Effectiveness of Adversarial Component Recovery in Protected Netlist

Circuit Designs

Jeffrey T. Mcdonald!®2, Jennifer Parnell!, Todd R. Andel! and Samuel H. Russ?

L Department of Computer Science, University of South Alabama, Mobile, AL, U.S.A.

2Department of Electrical and Computer Engineering, University of South Alabama, Mobile, AL, U.S.A.

Keywords:

Abstract:

Component Identification, Obfuscation, Digital Logic Circuits, Intellectual Property Protection, Subcircuit
Enumeration.

Hardware security has become a concern as the risk of intellectual property (IP) theft, malicious alteration,
and counterfeiting has increased. Malicious reverse engineering is a common tool used to achieve such goals;
thus, the need arises to quantify effectiveness and limits of both circuit protection techniques and adversarial
analysis tools. Aspects of physical reverse engineering are well studied and these techniques result in netlist
extraction that details gate-level information from an integrated circuit (IC) artifact. Specification recovery
from the netlist is a harder problem with more open research questions. In this paper, we focus on the more
narrow question of how to recover design-level logic components that were used to build an IC. Such analysis
assumes the library of known component building blocks can be identified and that an adversary has success-
fully accomplished netlist extraction. Likewise, techniques exist to harden IC’s against reverse engineering
through obfuscating transformations, particularly those that target component hiding. We report results of a
case study analysis that compares effectiveness of component hiding algorithms against adversarial recovery
approaches. As a contribution, we delineate six new approaches for subcircuit enumeration that extend a
known algorithm for enumerating candidate components, seeking to improve number of potential candidates
in obfuscated circuits. Our study examines algorithm performance in terms of ability to correctly identify
original components and analysis time overhead. The study uses four different obfuscation approaches that
target component hiding in a set of four benchmark circuits with well defined building blocks. Results indicate
that all four hiding approaches are effective at increasing analysis run-time when algorithmic component iden-
tification is used, and two of the four were able to hide 95% of original components from our seven studied
algorithms.

1 INTRODUCTION

Computers and electronics are complex systems made
up of interconnected subsystems. Printed circuit
boards (PCBs) contain a multitude of integrated cir-
cuit (IC) components with specific functionality that,
in many cases, embody intellectual property (IP) from
their designers. Studies in the last decade highlight
that semiconductor equipment and materials compa-
nies have had adverse impacts due to IP challenges
specifically (Design and Reuse, 2012). ICs are sus-
ceptible to reverse engineering by adversaries that
wish to gain knowledge of functions, structure, and
other embedded information in order to recover orig-
inal design information. Designers typically layout
circuits in a hierarchical and top-down approach, us-

(2 https://orcid.org/0000-0001-5266-7470

Mcdonald, J., Parnell, J., Andel, T. and Russ, S.
Effectiveness of Adversarial Component Recovery in Protected Netlist Circuit Designs.
DOI: 10.5220/0011275400003283

ing smaller circuit building blocks (components) to
build up larger functionality.

In this work we consider the power of adversar-
ial analyzers that target component identification. We
focus on algorithms that utilize a two-step process
of component identification: 1) enumerating possi-
ble sub-circuit component candidates from a larger
gate-level netlist and 2) semantically matching those
sub-circuits against known components in a library.
We reduce this adversarial question, and thus analysis
of potential hiding algorithms, to a subgraph partition
problem. Given a graph G(V, E) with vertex set V rep-
resenting digital logic gates and edge set E represent-
ing wiring between gates, we can represent the con-
stituent components used to construct the circuit as a
partition of the gate set V. The constituent component
building blocks, typically smaller elements such as

181

In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 181-192

ISBN: 978-989-758-590-6; ISSN: 2184-7711

Copyright (© 2022 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved

SECRYPT 2022 - 19th International Conference on Security and Cryptography

adders, multipliers, multiplexers, decoders, etc., can
be represented as a partition M of the of the gate set
V. Given some semantically preserving transforma-
tion O on a circuit C such that O(C) = C’, we can pose
the component recovery problem as whether an ad-
versary can reproduce the original partition (M) given
some semantically equivalent variant (C’). As figure 1
illustrates, a partition of a circuit M = {c|,c2,c3 } rep-
resents the hierarchical composition of three building
block components of the same type from a standard
library or technology map in an overall circuit design.
We ask whether an adversary can recover this parti-
tion (which represents the correct number, type, and
connectivity of original components) given a variant
C’ which has the same functional semantics as C.

M = {c,,c,,c;5} M’ ={?22??}
C E a .LJ . [
I
Mg e () B
[] L [2 |
o oiin Koy o[g gt
o B il)P = U
- OHA ° 5 ° ..D;... .
| ¢ oo i 2 i
i ue Te
. (i

|
ALrhoemmEOCGO

IN OUT ANDNANDOR NOR XOR NXOR

Figure 1: Adversarial Component Recovery.

From a protection viewpoint, obfuscation pro-
vides a technical means to transform circuits into
forms that are harder to analyze and thus reverse en-
gineer (Chakraborty and Bhunia, 2009; Vijayakumar
etal., 2017; Zhang, 2016). An obfuscator O is a trans-
former that produces such semantically equivalent
variants of an original circuit C such that O(C) =’
and Vx : C(x) = C'(x). Component identification al-
gorithms serve as adversarial attack vectors to such
protections. In some cases, candidate enumeration al-
gorithms which are part of the identification process
assume orderly or normal connections of gates and
wires that conform to standard CAD design compo-
nents. Obfuscation algorithms can violate these as-
sumptions and thus motivate the need for different
approaches to delineate subcircuit candidates. We re-
port in this paper the development of six derivative
approaches to a polynomial-time algorithm for iden-
tifying subcircuit candidates first posed by Doom et
al. (Doom et al., 1998) and White et al. (White et al.,
2000). Our new approaches came out of the desire to
increase the number of potentially viable subcircuits
that might be present in obfuscated netlists, with the
trade-off of increased runtime overhead. We perform
a case study analysis that compares the effectiveness
of these seven different subcircuit enumeration algo-
rithms against circuit variants that are obfuscated by
four different transformation algorithms. Our contri-
butions include:

182

* We propose six extended approaches for subcir-
cuit enumeration and report their effectiveness in
increased candidate enumeration versus increased
runtime overhead

* We evaluate effectiveness of seven total compo-
nent identification approaches versus four differ-
ent component hiding approaches used on gate-
level netlists

* We further the body of knowledge in the area of
algorithmic reverse engineering, a relatively new
field of research

The rest of the paper is organized as follows: sec-
tion 2 provides background and related work on hard-
ware reverse engineering and obfuscation. Section 3
covers the transformation algorithms used in our case
study that target hiding of component abstractions.
Section 4 describes component identification algo-
rithms, including six extended versions of the White
algorithm (White et al., 2000). Section 5 details our
experimental methodology including benchmark se-
lection and testing environment. Section 6 provides
results of the study with comparison of best compo-
nent identification approaches and most effective hid-
ing algorithms. Section 7 provides a summary and
conclusions from the study as well as discussion of
future work.

