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Abstract: In recent years, interest in artificial intelligence and the integration of Industry 4.0 technologies to improve 
and monitor steel production conditions has increased. In the current scenario of the world economy, where 
the prices of energy and inputs used in industrial processes are increasingly volatile, strict control of all stages 
of the production process is of paramount importance. For the steel production process, the temperature of 
the metal in the liquid state is one of the most important parameters to be evaluated, since its lack of control 
negatively affects the final quality of the product. Every day, several models are proposed to simulate 
industrial processes. In this sense, data mining and the use of artificial neural networks are competitive 
alternatives to solve this task. In this context, the objective of this work was to perform data mining in a Big 
Data with more than 300,000 pieces of information, processing them using an artificial neural network and 
probabilistic reasoning. It is concluded that data mining and neural networks can be used in practice as a tool 
for predicting and controlling impurities during the production of hot metal in a blast furnace. 

1 INTRODUCTION 

The blast furnace is a chemical-metallurgical reactor 
used to produce molten iron, which is the product 
formed by the reduction of metallic oxides that 
chemically react with reducing elements such as 
carbon monoxide (CO) and hydrogen gas (H2) 
(Chizhikova and Best, 2020). 

Blast furnaces are chemical metallurgical reactors 
for the production of pig iron and slag. Pig iron is 
obtained in a liquid state and consists of iron (92 to 
95%), carbon (3 to 4.5%) and impurities such as 
sulphur, phosphorus and silica (Arif and Ahmad, 
2021).  

The raw materials used (metallic feedstock) are 
sinter, granulated ore and pellets. The main fuel is 
metallurgical coke. All these materials are loaded 
through the upper part of the reactor, with hot air 
blown into the lower section (Zhao et al., 2020).  

The injected hot air gasifiers the coke and 
produces CO reducing gas and a large amount of heat 
that rises upwards in counter current to the descent of 
the charge, providing heating, reduction and melting 
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of the metallic charge. Pulverized coal is used as an 
additional fuel, which is blown in together with hot 
air (Blotevogel, 2021). 

The preheated air with a temperature of about 
1200°C is blown through the blast tuyeres of the blast 
furnace and comes into contact with the coke in the 
raceway area. The contact of the oxygen in the air 
with the carbon of the coke heated to 1500°C first 
leads to a reaction that produces carbon dioxide (CO2) 
(Zhang et al., 2019a).  

This highly exothermic reaction generates a large 
amount of heat for the process. The carbon dioxide 
immediately reacts with the carbon in the coke to 
form carbon monoxide (CO), according to the loss-
of-solution or Boudouard reaction (C + CO2 → 2CO), 
which is very endothermic (Cardoso et al., 2021b). 

The moisture contained in the injected air reacts 
with the carbon in the coke to produce the reducing 
gases CO and H2. Although these reactions are 
endothermic, i.e. proceed under heat absorption, the 
exit of the reducing gases from the duct effectively 
results in a high heat input into the process, producing 
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flame temperatures in excess of 2000°C (Fontes et al., 
2020; Cardoso et al., 2021a; Cardoso et al., 2022).  

On the rest of the way through the furnace, the 
rising gas gives off heat to the descending metal 
layers and leaves the furnace with temperatures in the 
order of 100 to 150°C (Kurunov, 2019). 

Due to the different heat requirements for a 
number of chemical reactions taking place at different 
levels in the furnace, the temperature profile takes on 
a characteristic shape: an upper preheating zone (0-
800ºC) separated from a lower melting zone (900-
1500ºC) and a vertical thermal reserve zone whose 
temperature is in the range of 800-1000ºC (Ibragimov 
et al., 2019; Kong et al., 2021).  

The thermal reserve zone, where there is little heat 
exchange between gas and solids, occupies 40-50% 
of the total height of the furnace (Kurunov, 2018). 

The nature of the countercurrent process allows a 
highly reducing gas (high content of CO) to contact 
the metallic mineral wustite, which has the lowest 
oxygen potential of the iron oxides, and then hematite 
and magnetite in the upper zone to be reduced by a 
gas with a lower reduction potential (Li et al., 2021a).  

Since CO2 is the end product of carbon 
combustion, the more oxygen that is removed, the 
more complete the utilisation of the thermal and 
chemical energy of the carbon (Li et al., 2021b). 

These reactions are called indirect reduction, and 
the overall reaction is slightly exothermic. If some of 
the wustite remains unreduced, it is further reduced 
by direct reduction in the range where temperatures 
exceed 1000°C (Matino et al., 2019a). 

