ponent.

Some works have been carried out on the effec-
tive implementation of interoperability connectors.
In (Aldrich et al., 2002; Arellanes and Lau, 2017;
Garcés et al., 2019) the authors focuse on the no-
tion of exogenous connectors i.e., connectors sepa-
rated from business logic components to increase de-
coupling and flexibility. However, this approach do
not address the automation of connectors implemen-
tation.Other proposals such as (Seinturier et al., 2012;
Roth et al., 2018) are interested in automatic recon-

Niang, B., Kahn, G., Amokrane, N., Ouzrout, Y., Sahli, H., Derras, M. and Laval, J.

Automatic Generation of Interoperability Connectors using Software Product Lines Engineering.

DOI: 10.5220/0011278000003266

figuration for services orchestration, but the notion of
connectors remains implicit. Then, some approaches
have addressed the automatic synthesis of the connec-
tors as first-class entities like (Bencomo et al., 2013;
Bennaceur and Issarny, 2014; Bouloukakis et al.,
2019; Autili et al., 2019). These solutions generally
target a specific type of connector to be synthesized as
a peer-to-peer exchange, without offering more flexi-
bility to generate other types of connectors.

Having identified that the cited approaches do not
take into account all the interesting points mentioned
in the cited works, and the shortcomings identified for
each of the listed works, we raised two research ques-
tions (RQ):

RQ1: To what extent it is possible to decouple the
connector by separating the interaction-specific code
from the business code? The objective of this RQ is
to clearly identify what falls under interaction codes
and and what falls under business logic in order to
generate the connector.

RQ2: How to facilitate the connectors implemen-
tation despite their variability? The objective of this
RQ is to show that different types of connectors can
be generated regardless of its variability by minimiz-
ing the effort and reusing the connectors features.

449

In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 449-456

ISBN: 978-989-758-588-3; ISSN: 2184-2833

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

ICSOFT 2022 - 17th International Conference on Software Technologies

This paper consider connectors as first class-entity
and the set of connectors is considered as a Software
Product Line (SPL) (Clements and Northrop, 2002) in
order to exploit the commonalities of the connectors
and easily manage their variability. The main contri-
butions of this article are the following:

* Analysis of connectors commonalities and vari-
ability to consider them as a software product line,

* Design of a feature model (FM) that represents
commonalities and variability of connectors,

* Proposal of a connector metamodel with reusable
artifacts,

* Proposal of a software product line approach for
generating interoperability connectors.

Based on an industrial case study where two connec-
tors have to be implemented between different ap-
plications in various domains, we discussed the ap-
proach and gave feedback on the lessons learned. The
metamodels, the feature models and the implementa-
tion example of the study discussed in the article are
available on a public git repository. !

The paper is organized as follows: in Section 2,
we discuss the state of the art. The proposed soft-
ware product lines approach for connector generation
is presented in Section 3. Section 4 presents a case
study that illustrates a concrete problem to be solved.
Finally, in Section 5 we discuss the approach and
present feedback on the lessons learned.

2 STATE OF THE ART

Different approaches have been developed to facil-
itate implementation of connectors, seen in several
aspects: exogenous connectors, dynamic orchestra-
tions, and automatic synthesis.

The first aspect focuses on the separation of con-
nectors and business logic components to increase de-
coupling and flexibility. Approaches such as (Aldrich
et al., 2002; Arellanes and Lau, 2017; Garcés et al.,
2019) go in this direction by considering connectors
as first-class entities that aim to guarantee the tech-
nical, geographical, and life cycle management inde-
pendence of the connectors.

The second aspect concerns the dynamic imple-
mentation of connectors via reconfiguration for com-
ponent orchestration. Thus, studies such as (Sein-
turier et al., 2012) and (Roth et al., 2018) propose
a way of composing connectors by simplifying the
development of connectors. These approaches are

Uhttps://cvs.disp-lab.fr/demo-approach-spl-dop-
connector

450

design-time or at runtime with the possibility of re-
configuration of the interactions between the entities.