Benchmark circuits and a front-end inter-
face to the software used in this case study
can be found at http://soc.southalabama.edu/
~mcdonald/research.htm.

2 BACKGROUND AND RELATED
WORK

Reverse engineering (RE) is commonly practiced but
there lacks research in quantification of its complex-
ity: this stems from its nature as both an art and a skill
with both human and automated techniques which
provide context for its use. It has been used histor-
ically to gain advantage over competitors and as a
means to recover lost designs for undocumented sys-
tems. The study and application of integrated circuit
(IC) reverse engineering is thus a two-edged sword: it
can be used for legitimate purposes such as identify-
ing patent infringement or detecting insertion of ma-
licious logic, and it can be used for illegal purposes
such as probing a system to insert vulnerabilities or to
steal IP technology (Fyrbiak et al., 2017). We take the
position of the reverse engineer as an adversary with
malicious purposes in this study to understand better
how to protect IC against such analysis. In order to

Effectiveness of Adversarial Component Recovery in Protected Netlist Circuit Designs

provide reasonable estimation of adversarial power,
more research is needed to understand limits of auto-
mated approaches and their impact on proposed pro-
tection approaches (Azriel et al., 2021). This pa-
per furthers that goal by posing new adversarial tech-
niques and comparing them to known countermea-
sures in the form of obfuscation transformations. For
our case study, we assume an adversary has physically
reverse engineered an artifact (Torrance and James,
2011; Fyrbiak et al., 2017) and recovered a gate-level
netlist of a target circuit under study.

Gate-Level

Component A Component-Level

Figure 2: Design from Component Building Blocks.

Figure 2 illustrates a scenario where some com-
ponent A from a circuit library constitutes its own in-
put, output, and intermediate gate specification. At
the component abstraction level, they represent black-
boxes with specific semantics, but at the gate-level ab-
straction level, that information is lost once physical
synthesis is conducted. Design level abstractions such
as type and ordering of components are thus essential
information for further recovery of abstract informa-
tion for malicious reverse engineers.

Figure 3 illustrates an example of a successful ad-
versarial reverse engineering case study by Nohl et al.
(Nohl et al., 2008) on the Mifare Classic RFID tag
by NPX. Their case study illustrated not only phys-
ical reverse engineering with a low budget, but also
demonstrated the recovery of gate-level logic (netlist)
from a silicon implementation and then recovery of
component level information from the netlist. Nohl
and his colleagues showed how recovery of design
level components led to discovery of weaknesses in
the cryptography embedded in the circuit, which led
to further exploitation.

2.1 Specification Recovery

Various solutions and algorithms are posed by re-
searchers with the goal of recovering data-paths and
functionality of circuit modules in a data-path given
a gate-level netlist, which builds the original specifi-
cations for a circuit design. Components are smaller

Physical Level

HIEEY

Gate Level (Netlist) Design Level (Components)
WIEED
S . o o 7 P ‘“:bu

=L)¢ WE- el

[oyster !

Figure 3: Design Recovery from Physical Artifact.

circuits used to build larger circuits and constitute
one type of design abstraction found in gate-level
netlists. We focus on these specifically in this pa-
per and our case study. Recovery of high-level struc-
tures has been studied for some time, but has gained
more attention recently because of the security threats
facing the IC market worldwide. In their seminal
work, Hansen et al. (Hansen et al., 1999) illustrated
a human-oriented approach to identifying high-level
structures in logic circuits based on looking for key
patterns: 1) library modules, 2) repeated modules, 3)
expected global structures, 4) computed functions, 5)
control functions, 6) bus structures, and 7) common
names. Gates with unknown function were classified
as black-boxes. In our study, we focus only on the
identification of known library modules using algo-
rithmic methods.

Structural and Functional Analysis. (Subramanyan
et al., 2013) developed a set of algorithms for an-
alyzing unstructured netlists to recover components
such as register files, counters, adders and subtracters.
Their approach involved both structural and func-
tional analysis and their benchmark set were Verilog
netlists of eight large system-on-chip (SoC) designs
including CPUs, routers, and micro-controllers. They
also used their approach to show successful detection
of trojan circuitry of no more than 50-60 gates in size.
In our study, we evaluate small unobfuscated bench-
mark circuits and variants produced through obfusca-
tion techniques using extended versions of the same
core algorithm (Doom et al., 1998; White et al., 2000)
for component identification.

A recent survey of algorithmic methods for IC re-
verse engineering by (Azriel et al., 2021) uses the
term specification discovery to describe partial or full
understanding of an IC’s functionality. The survey
summarizes four main approaches for specification
discovery: 1) structural, 2) functional (behavioral), 3)
data, and 4) control. In our study, we focus predom-
inantly on behavioral identification based on seman-
tics of known component building blocks from a cir-
cuit library or technology map. Azriel et al. also point
out that circuit partitioning is typically a preprocess-
ing steps for netlists, where circuits with millions of

183

SECRYPT 2022 - 19th International Conference on Security and Cryptography

gates for example are separated into smaller subcir-
cuits (modules) to allow for more efficient analysis.
Such modules are then studied further with structural
and functional techniques. The benchmark circuits
and their obfuscated variants in our study are essen-
tially at this level of analysis, where we focus primar-
ily on functional analysis to recover components.
Behavioral Pattern Mining. (Li et al., 2012) pro-
posed an approach to recover functional design blocks
based on simulating traces of the gate-level netlist and
then representing them as pattern graphs. These pat-
tern graphs are then compared to pattern graphs from
components in a known library. Input-output signal
correspondence is cast as a subgraph isomorphism
problem among the potential pattern graphs. Our al-
gorithms of interest are different in that they require
two steps: first, enumeration of subgraphs that may
be viable components, and then semantically match-
ing those subcircuits against components in a known
component library. In Li et al.’s approach, they use se-
mantic matching of I/O traces in graph form for their
matching and their case study utilized publicly avail-
able, unobfuscated circuits.