The high temperature ramp gas generated in the 
combustion zone (the tuyeres region) causes heating 
of the charge, decomposition reactions and reduction 
of oxides during its ascent in the blast furnace. As a 
result, the temperature of the gas gradually decreases 
while its chemical composition changes (Muraveva et 
al., 2021; Pavlov et al., 2019). 

First, near the charge level, the charge undergoes 
moisture evaporation and preheating. When the 
charge decreases, the reduction of iron oxides takes 
place. In the softening and melting zone, in the area 
of the lower vat and the belly, begins the softening 
and melting of the charge, which develops to the 
crucible (Cardoso et al., 2022). 

The pig iron (hot metal) and slag that are in the 
crucible are removed at controlled intervals through 
the running holes. In the area of the tuyeres, the coke 
gradually decreases in size as it burns (Rasul et al., 
2007; Saxén and Pettersson, 2007).  

Together with the fusion of the materials that 
make up the charge, this causes the level in the blast 

furnace to drop, so that a new charge has to be 
conveyed at the top (Semenov et al., 2020). 

Coke is considered the permeabilizer of the blast 
furnace charge. This role cannot be assumed by any 
other fuel, as coke is the only material capable of 
maintaining the permeability of the bed to the 
ascending gas, as well as that of the descending liquid 
slag and hot metal (Tan et al., 2020).  

Coke remains solid under the high-temperature 
conditions prevailing in the oven and maintains levels 
of resistance to the different stresses it undergoes 
inside the oven. This allows it to maintain a suitable 
size and size distribution for good permeability, 
without which the manufacture of pig iron in a blast 
furnace would be impossible (Cardoso el al., 2022). 

However, the thermal and chemical roles can be 
played, in part, by other liquid fuels (petroleum fuel 
oil and coal tar), gaseous with high calorific value 
(reducing gas, natural gas, and coke oven gas) or 
solids (mainly, mineral coal), injected through the 
tuyeres of the kiln. Thus, these auxiliary fuels also 
participate as sources of heat and reducing gas for the 
process. Figure 1 illustrates the working principle of 
a blast furnace: 

 
Figure 1: Blast furnace working principle. 

Blast furnace monitoring is of paramount 
importance in the production of a quality product. 
Sulfur in steel is an undesirable residue that 
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negatively affects properties such as ductility, 
toughness, weldability and corrosion resistance.  

In recent years, the demand for steels with higher 
toughness and ductility has increased, and low sulfur 
levels are important to achieve these properties. 
Furthermore, sulfur may play an important role in 
some corrosion processes in steel. 

Therefore, in the production of steel for the pipe 
and automotive industries, for example, the control of 
the sulfur content is fundamental. The production of 
low sulfur steel is of utmost importance for 
shipbuilding and pipelines for the oil industry. This 
requires high production control in the blast furnace 
and an efficient desulfurization process at the lowest 
possible cost. 

In the field of technology and modelling, in 
addition to predicting the effects of changes in 
production parameters, several blast furnace 
simulation models have been developed with the aim 
of improving production conditions, including two- 
and three-dimensional models that allow progress and 
detailed information on fluid flow and mass and heat 
balances within the blast furnace. 

Considering the existing difficulties in the field of 
simulation of complex processes, the application of 
solutions based on neural networks has gained space 
due to its diversity of application and increase in the 
reliability of responses, since the neural network 
receives new data in the operating process/training 
without necessarily drawing conclusions about values 
or types of interaction between raw materials for the 
use of neural models. 

In computer science and related fields, artificial 
neural networks are computational models inspired 
by an animal's central nervous system (in particular 
the brain) that are capable of performing machine 
learning as well as pattern recognition. Artificial 
neural networks are generally presented as systems of 
"interconnected neurons, which can compute input 
values", simulating the behaviour of biological neural 
networks. Figure 2 illustrates an artificial neural 
network. 

 
Figure 2: Artificial neural network. 

The objective of this work is to mine a database 
and numerically simulate an artificial neural network 
with 25 neurons in the hidden layer. 

2 RESEARCH METHOD 

The database used for numerical simulation 
corresponds to 11 years of reactor operation. Big Data 
contains 301,125 pieces of information divided into 
75 variables. The neural network input is composed 
of 74 input variables and 1 output variable. 

The artificial neural network has a structure 
similar to Figure 3 with a simple layer and 25 neurons 
in the hidden layer, using the Levenberg-Marquardt 
training algorithm, and a sigmoid activation function. 

  
Figure 3: Artificial neural network architecture. 