The third aspect deals with the generation of con-
nectors. Inverardi, Tivoli and Autili (Inverardi and
Tivoli, 2013; Autili et al., 2018) propose a method for
automatic synthesis of modular connectors, a compo-
sition of independent primitive sub-connectors called
mediators, which realize a mediation pattern. Propo-
sition like Bencomo et al. (Bencomo et al., 2013)
or Bennaceur and Issarny (Bennaceur and Issarny,
2014) go further by focusing on functionality dis-
covery and automatic generation of connectors on-
the-fly. To this end, both combine machine learning
techniques and ontological reasoning. Bouloukakis ez
al. (Bouloukakis et al., 2019) introduce a solution
for the automated synthesis of mediators that ensure
the interoperability of heterogeneous things, Data eX-
change (DeX) connector model. This solution aims
to devise a generic connector that comprehensively
abstracts and represents the semantics of the various
middleware protocols. Autili et al. (Autili et al., 2019)
define a model-based framework for mediators and an
automated approach to mediator synthesis. the model
takes as input an interaction process, a choreogra-
phy specification and its ontology to produce what is
called coordination delegate.

The state of the art show some limitations that may
constraint open and evolving interoperability. Stud-
ies that address the notion of exogenous connectors
do not explain how to implement them. Solutions
that allow the dynamic reconfiguration of services are
highly focused on orchestration where the connector
is centralized. The notion of exogenous connector is
not put forward for these types of approaches. It is
therefore difficult to change a single connector with-
out impacting other connector’s combination. Ap-
proaches that deal with automatic connector synthesis
for creating connectors are mainly focused on chore-
ography and does not address the orchestration. Our
approach aims to overcome some of the limitations
mentioned in the state of the art.

3 THE CONNECTORS PRODUCT
LINE

3.1 Proposed Software Product Line
Engineering Approach

In accordance of the software product line engineer-
ing, the proposed approach follow two sub-process:
Domain Engineering (DE) and Application Engineer-
ing (AE). Each of the sub-processes can be divided

Automatic Generation of Interoperability Connectors using Software Product Lines Engineering

into two parts, the problem space and the solution
space as illustrated in Fig. 1.

In both sub-processes, we rely on model-driven
engineering (MDE) (Schmidt, 2006). For the DE sub-
process, the architecture of the software product line
is represented by the connector metamodel. In AE
sub-process, the expected connector model is used
for code generation, instead of directly generating
the connector source code. This allows for a higher
level of abstraction and flexibility. Indeed, without
MDE, the SPL would have to directly implement a
main class, in a target programming language, rep-
resenting the connectors commonalities and variabil-
ity. Thus, operations such as adding, deleting or re-
moving can be made to this main class to vary it,
and then generate the connector directly in the pre-
targeted language. This kind of implementation can
be achieved through delta-oriented programming with
tools like DeltaJ (Koscielny et al., 2014). However,
this would be a major constraint in terms of open-
ness and scalability, as some technical choices such
as the target language have to be made upstream. To
avoid this, MDE provides platform independence and
allows source code to be generated a posteriori using
model-to-code transformation techniques to generate
source code in a desired language.

3.2 Description of the Approach

3.2.1 Analysis of Commonalities and Variability
of Connectors

The first step of the DE sub-process corresponds to
the top leftmost box in Fig. 1. This step consists of
identifying the commonalities and variability of the
connectors. To this end, software product line engi-
neering offers three approaches (Bakar et al., 2015):
proactive, reactive, and extractive.

This work is produced with an industrial partner
Berger-Levrault (BL)?, which already operates vari-
ous interoperability connectors: REST API call, En-
terprise Service Bus, event-driven connectors, etc.
Since we are not starting from scratch and are given
the existing connectors, we opted for the extractive
approach. We combine the extractive approach with
the iterative approach for a variability analysis that
goes beyond the existing connectors, and for future
scalability of the connectors product line. The extrac-
tive approach itself can be carried out according to
several extraction strategies according to Assuncdo et
al. (Assungdo et al., 2017). This paper relies on Static

2Berger-Levrault is a software provider specialized in
the fields of education, health, sanitary, social and territorial
management.

Analysis and Expert-Driven strategy extraction strate-
gies.