Word-level Structure. (Li et al., 2013) also posed
another approach that automatically derives word-
level structures from gate-level netlists where an an-
alyst can specify sequences of word-level operations
for sub-circuit enumeration. Their framework gener-
ates collection of gates corresponding to world-level
operations and was demonstrated on an SoC design
over 400K cells and open-source components.
Control Logic Recovery. (Meade et al., 2016) pro-
posed a methodology based on recovery of control
logic represented in finite state-machines (FSM) sim-
ilar to the work of Shi et al. (Shi et al., 2010).
They point out that traditional structural and func-
tional analysis may not fully reveal such control func-
tions. Their approach treated reversing as a friendly
analysis intended to discover added malicious logic;
thus, there benchmark set was medium to large-
scale microprocessors and cryptographic circuits with
hardware trojans inserted. Our work does not ad-
dress high-level control abstractions and also consid-
ers the reversing algorithm as an adversary. In sep-
arate works ((Alcaraz et al., 2013) and (Alcaraz and
Wolthusen, 2014)), the general theory of graph-based
network analysis for derivation of controllability and
observability in the face of malicious attacks is con-
sidered. They study scale-free (random), power-law,
and small-world network controllability and propose
methods to preserve and restore control system func-
tionality when adversaries target them.

Component Matching (Gascon et al.,, 2014) deal
with the second step of our component identifica-

184

tion algorithm of interest, which is specifically the
Boolean matching problem (Cong and Minkovich,
2007). In the first step of component ID, some al-
gorithm generates candidate structures (subcircuits)
that could be matched to a known functionality.
Gascén et al. give an automated approach to the
second step which maps a potential candidate to a
known component in a circuit library using templates.
Their method overcomes many of the limitations
with Permutation-Independent Equivalence Checking
(PIEC) using word-level operations such as concate-
nation, extraction, shifting, and rotation.

2.2 Hardware Obfuscation

Chip to system reverse engineering is a well-studied
area with a multitude of practical techniques pub-
lished in the literature (Quadir et al., 2016). Pop-
ular techniques such as gate camouflaging (Cocchi
et al., 2014) and physically unclonable functions
(PUFs) (Bauer and Hamlet, 2014; Wendt and Potkon-
jak, 2014) are both methods that use alteration of
CMOS or specific electronic properties to achieve
anti-reverse engineering or circuit fingerprinting. In
this paper, we do not address techniques designed to
subvert analysis at the physical level such as those
techniques surveyed by Vijayakumar et al. (Vijayaku-
mar et al.,, 2017). In terms of techniques designed
to thwart specification recovery, logic encryption (or
locking) (Shamsi et al., 2019) has occupied the great-
est amount of research focus with many proposed
techniques (Aksoy et al., 2021) and attacks (Yasin
et al., 2020). In a recent survey, (Shamsi et al.,
2017a) summarized various adversarial models of at-
tack which are categorized as 1) high-level recog-
nition, 2) netlist recovery, 3) and oracle-guided at-
tacks. The predominant research thrust has been in
the use of Boolean satisfiability (SAT) and Satisfia-
bility Modulo Theory (SMT) solvers in oracle-guided
attacks to defeat both logic locking and gate cam-
ouflaging techniques, though these attacks are syn-
onymous with learning a function with samples (Li
et al.,, 2019; Shamsi et al., 2017b). Shamsi et al.
also summarize the major categories of protection
as 1) logic locking, 2) IC camouflaging, and 3) cir-
cuit diversification. Apart from early obfuscation ap-
proaches by (Chakraborty and Bhunia, 2009) that tar-
geted transformation at the register transfer language
(RTL) level and gate-level integration of finite state
machine (FSM) in the netlist, little work has focused
on transformation of the gate-level topology outside
of the logic-locking context. We discuss next the ob-
fuscation techniques used in our case study, which are
forms of circuit diversification.

Effectiveness of Adversarial Component Recovery in Protected Netlist Circuit Designs

3 COMPONENT HIDING

The work presented in this paper centers on the com-
ponent abstraction (subcircuits) within a gate-level
netlist (a parent circuit). For our case study, we used
implementations of algorithms that were developed
by Norman, Parham, and Koranek (McDonald et al.,
2009; McDonald et al., 2012). These algorithms vary
from mostly random variation (with no hiding in-
tent) to mostly deterministic (component information
is targeted). Follow on work by McDonald et al. (Mc-
Donald et al., 2009; McDonald et al., 2011; McDon-
ald et al., 2012) demonstrated that all four algorithms
are effective against component identification (White
et al., 2000). We provide explanation of each algo-
rithm next.

3.1 [Iterative Selection and Replacement

ISR was posed by (McDonald et al., 2009) as a ran-
dom generator of semantically equivalent replace-
ment logic for a given circuit. It operates by a se-
quence of iterations, where each iteration is composed
of a selection and replacement. The selection algo-
rithm picks (randomly or in guided fashion) a set of
gates (a subcircuit) from the parent circuit. The re-
placement algorithm then generates a replacement set
of gates (a subcircuit) with the same functional se-
mantics (input size, output size, and truth table) as the
selection subcircuit. Figure 4 illustrates the principle
on a small sample circuit. In the example, a selection
subcircuit consists of 2 gates which are replaced by a
randomly generated, semantically equivalent version
of 10 gates.

SELECTION -~ One Iteration <— REPLACEMENT

10=NAND(1,3) 270R(3,26) 31=OR(29,30) 34=NXOR(32,33) 26=NOR(1,5)
11=NAND(3,6) 30=NOR(28,29) 36=XOR(34,35) 28=AND(3,27)

33=NXOR(1,26) 32=NAND(3,6) 29=XOR(1,27)

Figure 4: Example Iteration of ISR Algorithm.