According to the literature, 85% of the database 
should be used to train and validate the neural 
network and the remaining 15% will be used to test 
the model's predictive capacity during the test step. 
Table 1 illustrates the database division. Table 2 to 8 
illustrates the input variable and Table 9 illustrates the 
output variable 

Table 1: Division of samples. 

Step Samples 

Training 210.789 
Validation   45.168 

Test   45.168 

Table 2: Blast Furnace Gas. 

Variable Mean Std_dev 

CO (%) 23.8 0.74 
CO2 (%) 24.3 0.66 
N2 (%) 47.2 1.39 
H2 (%) 4.50 0.43 
CO + CO2 47.9 0.6 
CO efficiency (%) 49.5 0.85 
H2 efficiency (%) 40.7 3.25 
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Table 3: Hot metal. 

Variable Mean Std_dev 

Estim. Production (ton) 7789.5 314.5
Real production (ton) 7787.2 324.5
Carbon (%) 4.635 0.169
Chrome (%) 0.025 0.002
Copper (%) 0.007 0.001
Manganese (%) 0.29 0.03
Mn ratio (-) 0.13 0.22

Table 4: Slag. 

Variable Mean Std_dev 

Slag rate (kg/ton) 246.99 13.74
B2 basicity (-) 1.2 0.04
B4 basicity (-) 1.07 0.04
Al2O3  (%) 10.71 0.62
CaO (%) 43.06 1.55
Sulfur (%) 1.15 0.14
FeO (%) 0.42 0.04
MgO (%) 6.83 0.86
MnO (%) 0.31 0.1
SIO2 (%) 36.05 1.36
TIO2 (%) 0.58 0.05
Production (ton) 1980.6 190.8
Mn ratio (-) 0.87 0.22

Table 5: Fuel. 

Variable Mean Std_dev 

Injection PCI (kg/ton) 58.99 6.16 
Gas rate (kg/ton) - - 
Coal/O2 tax (-) 755.27 75.57 
Coal/air tax (-) 170.03 74.12 
PCI rate 175.98 15.61 
Direct reduction (%) 23.38 12.41 
PCI tax (kg/ton) 1078.3 540.9 
Coke total (kg/ton) 1932.2 911.7 
Small coke (kg/ton) 294.63 134.86 
Coke 1 (kg/ton) 210.7 259.8 
Coke 2 (kg/ton) 742 716 
Coke 3 (kg/ton) 946 956 
Coke 4 (kg/ton) 1878 143 
Coke 5 (kg/ton) 1327.5 847.6 
Moisture (kg/ton) 6.4 1.41 
Coke/load (kg/ton) 11.89 9.56 
Small coke total (kg/ton) 4.28 0.03 
PCI/load (kg/ton) 174.74 14.32 
Fuel rate/load (kg/ton) 484.08 18.14 
Coke total/load (kg/ton) 24.52 0.89 
PCI/day (-) 1214.4 44.9 
Coke rate (kg/ton) 319.68 25.98 

Table 6: Thermal control. 

Variable Mean Std_dev 

Hot metal (°C) 1508.3 12.2
Blowing air (°C) 1243.3 13.9
Top gas (°C) 121,35 10,34
Flame temperature (°C) 2177.6 2108
Slag 1508.3 12.2
Thermal index (-) 504.7 54.03

Table 7: Minerals. 

Variable Mean Std_dev 

Ore/Coque (-) 5.1 0.31
Sinter 1 (ton) 4536.3 884.2
Sinter 2 (ton) 1697.2 1326.2
Pellet 1 (ton) 5132 1898.3
Pellet 2 (ton) 4813.7 2183.1
Total metal load (ton) 12312 670
Raw material rate 1578.8 15.1
Ore (%) 8.9 4.5
Sinter (%) 39.6 2.8
Pellet (%) 51.5 5.1
Ore (day) 12747 703

Table 8: Blow air. 

Variable Mean Std_dev 

Volume (Nm3/min) 4852.9 148.6
Pressure (Kgf/cm2) 3.87 0.1
Moisture (kg/m3) 19.81 3.73
O2 enrichment (%) 5.27 0.95
Steam (%) 1.51 1.01
Comsumption (Nm3/min) 7030.3 213.6

Table 9: Sulfur output (%). 

Mean 0.023 
Standard deviation 0.008 
Minimum 0.008 
Median 0.021 
Maximum 0.083 
Skewness 1.5 
Kurtosis 4.8 

The method used to evaluate the quality of the 
neural network model was the RMSE (root mean 
square error). Small values close to zero indicate 
better predictive capacity of the model. Pearson's 
mathematical correlation coefficient (R) was also 
used to validate the mathematical models.  