Static analysis consists of analyzing the structural
information of static artifacts such as source code,
or textual technical and functional specification doc-
uments. To do this, we considered a repository of
twenty connector projects from our industrial part-
ner BL implementing different communication mech-
anisms. For most existing connectors, there is a strong
coupling between the communication and the busi-
ness logic source code. It was therefore necessary
to first carry out a manual separation of concerns
by isolating the connectors codes as much as possi-
ble. This separation of concerns addresses one of our
research questions on separating interaction-specific
source code from business logic (RQ1). Once this
separation is made, we analyzed connectors specifi-
cation documents, even for connectors that are not
yet in use or have not been effectively implemented
by the company. Finally, we collect additional char-
acteristics from the literature such as the EIPs (Hohpe
and Woolf, 2004) book. These three sources allowed
us to define the required features for the connec-
tors. Thus, we have identified that the connector as
a first-class entity is mainly decomposed into three
sub-components: source, sink, and processor which
are common to all connectors. The source is the en-
try point of the connector which receives the message
from an externe component, the sink is the output of
the connector, it sends the message to a component,
the processor is a sub-component which can trans-
form the information that passes through the connec-
tor such as filtering or aggregation. Each of these sub-
components can vary depending on the need for inter-
operability. For example, you may have a rabbitMQ
or an http source, a kafka or ftp sink and an aggre-
gator or message sequencer processor. These com-
monalities and variability make it easier to choose the
SPL for connectors and therefore the positioning of
our paper.

The Expert-Driven strategy relies on the expertise
of specialists e.g. software engineers, architects, de-
velopers, and stakeholders, efc. Experts knowledge
allows us to complete, adjust and validate the ex-
tracted features.

3.2.2 Modeling Connector Variability

The second step of the DE sub-process corresponds to
the second box from the left at the top in Fig. 1. This
step allows to represent the previously analyzed con-
nectors features by highlighting commonalities and
variability. For this purpose, we use a feature model
(FM) (Kang et al., 1990), which present all possible
features to create a connector. For reasons of space

451

ICSOFT 2022 - 17th International Conference on Software Technologies

| Problem Space

| Solution Space |

Commonalities and variability
annalysis of connectors variability

Domain
Engineering

Domain modeling connector

Connector metamodel Delta modules

Do A

4,—‘

Application
Engineering

Expected connector
specification p connector

Code generation
sub- process

Expected connector
model

Figure 1: Overview of the software product line approach to generate connectors. The process presents the domain engineering
(top) and the application engineering sub-process (bottom). For each sub-process the problem space (left) and the solution

space (right) are identified.

and readability, only part of the FM is presented in
Fig. 2. This later remains expandable for future evo-
lution. A more complete FM is available on a public
git repository URL indicated in the introduction.

Legend srcRabbit
 Mandatory
Optional #Source < http
A, OrGroup
A\ Altemative matt
Feature
snkRabbit
#Sink = fip
mongodb
Splitter
Sequencer
/ Normalizer

Connector <
\ Translator

\ _Processor '7* — Aggregator
\ ‘WrapperContent
ClaimCheck
MessageExpiration
ContentFilter
O Topic
_ConfigPropeties

Figure 2: The domain feature model of the connectors that
represents all possible features to create a connector.

3.2.3 The Connectors Software Product Line
Architecture

This is the last step of the DE sub-process, the last
box on top from the left. It is broken down into two
phases.

* The first phase concerns the implementation of the
connector software product line architecture, the
connector metamodel shown in Fig. 3, which is
one of the contributions of this paper. The pro-
posal of a metamodel allows us to assert that con-
nectors are first-class entities rather than an im-
plicit mechanism for interaction between compo-
nents. The connector metamodel is designed ac-
cording to the domain FM. The transition from the

452

domain FM to the connector metamodel is done
manually.

Indeed, the features present in the feature model
become the entities of the metamodel, and differ-
ent constraints and relationships must be main-
tained. The common features, which have a
mandatory constraint, are transformed into an en-
tity whose life cycle depends on that of the con-
nector. This results in a composition relation-
ship between the connector and these common
entities, with the minimum cardinality equal to
one. As far as the optional features are concerned,
they are transformed into non-mandatory entities,
which results in a composition relation with no
minimal cardinality. The other constraints are
represented by simple associations between en-
tities. Features that can take a simple value be-
comes attributes, for example message format can
be JSON or Avro. Due to space limitations and to
stay readable, a portion of the metamodel is pre-
sented in Fig. 3. The complete connector meta-
model is provided via public access on the pro-
vided git repository, and remains expandable to
ensures evolving of the connector product line by
adding new functionalities to the connector fea-
ture model and the corresponding entities in the
metamodel. This extension is done manually.