The selection algorithm part of ISR can choose
gates that have not been previously replaced, which
attempts to guarantee that original gates are replaced
at least once, or even more than once (which is re-
ferred to as a round). The number of iterations for ISR
can be: 1) explicitly set (iteration-based), 2) limited
based on a target gate size increase (size-based), or 3)
based on a number of rounds (round-based). ISR can
produce unlimited polymorphic variation, but does
not specifically target any specific design-level ab-
straction for hiding—although such hiding may man-

ifest due to the variation process itself (McDonald
et al., 2009).

The replacement algorithm can maximize ran-
domness and we use the more recent proposed
method based on Random Boolean Logic Expansion
(RBLE) (McDonald et al., 2020). With RBLE, the
Boolean logic function of the selection subcircuit is
expanded with random applications of Boolean logic
laws performed in reverse (causing expansion versus
reduction). RBLE has three policies that govern its
expansion each time it is applied to a selected sub-
circuit. In fixed mode, only a fixed number of logic
expansions n are applied. In target and strict size,
the RBLE generator will apply expansions until ei-
ther a strict gate size (= n) or target gate size (>=n)
is reached.

3.2 Boundary Blurring

Boundary blurring was posed by (McDonald et al.,
2012) and provides a deterministic means to hide
component information, targeting the input/output se-
mantics of a given subcircuit component. The prin-
ciple idea is based on selecting gates strategically, at
the input/output boundary of a component, and then
mutating the function of the gate (randomly). After a
gate is mutated, recovery logic is required to recapture
the correct signal at some point lower hierarchically
in the netlist (which is referred to as a recovery gate).
Blur level determines where recovery terminates: one
level down (single-level blur) or multiple levels down
from the mutation (multi-level blur). Figure 5 shows
an example of single-level blur and the selection of
a specific replacement gate. In the example, the re-
placement gate type is mutated from NAND to NOR,
then Boolean algebra is used to formulate the proper
adjustment to the signal to bring it back to its expected
values. This logic is then synthesized using heuristic
options such as Espresso, standard canonical forms,
and misll. The logic is inserted between the replace-
ment gate and the targeted recovery gate, at which
point the signal is no longer mutated.

MUTATION: NAND to NOR

&
Single Level

REPLACEMENT GATE (NAND) RECOVERY GATE

SYNTHESIZED RECOVERY LOGIC

Figure 5: Example Single-Level Boundary Blur.

Additional signals can also be introduced into a
component which change its overall black-box be-
havior, and this is referred to as a Don’t Care Blur.
While gates can be selected for mutation based on a

185

SECRYPT 2022 - 19th International Conference on Security and Cryptography

number of different features, the most effective hid-
ing occurs when gates are chosen based on specific
locations at input and output boundaries of original
components (McDonald et al., 2011).

3.3 Component Fusion

(McDonald et al., 2012) proposed an approach for
hiding component information that relies on original
component partitioning. As figure 6 illustrates, step 1
and 2 of the approach involves identification of gates
that belong to specific subcircuit components, which
come from some standard library. In step 3, the ana-
lyst must selectively pick a new gate partition so that
gates on input and output boundaries of partitions are
re-arranged, thus forming a new partition of the gate
set. Random or predecessor-based partitions can also
be used in the scheme. The algorithm then takes each
component partition (subcircuit) and performs black-
box synthesis using misslII, single or randomly chosen
canonical forms (SOPE,POSE,Reed Muller), and sin-
gle or randomly chosen Espresso forms (SOP,POS).
Synthesis and partition choices can introduce ran-
domness to guarantee unique variants of an original
circuit on every run of the algorithm. The synthesized
versions of each component then replace existing gate
logic and original connections are preserved (seen in
step 4 of the example). This approach also target the
input/output behavior of specific components at de-
sign time to evade behavioral analysis. Component
fusion takes advantage of the fact the synthesis re-
moves internal structural information of constituent
components and also creates new 1/O traces and sig-
nals within the circuit, different than those of its orig-
inal components.

i
o

T

Original Component Partition

Fusion Component Partition

léﬂ 5

[y .D“

]

pirs_ LN

i - AD_;‘-~

iae 50,

)90 A0

Fleo ®g%e,

e

1005 g8 hyg :ﬁ
® . ®

Original Netlist Fusion Netlist

Figure 6: Example Component Fusion.

186

3.4 Component Encryption

Koranek (McDonald et al., 2012) also proposed a
correlary approach known as component encryp-
tion. This algorithm is an adaptation of the classic
white-box cryptography (WBC) approach proposed
by Chow et al. (Chow et al., 2003). WBC was orig-
inally designed to allow key-embedded ciphers that
were implemented as a network of encoded look-up-
tables (LUTs). Component encryption also requires
original component information and is optimal when
it uses the component partition as input to the algo-
rithm. Figure 7 illustrates a small example using the
same starting circuit seen in Figures 1 and 6.

In the example (figure 7), step 1 and 2 repre-
sent the original gate-level topology and correspond-
ing component partitioning of the circuit (there are
3 component subcircuits that are instances of Com-
ponentX). The algorithm adds logic to encode and
decode signals that are internal to the circuit for ev-
ery potential component whose boundary is not at
the parent circuit I/O boundary. These encodings
use randomly generated Boolean permutation func-
tions to change the I/O of each original component
in unpredictable ways. Component outputs that are
encoded must then be decoded by other components
that use them for input. If c(x) represents the function
of some internal component, the output of the circuit
would become e(c(x)) and a decoding function would
provide d(e(x)) = x,Vx. Subcircuit components that
receive a signal from an encoded component must
then decode such signals. The collection of circuitry
for encoding outputs, decoding inputs, and the orig-
inal component itself are synthesized into black-box
LUTs: thus the overall circuit is transformed into
a network of encoded LUTs (seen in step 3 and 4
of the example in figure 7). New components now
have different semantic behavior (changed 1/O sizes
and changed function), thus targeting semantic-based
identifiers.

Original Component Partition

fego

i, component X

==

Original Netlist Component Encryption Netlist

Figure 7: Example Component Encryption.