RMSE = ටଵ୬ ∑ (C୬ୣ୳୰ୟ୪ − C୰ୣୟ୪ )ଶ୬୧ୀଵ         (1) 
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R = ඩ൥෍(C୬ୣ୳୰ୟ୪ − C୰ୣୟ୪ )ଶ୬
୧ୀଵ ൩ ൥෍(C୰ୣୟ୪ − C୬ୣ୳୰ୟ୪ )ଶ୬

୧ୀଵ ൩൙   
 (2) 

The RMSE mathematical equation is presented in 
Eq(1) and Pearson's mathematical correlation 
coefficient is presented in Eq(2). 

3 RESULTS AND DISCUSSION 

The sulfur prediction model presented greater 
difficulty in the prediction, but even so, the result was 
excellent compared to the literature. There was no 
evidence of overfitting or underfitting in the hot metal 
sulfur prediction model.  

There was no discrepancy between the RMSE 
values for the training, validation and testing phases. 
The artificial neural network required a maximum of 
687 epochs to converge the model, indicating greater 
complexity to stabilize the error values. 

The mathematical correlation (R) and the RMSE 
of the artificial neural network is shown in Table 10 e 
Table 11 and confirms an excellent correlation value. 
Figure 4 illustrates the dispersion between the values 
calculated by the neural network and the values of Big 
Data. 

Table 10: Root Mean Square Error. 

Overall 0.0027 
Training 0.0031 

Validation 0.0030 
Testing 0.0031 

Table 11: Pearson’s correlation coefficient. 

Overall 0.9632 
Training 0.9682 

Validation 0.9660 
Testing 0.9373 

 

  
Figure 4: Scatterplot sulfur. 

From a metallurgical point of view Most of the 
sulfur contained in hot metal (about 80%) is 
introduced into the blast furnace by the metallurgical 
coke in the form of iron sulfide (FeS) and calcium 
sulfide (CaS) contained in the coke ash, and as 
organic sulfur. The rest comes via the other materials 
in the metallic charge and the fluxes.  

In blast furnaces fed with metallurgical coke, 
about 90 to 80% of the sulfur is part of the chemical 
composition of the slag, while 10% to 15% is 
precipitated with the blast furnace gas and values 
between 2% and 5% dissolve in the hot metal. Recent 
studies have shown that the main mechanism of sulfur 
reactions is very similar to that of silicon.  

Small amounts of sulfur are also absorbed by the 
slag in the area of the blast furnace channel. It should 
also be mentioned that sulfur forms other compounds 
such as sulfur dioxide (SO2) and carbon disulfide 
(CS), which are also transported by the gas stream 
and undergo chemical reactions. However, it must be 
emphasized that among sulfur gasses, silicon sulfide 
(SiS) is the dominant species. 

In the blast furnace raceway, the sulfur produced 
reacts with calcium (Ca), silicon (Si), and iron (Fe) 
according to Eq.3, Eq. 4, and Eq. 5. The chemical 
reaction that removes sulfur from the hot metal is 
often represented by Eq. 6. CaS(ୟୱ୦ ୡ୭୩ୣ)  +  SiO(g) →  SiS(g) +  CaO (3) FeS + SiO + C →  SiS + CO + Fe  (4) SiS(g)  →  [Si]  + [S]   (5) S + (CaO) +  C →  (CaS)  +  CO(g)   (6) 

The transfer of sulfur from the gasses to the hot 
metal takes place in an area of the blast furnace 
known as the dripping zone. Inside the blast furnace, 
in the softening and melting zone, when silicon and 
sulfur-containing hot metal droplets percolate 
through the slag, in the absence of MnO, the silicon 
content of the hot metal increases and no transfer of 
sulfur occurs.  

However, in the presence of MnO, silicon is 
removed from the hot metal and the transfer of 
manganese from the slag to the metal occurs together 
with the transfer of sulfur from the metal to the slag. 
Literature states that gasses such as SiO and SiS are 
formed in the beneficiation zone, while silicon and 
sulfur are transferred to the hot metal in the 
combustion zone.  

Silicon is reduced by FeO and MnO and dissolved 
in the slag while the hot metal droplets penetrate the 
slag layer. It should be mentioned that CaO has a 
much greater desulfurization potential than MgO, 
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about 100 times stronger.  It should also be noted that 
for proper desulfurization, the oxygen content of the 
metal must be very low.  