The second phase focuses on the creation of
reusable operations that specify the modifications
that could be applied to the connector architec-
ture, it metamodel in this case. Indeed, these
operations is due to our implementation choice
which is based on Delta-Oriented Programming
(DOP) (Schulze et al., 2013). The connectors
product lines is represented by a core model, and
a set of delta modules. The core model pro-
vides an implementation of a valid base connec-
tor. It is here about the connector metamodel.

Automatic Generation of Interoperability Connectors using Software Product Lines Engineering

SrcRabbit

SnkRabbit

false

E
USER_CREATED

(1.1]

I

10.*] topic

Connector

groupld : EString

moduleld : EString
Kl ntid : EString

[1..1] sink

false
String

[Splitter Sequencer

Normalizer

sequenceNumber : Eint
sequenceSize : Eint

splitinterval
Eint

I I commonFormat

EString I

aroupTimout : Eint

enabled : EBoolean = false
expression : EString

ou
messageStoreEntity ; EString

Figure 3: The metamodel of the connector representing the connectors software product line architecture. The entities with a

bold border correspond to the expected connector model.

Delta modules specify the changes to be applied
to the core module to create an expected connec-
tor by adding, modifying and deleting entities or
their attributes. This phase consists in creating a
number of delta modules, each of them is created
for a valid configuration of the connector feature
model. Then, for each delta module, the differ-
ence with the metamodel is evaluated that consti-
tute so-called delta actions for later use. It should
be noted that delta actions can be calculated be-
tween two delta modules, i.e., one delta module
is considered as a core model to create another
delta module. In this case, constraints on the or-
der of application of the module deltas are cre-
ated. The industrial case study proposed in Sec. 4
will illustrate the application and use of delta ac-
tions through a concrete case. To create delta
modules and delta actions, we use SiPL (Pietsch
et al., 2015), a model-driven delta-oriented tool
offered on top of the Eclipse modeling framework
(EMF) (Steinberg et al., 2008).

3.2.4 Application Engineering

The AE sub-process leverages the domain engineer-
ing one to create a connector. It consists in four steps.
The first step, the leftmost box at the bottom in Fig. 1
is to specify the desired connector. In the second step,
a stakeholder configures the domain feature model by
selecting the required feature for the connector spec-
ification. The third step, second to last box from the
left, is the synthesis of the expected connector model.
This is done on the basis of the connector product line
architecture, delta modules and constraints created in
the problem space of the DE sub-process, and the
desired connector configuration based on the domain
feature model. Delta actions are created with different
constraints in the DE sub-process. Each delta action
is created for a given configuration. Thus, in the cur-

rent step, all delta actions corresponding to the con-
figuration of the feature model are automatically pro-
posed, while respecting constraints such as the order
of application. The application of these delta actions
allows to automatically obtain the expected connector
model. The connector model is then instantiated to
generate the source code of the connector in the de-
sired language. The last step, last box from the left at
the bottom in Fig. 1 is a sub-process that involves the
use of certain Eclipse-based tools. To transform the
model into code, the Eclipse GenModel tool is used
to generate the model code which then instantiates the
expected connector with property values provided by
a end user.

An example of an application showing concretely
how each step of the entire process works is presented
in the section. 4.

4 INDUSTRIAL CASE STUDY

4.1 Scenario Presentation

To illustrate our approach, we consider a concrete
case study from our industrial partner BL as shown
in Fig. 4. It concerns a part of an information sys-
tem where some internal components have to inter-
act: SaaS-Console, Legibase, and Helios Analyzer
and Helios Scraper. For this purpose, two variable
connectors are needed to answer the research ques-
tion (RQ2).

1. The SaaS-Console is an administration console
that allows the clients to autonomously manage
their accounts and access rights related to the
Software as a Service (SaaS) they use.

2. Legibase is an application that manages practical
fact sheets, articles on the latest legislation and

453

ICSOFT 2022 - 17th International Conference on Software Technologies

case law developments in several areas. Legibase
is used by professionals who need access to the
latest versions of often evolving legislation.

3. The Helios analyzer gathers data from different
information sources such as social network, sci-
entific and political report and integrate these in-
formation in the Helios scrapper database. Helios
Analyzer allows to make a weather forecast of the
latest news.