Effectiveness of Adversarial Component Recovery in Protected Netlist Circuit Designs

4 COMPONENT
IDENTIFICATION

For our case study, we implemented a base algorithm
posed by (White et al., 2000) and (Doom et al., 1998).
This approach involves two steps:

* Candidate Subcircuit Enumeration: generates
a list of all subgraphs from a target circuit that
might be viable component subcircuits. These
subgraphs once identified specify (arbitrary) in-
puts, outputs, and intermediate gates.

* Semantic Matching: Each candidate subcircuit
is compared against known components in a pro-
vided circuit library. The matching we employ
uses the ABC tool by Berkeley for semantic iden-
tification. Because inputs and outputs are spec-
ified arbitrarily, all possible enumerations of the
I/O space must be considered to fully ensure no
match is made. If done in a brute-force manner, an
n-input, m-output circuit would have n!* m! pos-
sible combinations to consider.

4.1 Basic Algorithm

(White et al., 2000) proposed an O(n?) complexity
algorithm (which we call the Basic Algorithm) for
candidate subgraph enumeration that guarantees each
subgraph is only enumerated once. In the general
case, subgraph enumeration is O(2") based on con-
nectivity, but the Basic Algorithm takes advantage of
the fact that only some subgraphs are of interest as
real-world building blocks. In particular, only sub-
graphs that exclusively contain vertices that symbol-
ize fully specified gates are enumerated. These are the
subcircuits known as feasible subgraphs. With edge
set (E(G)) and vertex set (V(G)) of some graph G,
the following definitions are utilized in the basic al-
gorithm:

* Fully Specified Vertex: A gate that is joined
within the subgraph by either all the vertices sym-
bolizing its inputs or none of those vertices. In a
subgraph H of a circuit graph G, a vertex v is a
fully specified vertex if (Yu —uv € E(G) Au €
V(H)) VVu—uv € E(G) ANu &€ V(H)). See
figure 8.

* Subcircuit: A subgraph H of a circuit graph G is
a subcircuit of G if and only if it is connected and
each vertex in H is fully specified. See figure 9.

Contained Vertex: In a subgraph H of a circuit
graph G, a vertex v is a contained vertex if ((Vu
—uv € E(G)ANu€eV(H))V (Yu—uv € E(G)
ANugVH)ANNM—u € E(G)ANueV(H))V
(Mu—uv € E(G) ANu ¢ V(H))). See figure 8.

* Contained Subcircuit: A subgraph H of a sub-
circuit graph G is a contained subcircuit of G if
and only if each vertex in H is contained. See fig-
ure 9.

Frontier: Frontier F of a subgraph H is all v such
that v € N(H) and v.index | H.index.

Reachable Frontier: The reachable frontier of
a subgraph H is denoted by F®(H) and consists
of all of the vertices v that may be added to H.
For a subgraph H; = H(;_y) + vi, FR(H;) consists
of all u such that: u € F(H;) and either 1) u &
F(H(i—l)) or2)uc F(H(i—l)) andv € FR(H(i_l))
and u.index < v;.index.

The first step in the Basic Algorithm assigns a
unique integer index to the vertices in the graph, start-
ing from the outputs proceeding to the inputs. Indexes
are higher than the vertices that feed into it and the
starting point for the enumeration can be an arbitrar-
ily chosen vertex (typically at the output level). As
the algorithm progresses, all vertices become a start-
ing point for a sequence of unique subgraphs. In each
round of the algorithm, a subgraph H begins with a
single vertex and is then expanded. The neighbor-
ing vertices of subgraph H, N(H), having indices less
than H are considered to be within the frontier (F (H))
of subgraph H. The Basic Algorithm (enumerated as
Algorithm 1) guarantees each subgraph is only enu-
merated once by assigning an index to each vertex
and subgraph. Vertex indices provide a method for
ordering the relation between any two vertices in a
subgraph being emitted.

Algorithm 1: Basic Algorithm (White et al.).

1: procedure ENUMERATE
2: From output: assign unique integer Vv € V(C)

3 for each v € V(C) do
4 Create a subgraph H containing v
5: Determine F(H) and FR(H)
6: for each vertex u € FX(H) do
7 H < H+u
8: If !subcircuit(H’): add vertices to H'
Else discard
9: If !contained(H’): add vertices to H’
Else discard
10: Output H’
11: Return H' to Step 4
12: end for
13: end for

14: end procedure

187

SECRYPT 2022 - 19th International Conference on Security and Cryptography

Contained: Refers to vertices of a subgraph
that include their appropriate inputs and
outputs

Fully specified component
(subcircuit) would include:

1. Inputs(1,3,4)

2. All Outputs (10,9,8) OR
No Outputs ()

3. Intermediate gates (6,7)

Adding {1,3,4} to {6,7} makes
it a subcircuit: {1,3,4,6,7}

Adding {1,3,4,8,9,10} to {6,7}
makes it a subcircuit:
{1,3,4,6,7,8,9,10}

Figure 8: Fully Specified and Contained Constraint.

Not a subcircuit, add 8 Not fully contained, add 10 Not a subcircuit, add 6

[9] Emit {11,10,9,8,6}

H={11}, FR(H) = {8,9} -—--> W’ ={11,9} ----> subcircuit(H’)? ----> contained(H’)?

Figure 9: Subcircuit Constraint.

vi vi Y .. Node8
5 Nodeit My | .
% subgraphs b " P O .. subgraphs

4 Node10 21 Noder
w subgraphs | subgraphs

Node 9

subgraphs Node §

5 subgraphs

Figure 10: Example Subgraph Enumeration.