This is possible due to the reaction of oxygen 
dissolved in the hot metal with strong oxide forming 
elements. Thus, if considering the oxide-forming 
elements, may write the following reactions given in 
Eq. 7, Eq. 8, and Eq. 9.  (CaO)  + [S]  + [C]  → (CaS)  +  CO(g)  (7) (CaO)  +  [S]  + [Mn]  → (CaS)  +  (MnO)  (8) (CaO)  +  [S]  +  0,5[Si]  → (CaS)  +  0,5(SiOଶ)     (9) 

The increase of the basicity of the slag increases 
the CaO activity and favors desulfurization. Low FeO 
concentrations in the slag favor the incorporation of 
sulfur into the hot metal. Carbon and silicon dissolved 
in the hot metal favor desulfurization by increasing 
the thermodynamic activity of sulfur in the slag.  

Considering all this information and the fact that 
sulfur is an extremely harmful chemical element for 
steel, the use of a ANN to predict sulfur in metal 
production is justified. 

4 CONCLUSIONS 

Regarding simulation methods for predicting process 
variables, the increasing development of 
computational capacity, leading to cheaper and more 
powerful equipment, is driving the development of 
more complex algorithms with better results, such as 
neural networks. 

Thus, the progress in computational capacity 
enabled the development of different types of 
simulation models.  

This is one of the factors that enabled the use of 
the ANN model in this study, as well as the 
identification of the main variables that affect the 
model. 

The processing of the data to be used for the 
development of the model is highlighted as an 
important part of the process, which is sometimes a 
slow process since the information must be evaluated 
to find the best way to identify outliers for the 
development of models. 

However, it is important to emphasize that the 
model in isolation may predict good results for each 
of the target variables. It should be noted that the use 
of the above modelling technique has enabled the 
construction of higher fidelity models that may be 
used as tools for decision making and operational 
planning related to fuel economy, operational 

stability, and delivery of a product for steelmaking 
and help improve process monitoring. 

In short, neural networks may be used in practice 
because the model is both a predictive tool and a 
guide for operation due to the excellent correlations 
between the real values and the values computed by 
the neural network. 

REFERENCES 

Arif, M. S.; Ahmad, I. Artificial Intelligence Based 
Prediction of Exergetic Efficiency of a Blast Furnace. 
Computer Aided Chemical Engineering, v.50, pp. 
1047-1052, 2021.  

Bai, Y.; Tan, M. Dynamic committee machine with fuzzy-
C-means clustering for total organic carbon content 
prediction from wireline logs. Computers & 
Geosciences, v.146, pp. 104626, 2021.  

Blotevogel, S. Glass structure of industrial ground 
granulated blast furnace slags (GGBS) investigated by 
time-resolved Raman and NMR spectroscopies. Journal 
of Materials Science, v.56, pp. 17490-17504, 2021  

Cardoso, W.; Baptista, R.; di Felice, R. Artificial Neural 
Networks for Modelling and Controlling the Variables 
of a Blast Furnace. In IEEE 6th International Forum on 
Research and Technology for Society and Industry 
(RTSI), pp. 148-152, 2021b.  

Cardoso, W.; Baptista, R.; di Felice, R. Artificial neural 
network for predicting silicon content in the hot metal 
produced in a blast furnace fueled by metallurgical 
coke. Materials Research, v.25, pp. 20210439, 2022,  

Cardoso, W.; Baptista, R.; di Felice, R. Mathematical 
modeling of a solid oxide fuel cell operating on biogás. 
Bulletin of Electrical Engineering and Informatics, 
v.10, n.06, pp. 2929-2942, 2021c.  

Cardoso, W.; Barros, D.; Baptista, R.; di Felice, R. 
Mathematical Modelling to Control the Chemical 
Composition of Blast Furnace Slag Using Artificial 
Neural Networks and Empirical Correlation. IOP 
Conference Series: Materials Science and Engineering, 
v.1203, pp. 032096, 2021a.  

Cardoso, W.; di Felice, R. Prediction of silicon content in 
the hot metal using Bayesian networks and probabilistic 
reasoning. International Journal of Advances in 
Intelligent Informatics, v.07, n.03, pp. 268-281, 2021d. 

Carro, K. B.; Leite, G. R.; Oliveira, A. G.; Santos, C. B.; 
Pinto, I. S.; Fux, B.; Falqueto, A. Assessing geographic 
and climatic variables to predict the potential 
distribution of the visceral leishmaniasis vector 
Lutzomyia longipalpis in the state of Espı́rito Santo, 
Brazil. Plos One, v.15, n.9, e0238198, 2020.  