Fig. 4 shows two connectors that allow the de-
scribed application to interact: an event-driven con-
nector based on publish-subscribe (Tarkoma, 2012)
communication pattern, and an hybrid connector that
combine one event-driven consumer and one syn-
chronous http endpoint.

The objectives of the first connector are to syn-
chronize user access between the SaaS-Console, the
Helios scraper, and the Helios analyzer applications,
and to synchronize data between the Helios scraper
database and the Helios analyzer database. This con-
nector accomplish event-driven communication us-
ing the publish-subscribe pattern. We identify in-
teractions performed by the same connector: SaaS-
Console <+ Helios scrapper, SaaS-Console <+ Helios
analyzer, and Helios scrapper database — Helios an-
alyzer database. The directions of the arrows indicate
in which direction the exchanges are made.

From SaaS-Console to Helios Scraper and Helios
Analyzer and conversely, when the status of a user
account changes in the UserAccessTopic in which
the SaaS-Console has beforehand pushed. An event
is then sent to Helios Scraper and Helios Analyzer
through the connector. Events are then delivered to
consumers subscribed to the topic, in this case He-
lios scraper and Helios analyzer. In this study case,
connectors source consume the event from SaaS-
Console. Upon receiving the event, components sub-
scribed to the topic can consume the message from
the sink of the connector. This is partly the same
as for the flow SaaS-Console to Legibase. The dif-
ference is that for the communication from the con-
nector to Legibase, the connector sink calls the API
exposed by Legibase, upon receiving the event. The
flow from Helios scraper and Helios analyzer operates
in the same way, with the difference that the commu-
nication is between databases and not between busi-
ness applications.

A first effort has been made by our industrial part-
ner BL with the creation of BL-MOM, a messaging-
based API (Application Platform Interface) that aims
to support implementing a new connector according
to the publish-subscribe communication pattern and
based on the RabbitMQ broker. However, to date,
BL-MOM only supports the development of asyn-

454

chronous connectors. Another problem with BL-
MOM is that backwards compatibility is not obvious.
Indeed, our industry partner BL has found that adapt-
ing the BL-MOM API to create connectors based on
a Kafka broker, for example, instead of a RabbitMQ
broker requires an important development cost. In
this specific case, our approach overcomes these lim-
itations in terms of backwards compatibility, connec-
tor type and development time.

The present exchange flow case study is about a
new need to connect the SaaS-Console to Legibase
for access contract management, connect the SaaS-
Console to Helios Scrapper and Helios analyzer for
user access creation and update purpose, and connect-
ing Helios Scrapper and Helios analyzer database for
synchronization.

4.2 Implementation of the Use Case

we consider one of the connectors presented in Fig. 4
to prove the feasibility of our approach, the connec-
tor that enable communication between SaaS-Console
and Legibase components.

1. We need first the specification of the connectors.
For this, we consider the connector that enable
interoperability between SaaS-Console and Leg-
ibase. The objective is to generate a connector
that receives an event concerning user access to
which it is subscribed via a topic and to make a
HTTP call to the Legibase component. It is pos-
sible for the connector to filter some information
thanks to the filter processor as shown in Fig. 4

2. Once the connector specified, the domain feature
model must be configured by selecting the re-
quired features. The configuration is realized us-
ing SiPL tool as explained in Section 3 and Fig. 1.

3. As reminder, in the DE sub-process shown in
Sec. 1, several delta modules have been cre-
ated for different configurations. For each delta
module the difference with the connector meta-
model is calculated to obtain the delta actions, that
must be applied to obtain the model of the ex-
pected connector. The resulting connector model
is shown in Fig. 3, when only the entities with
the bold border are considered. In other words,
the model of the expected connector corresponds
to the metamodel of the connector presented in
Fig. 3, from which several entities have been re-
moved such as: ftp sources, rabbit sink, and all
processors except filter.