4.2 Basic Algorithm Variations

In our early experimentation, we observed that the
Basic Algorithm is efficient in enumerating subcircuit
candidates but limited when enumerating correct sub-
circuits that are created by polymorphic variation (ob-
fuscation) algorithms. Essentially such obfuscation
techniques might create circuit subgraphs which no
longer have standard or expected boundaries in terms
of the containment and frontier rules required (see Al-
gorithm 1). Not all possible subgraph expansions are
explored by the Basic Algorithm to start with, because
it does disallow subgraphs without the right proper-
ties. This led us to explore extensions to the Basic
Algorithm so that more subgraphs could be poten-
tially enumerated, and thus potentially more candi-
date components identified. Our case study was de-
signed to profile the adversarial gain in power (num-
ber of correctly identified components) versus the re-
sultant overhead (which could potentially return to

188

O(2")) if constraints of the algorithm were lifted. We
describe six variations next that we developed next:

* Adaptive Algorithm: In Step 1 of the Basic Al-
gorithm, this version starts with the inputs instead
of the outputs. We wanted to see in this approach
if input versus output oriented subcircuit enumer-
ation would potentially open up different expan-
sion opportunities.

¢ Containment-Oriented Algorithm: In step 8 of
the Basic Algorithm, containment can be com-
pletely ignored by a provided parameter that is
true or false. If true, this algorithm will imme-
diately output H' (in step 9 of the Basic Algo-
rithm). If false (containment not ignored), then
this algorithm will check containment of H’, and
if not contained, will then allow the subgraph
to be emitted if its intermediate gates are con-
tained or if they can become contained by adding
vertices. This approach was created to address
non-standard connections among gates created
through various obfuscation approaches.

* Extended Algorithm: This algorithm combines
two sets of subgraphs: the first set comes from
Basic Algorithm enumeration and then the second
set comes from a modified form of the Basic Al-
gorithm. In this case, the vertex chosen for inclu-
sion to the subgraph based on the reachable fron-
tier of H (FR (H)) in Step 7 (Algorithm 1) is from
a reverse ordered list of vertices that includes pre-
decessors of vertices u in the reachable frontier.

 Input-Bounded Algorithm: This algorithm fol-
lows the same idea of the Extended Algorithm,
except it computes both successors and predeces-
sors of vertices u in (FR(H)) when choosing the
next vertex to add to the subgraph H' in Step 7 of
the Basic Algorithm (Algorithm 1).

* Combined Algorithm: This algorithm follows
the same steps of the Basic Algorithm 1-7, where
expanded graphs are created by adding vertices
from the reachable frontier of existing subgraphs
that start with each individual vertex. The com-
bined approach however uses four different meth-
ods to grow the subgraph: 1) it requires contain-
ment of H', but uses predecessor information sim-
ilar to the Extended Algorithm; 2) it requires con-
tainment of 'H’, but uses the Extended Algorithm
to grow each subgraph; 3) it does not require con-
tainment of H’', and 4) it does not require contain-
ment of H' but uses the Extended Algorithm to
grow each subgraph.

* Relaxed Algorithm, Algorithm 7: Takes the Ba-
sic Algorithm but diverges after Step 4 and 5.
The subgraph expansion instead uses a recursive

Effectiveness of Adversarial Component Recovery in Protected Netlist Circuit Designs

process that can be limited (called the recursion
depth). Expansion proceeds by iterating through
all elements of the reachable frontier of H, and
outputs each such new subgraph (H') immediately
with no constraints. The algorithm then adds ver-
tices to the new graph (H’) so that it is a subcir-
cuit. It then computes the reachable frontier of
this new subcircuit and then recursively calls ex-
pansion again on each subgraph.

S CASE STUDY METHODOLOGY

We structure our case study around the selection of a
set of transformation algorithms and a set of candidate
subcircuit enumeration approaches which precede the
component matching algorithm. We chose four cus-
tom benchmark circuits with small gate size that were
built from a variety of components from a small cir-
cuit component library. An overview of the study is
summarized in figure 11. All algorithms were imple-
mented using Java and the use of open-source synthe-
sis tools such as ABC and Espresso. All experiments
were ran on a HP Omen laptop with 2.40 GHz i9
processor and 32 GB RAM. The case study involved
taking the original four benchmark circuits and run-
ning all enumeration approaches/component identifi-
cation algorithm on them. The same circuits were
then obfuscated using the eight variations described
below and then running all variants through the same
enumeration/component ID algorithms again. The
runtime overhead and identification accuracy was
recorded and compared between the unobfuscated
and obfuscated versions of each benchmark circuit.
Component Library: The component library which
benchmark circuits were constructed from and all
candidates were matched against include the follow-
ing fourteen (with input/output size and acronym in-
dicated). All circuits were specified in BENCH netlist
format: half-subtractor (HS: 2/2), half-adder (HA:
2/2), 1-bit comparator (2-3COMP: 2/3), 2-bit de-
coder (2-4DEC: 2/4), 2-bit multiplexor (2-1MUX:
3/1), full-adder (FA: 3/2), full-subtractor (FS: 3/2),
2-bit demultiplexor (1-4DEMUX: 3/4), 3-bit decoder
(3-8DEC: 3/8), priority encoder (4-2ENC: 4/2), 2-bit
comparator (2-3COMP: 4/3), c17 - a conceptual com-
ponent (c17: 5/2), 2-bit adder (ADDER2: 5/3), and
4-1 multiplexor/polygate (POLYGATE: 6/1).
Enumeration Algorithms: We studied all seven
subcircuit candidate enumeration algorithms: Basic,
Adaptive, Containment-Oriented, Extended, Input-
Bounded, Combined, and Relaxed. For the Relaxed
Algorithm, we used three different recursion depths
(level 1, 2, and 3). All other algorithms had de-

fault options applied, thus totaling 10 enumeration
types. Component identification used a brute-force
approach of mutating all possible input/output com-
binations and using ABC to compare various versions
of candidate components against the known compo-
nents in the circuit library.

Transformation Algorithms: We studied the four
transformation algorithms detailed in Section 3. Each
algorithm could generate a unique variant, even given
the same options, but we chose to only generate one
variant for each approach. We also chose two dif-
ferent option sets for each of the four transformation
algorithms. Details for each algorithm are as follows:

e ISR: We chose for standard options to use a
iteration-based strategy with the algorithm run-
ning 50 iterations total. The selection size was
either 10 gates or 15 gates (seen as RBLE10 and
RBLEL1S in figure 11).

* Boundary Blurring: We exercised this algorithm
in Level One and Don’t Care mode, choosing to
pick randomly half the amount of total gates in the
original circuit for blurring. We used canonical
Quine-McCluskey reduction forms for synthesis.