Chen, M.; Wan, X.; Shi, J.; Taskinen, P.; Jokilaakso, A. 
Experimental Study on the Phase Relations of the SiO2-
MgO-TiO2 System in Air at 1500°C. JOM, v.74, pp. 
676–688, 2022  

Chizhikova, V. M. Best Available Techniques in the Blast-
Furnace Production. Metallurgist, v.64, pp. 13-35, 
2020.  

Prediction of Sulfur in the Hot Metal based on Data Mining and Artificial Neural Networks

405



Ducic, N.; Jovicic, A.; Manasijevic, S.; Radisa, R.; 
Cojbasic, Z.; Savković, B. Application of Machine 
Learning in the Control of Metal Melting Production 
Process. Applied Sciences, v.10, n.17, pp. 6048-6063, 
2020.  

Fontes, D. O. L.; Vasconcelos, L. G.; Brito, R. P. Blast 
furnace hot metal temperature and silicon content 
prediction using soft sensor based on fuzzy C-means 
and exogenous nonlinear autoregressive models. 
Computers & Chemical Engineering, 141, 107028, 
2020.  

He, F.; Zhang, L. Prediction model of end-point phosphorus 
content in BOF steelmaking process based on PCA and 
BP neural network. Journal of Process Control, v.66, 
pp. 51-58, 2018.  

Hou, Y.; Wu, Y.; Liu, Z.; Han, H.;  Wang, P. Dynamic 
multi-objective differential evolution algorithm based 
on the information of evolution progress. Science China 
Technological Sciences, v.64, n.08, pp. 1676–1689, 
2021.  

Ibragimov, A. F.; Iskhakov, I. I.; Skopov, G. B.; 
Kirichenko, A. N. Using Oxygen-Enriched Blast 
During the Operation of Shaft Furnaces of the 
Mednogorsk Copper–Sulfur Combine LLC. 
Metallurgist, v.63, pp. 62-69, 2019. 

Jantre, S. R.; Bhattacharya, S.; Maiti, T. Quantile 
Regression Neural Networks: A Bayesian Approach. 
Journal of Statistical Theory and Practice, v.15, n.03, 
pp. 01-31, 2021.  

Jiang, Y.; Zhou, P.; Yu, G. Multivariate molten iron quality 
based on improved incremental Randon vector 
functional-link networks. IFAC PapersOnLine, pp. 
290-294, 2018.  

Kang, Y. B. Progress of Thermodynamic Modeling for 
Sulfide Dissolution in Molten Oxide Slags: Sulfide 
Capacity and Phase Diagram. Metallurgical and 
Materials Transactions B, v.52, n.05, pp. 2859-2882, 
2021.  

Kina, C.; Turk, K.; Atalay, E.; Donmez, I.; Tanyildizi, H. 
Comparison of extreme learning machine and deep 
learning model in the estimation of the fresh properties 
of hybrid fiber-reinforced SCC. Neural Computing and 
Applications, v.33, n.18, pp. 11641-11659, 2021.  

Kong, W.; Liu, J.; Yu, Y.; Hou, X.; He, Z. Effect of 
w(MgO)/w(Al2O3) ratio and basicity on microstructure 
and metallurgical properties of blast furnace slag. 
Journal of Iron and Steel Research International, v.28, 
n.10, pp. 1223-1232, 2021.  

Kurunov, I. F. Ways of Improving Blast Furnace Smelting 
Efficiency with Injection of Coal-Dust Fuel and Natural 
Gas. Metallurgist, v.61, n.09, pp. 736–744, 2018.  

Li, J.; Hua, C.; Qian, J.; Guan, X. Low-rank based Multi-
Input Multi-Output Takagi-Sugeno fuzzy modeling for 
prediction of molten iron quality in blast furnace. Fuzzy 
Sets and Systems, v. 421, pp. 178-192, 2021.  

Li, W.; Zhuo, Y.; Bao, J.; Shen, Y. A data-based soft-sensor 
approach to estimating raceway depth in ironmaking 
blast furnace. Powder Technology, v.390, pp. 529-538, 
2021. 

Li, Y.; Zhang, J.; Zhang, S.; Xiao, W. Dual ensemble online 
modeling for dynamic estimation of hot metal silicon 
content in blast furnace system. ISA Transactions, 
2022, article in press.  

Liang, W.; Wang, G.; Ning, X.; Zhang, J.; Li, Y.; Jiang, C.; 
Zhang, N. Application of BP neural network to the 
prediction of coal ash melting characteristic 
temperature. Fuel, v.260, 116324, 2020.  