4. The last step focuses on the sub-process of trans-
forming the resulting model of the expected con-
nector into code. These codes are generated us-

Automatic Generation of Interoperability Connectors using Software Product Lines Engineering

Helios
scrapper

UserAccessTopic

Helios.
analyser

;
——[(Aum)

DataTopic

Publish-:
Connector

Helios Ser
database

SaaS-Console

Publisher

‘f‘ Database and
H application
y communication

Unidirectional
interoperability

ApplicationRoleTopic f----

Bidirectional
interoperability

Helios Anz
database

Legibase

Content
filter

HTTP endpaint

Rabbit source
HTTP sink

Consumer to REST API
connector with filter

1 Communication
protocol

Data
format

Figure 4: Overview of the industrial use case showing several components that must interact through two variable connectors

based on interoperability requirements.

ing Eclipse GenModel tool. The generated code
represent an API that we can use to manipulate
the model. Next, we create an Eclipse fragment
project to instantiate the model with the required
values for the connector, using the API generated
from the expected connector model , and based
on EarlyBinding techniques. As a result, we get
an instance of connector in the XMI format. To
move on to the automatic generation of the con-
nector code itself, we created a code generator
module with our industrial partner BL. This mod-
ule requires a JSON file as input and generate a
connector code in java. Simply convert the XMI
file to JSON and run the automatic code genera-
tion add-on.

An example of an automatic end-to-end connector
generation project based on the proposed approach
is available on the indicated gitlab repository. The
project contains four sub-projects: feature model-
ing, ecore modeling, delta modeling with SiPL, and
eclipse fragment project.

S DISCUSSION AND LESSONS
LEARNED

The proposed approach helps to reduce the effort re-
quired for the development of connectors by reusing
their commonalities.

We made sure that the analysis of variability was
as complete as possible. For this purpose, we con-
sidered concrete connectors used in the industry, or
open source tools such as Spring Cloud Data Flow
(SCDF) 3, and Kafka Connect . We also retrieved

3https://spring.io/projects/spring-cloud-dataflow
“https://docs.confluent.io/platform/current/connect/ind
ex.html

features found in the literature, such as from the EIPs.
This rigorous analysis of commonalities and variabil-
ity has provided us a feature model that cover a wide
range of connector types. The paper also explains the
transition from a feature model to a software prod-
uct line architecture manually and following rules we
described. We have also shown how to use the fea-
ture model and the product line architecture to easily
create a desired connector. For this purpose, delta-
oriented programming was exploited using the SiPL
tool and other Eclipse tools such as GenModel.

The DE sub-process being set up only once with
punctual evolution, by considering the steps of AE
only, we noted with the presented example that the
generation of source code process based on our ap-
proach take less than one hour. This is very encour-
aging in terms of time saving, as according to feed-
back from BL developers and experts, it takes about a
week for a novice to develop a connector for a single
exchange flow. Although feedback from our indus-
trial partner, BL confirms that an experienced devel-
oper takes less time, about three hours, it is always
advantageous to start with an existing base project,
this reduces, for example, the number of copy/paste
operations that need to be performed without forget-
ting anything. Moreover, the fact of having a common
core codes makes it possible to reduce the number of
tests to be carried out, in fact the base of the product
is tested only once.

6 CONCLUSION

We have adopted model-driven engineering to be plat-
form independent, and have gone as far as possible
with the code generated in Java. In the future we need
to prove the code generation in other languages. We
will also need to be able to manage the life cycle of

455

ICSOFT 2022 - 17th International Conference on Software Technologies

connectors. Indeed, once the connector is generated,
we must be able to make it evolve without having to
regenerate all its source code. Considering life cycle
management, the proposed approach can also be used
for low-coding purposes in component-based connec-
tors such as the SCDF connectors. In this case, we
have a catalog of components sources, sinks, and pro-
cessors to create connectors. The approach could thus
be used to generate configurations allowing the cre-
ation of complex connectors through the composition
of various sub-components.

REFERENCES

Aldrich, J., Chambers, C., and Notkin, D. (2002). Archjava:
Connecting software architecture to implementation.
In Proceedings of the 24th International Conference
on Software Engineering. ICSE 2002, pages 187-197.
IEEE.

Arellanes, D. and Lau, K.-K. (2017). Exogenous connec-
tors for hierarchical service composition. 2017 IEEE
10th Conference on Service-Oriented Computing and
Applications (SOCA), pages 125-132.

Assuncdo, W. K., Lopez-Herrejon, R. E., Linsbauer, L.,
Vergilio, S. R., and Egyed, A. (2017). Reengineer-
ing legacy applications into software product lines: a
systematic mapping. Empirical Software Engineering,
22(6):2972-3016.