¢ Component Fusion: We chose two different
types of synthesis for component fusion: canon-
ical and Espresso. The component configuration
used for the algorithm was manually entered and
involved taking the original configuration based
on the design of each circuit and either eliding or
extending the internal boundaries.

¢ Component Encryption: We chose two differ-
ent types of synthesis for component encryption:
canonical and Espresso. The component config-
uration used for the algorithm was manually en-
tered and involved taking the original configura-
tion based on the design of each circuit and either
eliding or extending the internal boundaries.

Benchmark
Circuits Component
Original Library

Circuits
(4)
’

ISR — RBLE10
ISR - RBLE15

Component

Basic
Match

. Component
Adaptive
Pt Match

Containment- Component
Oriented Match

Boundary Blur-Level One
Boundary Blue-Don’t Care Component

Match

Circuit
Variants
(32)

Extended

Component Fusion-Canonical
Component Fusion-Espresso

Component

Input-Bounded . Match

Component

Component Encryption-
i P Match

Canonical
Component Encryption-
Espresso

Combined

Component
Match

_ Relaxed (Lvl 1,2,3)

Figure 11: Case Study Overview.

189

SECRYPT 2022 - 19th International Conference on Security and Cryptography

Benchmark Circuits: The four benchmark circuits
are summarized in table 1. In general, we chose
circuits with less than 100 gates to make enumera-
tion times reasonable since these circuits are obfus-
cated further and we wanted to characterize run-time
overhead versus evaluate feasibility on large-scale cir-
cuits. We created the benchmarks based on various
criteria. The 4-bit multiplier uses NAND-only full-
adder components and is a smaller design version of
the large c6288 16-bit multiplier circuit: it represents
a circuit with almost homogeneous design compo-
nents. The multicomp circuit was created from six
unique components in the library to represent poten-
tial diversity. The c17-polygate is the standard c17
circuit with 6 NAND gates, where every gate is re-
place with a polygate component, which are variants
of basic multiplexors. In initial testing, different ver-
sions of the polygate component introduced unique
gate and wiring configurations that were not enumer-
ated by the Basic Algorithm.

Table 1: Benchmark Summary.

4-bit multiplier |multicomp |c17-polygate |c17c17adder
Size 96 50 42
Depth
HA
FA
2-1IMUX
4-1MUX
c17
3-8DEC
4-2ENC
2-3COMP
1-4DEMUX
POLYGATE
Total

=
L'-=]

ce(e(e(e(o|e(o|w|&a|N

alo|r|k|r|~|le|le|r|r|e|w
o |o|o|o|o|m|o|e|e|o|w
wlele|le|ele|nv|ele|r|e|n

o
¥

6 RESULTS

We performed our case study and recorded results for
all benchmark circuits before and after the 8 varia-
tions of the 4 transformation algorithms were applied.
We report first results of the best of each of the 4 trans-
formation approaches in terms of hiding effectiveness
and overhead.

ISR-RBLEI10 results are summarized in figure 12
and show that it was able to hide 145/252 possible
components across all enumeration algorithms. Our
recorded runtime overhead of the identification algo-
rithm variations compared from original vs. obfus-
cated variants was on average 84,463% higher. Over-
head in terms of increased gate size was on average
15.9 times higher over the original. ISR-RBLE15 had
similar effectiveness in hiding, but came at an average
overhead of 22.4 times original gate size.

190

of identified
4bit | cl7polygate | c17ci7 adder multicom|
i [PV | Rl Ty | Half | Full [oec3-Tenca] T a-t Toemue [Full
HA | FA gate |Adder Adder|Adder| 8 | 2 mux| 14 |Sub

4/a | o/a | o | 26|02 1/2] 23| y1|11|11|oafoa] o1 |01
4/4 | o/a | o/1 | o/6 | 0/1)| 2/2| 3| 1| 11|01 01|01 o1 |01
Combined 4/4 | 4/4 | 01 | 6/6 | 0/1)| 1/2 | 23 | Y1 | 11| 11|01 |01 Y1 |Y1

Containment | 4/4 [o/4 | o/1 | 4/6 | o1 | 1/2 | 2/3 | 1/a | 1/a | 1/2a | o1 [1/2]| o1 |01
4/4 | o/a | o1 | 6/6 | o1 |42 [23 | 42 | a2 | /2| o1 [0 1 [1a
InputBounded | 0/4 | 0/4 | o/1 | 6/6 | 0/1 | 1/2 | 0/3 | I/1 | 1/1 | 0/1 | O/1 |0O/1| V1 |0/1

[RelaxedRD1 | 4/4 | o/a | o/1 | o/6 | o/t | 0/2 | 1/3 | o1 | o1 | oa| o1 [o/a] o1 |01
RelaxedRD2 | 4/4 | o/a | o1 | o/6 | o/1 | 1/2 | 33 | o1 | 1| o | o1 |oia| o1 |01
[RelaxedRD3 | o/4 | o/a | o1 [o6 o [12 [33 [wa[aaoa o fon] on [un
Overhead: Gate/Depth (4 circuits) vs .original

[abitmultiplier | ci7polygate | cl7cl7adder | multicomp

Original [RBLE10 |Original [RBLE10 |Original |RBLE10 |Original |RBLE 10
Gate Overhead 96 854| 42| 823| 19| 357| 50] 816

Figure 12: Summary - ISR-RBLE10.