Liu, Y.; Wang, Y.; Chen, L.; Zhao, J.; Wang, W.; Liu, Q. 
Incremental Bayesian broad learning system and its 
industrial application. Artificial Intelligence Review, 
v.54, n.05, 2021. 

Matino, I.; Dettori, S.; Colla, V.; Weber, V.; Salame, S. 
Two innovative modelling approaches in order to 
forecast consumption of blast furnace gas by hot blast 
stoves. Energy Procedia, v.158, pp. 4043-4048, 2019a. 

Matino, I; Dettori, S; Colla, V; Weber, V.; Salame, S. 
Application of Echo State Neural Networks to forecast 
blast furnace gas production: pave the way to off-gas 
optimized management, Energy Procedia, v.158, pp. 
4037-4042, 2019b.  

Matino, I; Dettori, S; Colla, V; Weber, V.; Salame, S. 
Forecasting blast furnace gas production and demand 
through echo state neural network-based models: Pave 
the way to off-gas optimized management, Applied 
Energy, v.253, pp. 113578, 2019c.  

Mhaya, A. M.; Huseien, G. F.; Faridmehr, I.; Abidin, A. R.; 
Alyousef, R.; Ismail, M. Evaluating mechanical 
properties and impact resistance of modified concrete 
containing ground Blast Furnace slag and discarded 
rubber tire crumbs. Construction and Building 
Materials, v. 295, pp. 123603, 2021.  

Muchnik, D. A.; Trikilo, A. I.; Lyalyuk, V. P.; Kassim, D. 
A. Coke Quality and Blast-Furnace Performance. Coke 
and Chemistry, v.61, pp. 12-18, 2018. 

Muraveva, I. G.; Togobitskaya, D. N.; Ivancha, N. G.; 
Bel’kova, A. I.; Nesterov, A. S. Concept Development 
of an Expert System for Selecting the Optimal 
Composition of a Multicomponent Blast-Furnace 
Charge and Functional and Algorithmic Structure. Steel 
in Translation, v.51, pp. 33-38, 2021.  

North, L.; Blackmore, K.; Nesbitt, K.; Mahoney, M. R. 
Methods of coke quality prediction: A review. Fuel, 
v.219, pp. 426-445, 2018.  

Oliveira, A. G.; Totola, L. B.; Bicalho, K. V.; Hisatugu, W. 
H. Prediction of compression index of soft soils from 
the Brazilian coast using artificial neural networks and 
empirical correlations. Soils and Rocks, v.43, pp. 109-
121, 2020.  

Pandey, T. N.; Jagadev, A. K.; Dehuri, S.; Cho, S. B. A 
novel committee machine and reviews of neural 
network and statistical models for currency exchange 
rate prediction: An experimental analysis. Journal of 
King Saud University - Computer and Information 
Sciences, v.32, n.9, pp. 987-999, 2020.  

Pavlov, A. V.; Polinov, A. A.; Spirin, N. A.; Onorin, O. P.; 
Lavrov, V. V.; Gurin, I. A. Decision-Making Support 
in Blast-Furnace Operation. Steel in Translation, v.49, 
n.3, pp. 185-193, 2019.   

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

406



Quesada, D.; Valverde, G.; Larrañaga, P.; Bielza, C. Long-
term forecasting of multivariate time series in industrial 
furnaces with dynamic Gaussian Bayesian networks, 
Engineering Applications of Artificial Intelligence, 
v.103, pp. 104301, 2021.  

Radhakrishnan, V. R.; Mohamed, A. R. Neural networks 
for the identification and control of blast furnace hot 
metal quality. Journal of Process Control, v.10, n.6, pp. 
509-524, 2000.  

Rasul, M. G.; Tanty, B. S.; Mohanty, B. Modelling and 
Analysis of Blast Furnace Performance for Efficient 
Utilization of Energy. Applied Thermal Engineering, 
v.27, n.01, pp. 78-88, 2007.  

Reynolds, Q. G.; Rhamdhani, M. A. Computational 
Modeling in Pyrometallurgy: Part I. JOM, v.73, n.9, pp. 
2658-2659, 2021.  

Rhamdhani, M. A.; Reynolds, Q. G. Computational 
Modeling in Pyrometallurgy: Part II. JOM, v.73, n.9, 
pp. 2885-2887, 2021.  

Saxén, H.; Pettersson, F. Nonlinear Prediction of the Hot 
Metal Silicon Content in the Blast Furnace. ISIJ 
International, 47, n.12, pp. 1732-1737, 2007.  