Autili, M., Inverardi, P, Spalazzese, R., Tivoli, M.,
and Mignosi, F. (2019). Automated synthesis
of application-layer connectors from automata-based
specifications. Journal of Computer and System Sci-
ences, 104:17-40.

Autili, M., Inverardi, P., and Tivoli, M. (2018). Choreog-
raphy realizability enforcement through the automatic
synthesis of distributed coordination delegates. Sci-
ence of Computer Programming, 160:3-29.

Bakar, N. H., Kasirun, Z. M., and Salleh, N. (2015). Feature
extraction approaches from natural language require-
ments for reuse in software product lines: A system-
atic literature review. Journal of Systems and Soft-
ware, 106:132-149.

Bencomo, N., Bennaceur, A., Grace, P., Blair, G., and Is-
sarny, V. (2013). The role of models@ run. time
in supporting on-the-fly interoperability. Computing,
95(3):167-190.

Bennaceur, A. and Issarny, V. (2014). Automated syn-
thesis of mediators to support component interoper-
ability. IEEE Transactions on Software Engineering,
41(3):221-240.

Bouloukakis, G., Georgantas, N., Ntumba, P, and Is-
sarny, V. (2019). Automated synthesis of mediators
for middleware-layer protocol interoperability in the
iot. Future Generation Computer Systems, 101:1271—
1294.

Clements, P. C. and Northrop, L. M. (2002). Salion, inc.:
A software product line case study. Technical report,

456

Carnegie-Mellon Univ Pittsburgh Pa Software Engi-
neering Inst.

Garcés, L., Oquendo, F., and Nakagawa, E. Y. (2019). Soft-
ware mediators as first-class entities of systems-of-
systems software architectures. Journal of the Brazil-
ian Computer Society, 25(1):1-23.

Hohpe, G. and Woolf, B. (2004). Enterprise integration pat-
terns: Designing, building, and deploying messaging
solutions. Addison-Wesley Professional.

Inverardi, P. and Tivoli, M. (2013). Automatic synthesis of
modular connectors via composition of protocol medi-
ation patterns. In 2013 35th International Conference
on Software Engineering (ICSE), pages 3—12. IEEE.

Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E.,
and Peterson, A. S. (1990). Feature-oriented domain
analysis (foda) feasibility study. Technical report,
Carnegie-Mellon Univ Pittsburgh Pa Software Engi-
neering Inst.

Koscielny, J., Holthusen, S., Schaefer, 1., Schulze, S., Bet-
tini, L., and Damiani, F. (2014). Deltaj 1.5: delta-
oriented programming for java 1.5. In Proceedings of
the 2014 International Conference on Principles and
Practices of Programming on the Java platform: Vir-
tual machines, Languages, and Tools, pages 63-74.

Mehta, N. R., Medvidovic, N., and Phadke, S. (2000). To-
wards a taxonomy of software connectors. In Pro-
ceedings of the 22nd international conference on Soft-
ware engineering, pages 178—187.

Pietsch, C., Kehrer, T., Kelter, U., Reuling, D., and Ohrn-
dorf, M. (2015). Sipl-a delta-based modeling frame-
work for software product line engineering. In 2015
30th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE), pages 852—857.
IEEE.

Roth, E. M., Becker, C., Vega, G., and Lalanda, P. (2018).
Xware—a customizable interoperability framework
for pervasive computing systems. Pervasive and mo-
bile computing, 47:13-30.

Schmidt, D. C. (2006). Model-driven engineering.
Computer-IEEE Computer Society-, 39(2):25.

Schulze, S., Richers, O., and Schaefer, I. (2013). Refactor-
ing delta-oriented software product lines. In Proceed-
ings of the 12th annual international conference on
Aspect-oriented software development, pages 73-84.

Seinturier, L., Merle, P., Rouvoy, R., Romero, D., Schi-
avoni, V., and Stefani, J.-B. (2012). A component-
based middleware platform for reconfigurable service-
oriented architectures. Software: Practice and Expe-
rience, 42(5):559-583.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M.
(2008). EMF: eclipse modeling framework. Pearson
Education.

Tarkoma, S. (2012). Publish/subscribe systems: design and
principles. John Wiley & Sons.