Semenov, Y. S.; Gorupakha, V. V.; Kuznetsov, A. M.; 
Semion, I. Y.; Schumel’chik, E. I.; Vashchenko, S. V.; 
Khudyakov, A. Y. Experience of Using Manganese-
Containing Materials in Blast-Furnace Charge. 
Metallurgist, v.63, n.9, pp. 1013-1023, 2020.  

Sohn, S. K. I. Application of complex systems topologies 
in artificial neural networks optimization: An overview, 
Expert Systems with Applications, v.180, pp. 115073, 
2021.  

Souza, P. V. C. Fuzzy neural networks and neuro-fuzzy 
networks: A review the main techniques and 
applications used in the literature, Applied Soft 
Computing, v.92, pp. 106275, 2020.  

Stein, S.; Leng, C.; Thornton, S.; Michel, R. A guided 
analytics tool for feature selection in steel 
manufacturing with an application to blast furnace top 
gas efficiency. Computational Materials Science, 
v.186, pp. 110053, 2021.  

Tan, M.; Bai, Y.; Zhang, H.; Li, G.; Wei, X.; Wang, A. 
Fluid typing in tight sandstone from wireline logs using 
classification committee machine. Fuel, v.271, pp. 
117601, 2020.  

Tao, J.; Yu, Z.; Zhang, R.; Gao, F. RBF neural network 
modeling approach using PCA based LM–GA 
optimization for coke furnace system, Applied Soft 
Computing, v.111, pp. 107691, 2021.  

Völker, C.; Firdous, R.; Stephan, D.; Kruschwitz, S. 
Sequential learning to accelerate discovery of alkali-
activated binders. Journal of Materials Science, v.56, 
n.28, pp. 15859–15881, 2021.  

Wang, Y. H.; Zhang, H.; Jiang, Z. G.; Zhao, G. Research of 
Coke Rate Prediction of Blast Furnace Based on 
Operative Characteristics of Auxiliary Resources. 
Advanced Materials Research, v.605-607, pp. 1792-
1797, 2012.  

Wong, P. K.; Zhong, J.; Yang, Z.; Vong, C. M. Sparse 
Bayesian extreme learning committee machine for 

engine simultaneous fault diagnosis. Neurocomputing, 
v.174, Part A, pp. 331-343, 2016.  

Xu, Z. J.; Zheng, Z.; Gao, X. Q. Operation optimization of 
the steel manufacturing process: A brief review. 
International Journal of Minerals, Metallurgy and 
Materials, v. 28, n.8, pp. 1274-1287, 2021. 

Yi, Z.; Liu, Q.; Shao, H. Effect of MgO on Highly Basic 
Sinters with High Al2O3. Mining, Metallurgy & 
Exploration, v.38, n.5, pp. 2175–2183, 2021.  

Zablotskii, P. A.; Petrenko, V. A.; Kovshov, V. N. 
Procedure for Numerical Optimization of Blast-
Furnace Charging Parameters Using a Mathematical 
Three-Factor Model. Metallurgist, v.61, n.3, pp. 175–
178, 2017.   

Zhai, X.; Chen, M.; Lu, W. Fuel Ratio Optimization of 
Blast Furnace Based on Data Mining. ISIJ 
International, v.60, n.11, pp. 2471-2476, 2020.  

Zhang, J.; Li, S.; Li, Z. Investigation the synergistic effects 
in quaternary binder containing red mud, blast furnace 
slag, steel slag and flue gas desulfurization gypsum 
based on artificial neural networks. Journal of Cleaner 
Production, v.273, pp. 122972, 2020.  

Zhang, L.; Xue, Y.; Xie, Q.; Ren, Z. Analysis and neural 
network prediction of combustion stability for 
industrial gases. Fuel, v.287, pp.119507.  

Zhang, X.; Kano, M.; Matsuzaki, S. A comparative study 
of deep and shallow predictive techniques for hot metal 
temperature prediction in blast furnace ironmaking. 
Computers & Chemical Engineering, v.130, 
pp.106575, 2019b.  

Zhang, X.; Kano, M.; Matsuzaki, S. Ensemble pattern trees 
for predicting hot metal temperature in blast furnace. 
Computers & Chemical Engineering, v. 121, pp. 442-
449, 2019a.  

Zhao, X.; Fang, Y.; Liu, L.; Xu, M.; Zhang, P. Ameliorated 
moth-flame algorithm and its application for modeling 
of silicon content in liquid iron of blast furnace based 
fast learning network. Applied Soft Computing Journal, 
v. 94, 106418, 2020.   

Prediction of Sulfur in the Hot Metal based on Data Mining and Artificial Neural Networks

407