Boundary Blur-Single Level results are summa-
rized in figure 13 and show that it was able to
hide 242/252 possible components across all enu-
meration algorithms. Our recorded runtime overhead
of the identification algorithm variations compared
from original vs. obfuscated variants was on aver-
age 23,869% higher. Overhead in terms of increased
gate size was on average 11.88 times higher over the
original.

of identified
[abit 17 polygate c17c17 adder multicom|

Poly- | Full | o, | Half | Full [Dec3-|Enca- | | 4-1 [Demul Full

c17
HA | FA gate |Adder Adder |Adder| 8 2 mux | x1-4 | Sub

1/4 | o/a | o1 [o/6 [o1 [o2 o/3 oo oaoa|on]on[on
0/4 | o/a | 0/t | 0/6 | 0/t | 0/2 | 0/3 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 | 0/1 |01
1/4 | o/a | o1 [o/6 [o o2 03 o] on|oa|oa|on|on[on
Containment | 0/4 | 0/4 | 0/1 [0/6 [o/t | 0/2 | 03[o/a|o1|o/i|oafoafonfon
1/a | o/a | o/1 [o/6 [o/a o2 03 o oa|oa|oa|oa|on|on
o/4 [o/a [o/t o/ ot |op|oa|oalon|on|on|on|onfon
0/4 | o/4 | 0/t | 0/6 | 0o/t | 0/2 | 03| 0/1 | 01| 01| 01| 01| 01|01
3/4 | 0/4 | 0/1]0/6)| 01| 0/2]0/3]0/1]|071]01]01] 01|01 01
4/4 | o/4 | o/1 | o/6 | 0/1|o/2]0/3]o/foafonfonfonfonlfor

Overhead: Gate/Depth (4 circuits) vs .original

‘ [abitmultiplier | cl7polygate | cl7cl7adder | multicomp |

|original _[BB Level 1Original |88 Level Joriginal BB Level Original |BB Level 1]
|Gate overhead | %] 832 2| 593) 19 129) so 8]

Figure 13: Summary - Boundary Blur-Level One.

Component Fusion-Espresso results are summa-
rized in figure 14 and show that it was able to
hide 238/252 possible components across all enu-
meration algorithms. Our recorded runtime overhead
of the identification algorithm variations compared
from original vs. obfuscated variants was on aver-
age 1,086% higher. Overhead in terms of increased
gate size was on average 16.7 times higher over the
original.

of identified

[abit c17 polygate c17c17 adder multicom;
c1z |Polv-| Full [y [Half | Full Toeca-[enca-T a1 Toemal ul
HA | FA gate |Adder Adder |Adder| 8 | 2 mux | x1-4 | Sub

1/4 | 0/4 | 0/1 | o/6 | 0/1 | 0/2 | 0/3 | O/1 | O/1 | O/1 | O/1 | O/1 | O/1 | O/1
o4 | o/a | o1 | o6 | o1 |02 | o3| o1 | oa | oa | o1 o1 | o1 o1
ya | o/a oo o1 o2 o3]or[or|yr[or]or|sfon
0/4 | 0/4 | 01| /6| 0/1 | 0/2 | 0/3 | 01| 01| 01| 01 | 01| 01 01
ya | o/a | o | o6 | o1 o2 | o3|oaoa|yr|or]on|yalon
o/a | o/a | o1 | 36| or o2 | o3 o] aa]on o1 on] oaon
0/4] 0/4 | 01| 06| 01|02 03] 01|01]| 01| 01| 01| 01 01
o/a | o/a]on|oe|onfo2]o3]or|1afot|or|or]|orfon
o4 | o/a | o1 | o6 oo | o3| on|aa]on|on o] oon

Overhead: Gate/Depth (4 circuits) vs .original
4bitmultiplier <17 polygate cl7ci7adder multicomp

Original [CFEsp_|Original |CFEsp _|Original |CF Esp |Or\gina\ [cFEsp

[Gate Overhead | 96| 280] 42 68] 19] 68| 50) 159)

Figure 14: Summary - Component Fusion-Espresso.

Component Encryption-Espresso results are sum-
marized in figure 15 and show that it was able to
hide 244/252 possible components across all enumer-

Effectiveness of Adversarial Component Recovery in Protected Netlist Circuit Designs

ation algorithms. Our recorded runtime overhead of
the identification algorithm variations compared from
original vs. obfuscated variants was on average 350%
higher. Overhead in terms of increased gate size was
on average 11.2 times higher over the original.

of identified

4-bit c17polygate c17¢17 adder multicom,

e | POl [Full | oy, [Wit | Full fpec-[enca [T a1 [oemu] Full

HA | FA gate |Adder Adder|Adder| & 2 mux | x1-4 | Sub
waloa[on [oelonloa o3l on oo [on]|aafon]on

o4 | o4 | o [o6 oo | o3 on [on ot | ot oo ot

|Combined oa | oya | o | 6 [o/a | o2 | o3[o1 [o/ [o1 | o/1 | 1 [0p2 o1

\Containment | o/a | /4 [o/ [o6 [o o2 [o3| o [oa[on [o/a [ova| oo fon
oa | o/a | o1 | 26 | o/2 | o2 | o3| o1 [o2 o/ | o/ | g1 | 041 o1
wa | oa [on [a6 | o fo2 | o3 on o1 o |0t |a]on ot
oa | o/a | o1 | o/6 [o/a | o2 o3| o1 [o/ | o1 | o/1 | 1| 0sa o1
wa|oaon o6 |oafo2 o3 on [oaon|on]|oafon]on

xed Rl oa | oa | on o on oz oz on on]on|on]or]on]on
Overhead: Gate/Depth (4 circuits) vs .original

[_4bitmultiplier | cl7polygate | cl7cl7adder | multicomp |
|original_[cFesp |Original [CFEsp |Original [CFEsp |Original [CFEsp |
[Gate Overhead | 9| 1613 22| 287 18] 113 0] 761|

Figure 15: Summary - Component Encryption-Espresso.

In terms of transformation algorithms, all algo-
rithms hide some number of components and all algo-
rithms induced, on average, increased analyzer run-
times for all enumeration types. These two factors
typically are used to categorize a transformer as ef-
fective against a particular type of analysis in respect
to traditional Man-at-the-End (MATE) attacks. Fig-
ure 16 summarizes effectiveness of all transformation
algorithms and their hiding effectiveness against all
identification algorithms.

% of Components Hidden

% 97%
96 89% 94% 95%
81%

80

70% 5

1

RBLE10 RBLE15 BBlevel BBDon't Comp Comp Comp Comp
One Care Fusion Fusion Encrypt Encrypt
can Esp Con Esp

Figure 16: Transformation Algorithm Effectiveness.

In terms of whether the six new extensions to the
Basic Algorithm for candidate subcircuit enumera-
tion resulted in higher detection accuracy, figure 17
summarizes the overall identification accuracy by ap-
proach used. The Combined and Extended algorithm
had the highest overall impact on identification in
the end. Compared to the expected increase in num-
ber of subgraphs enumerated, figure 18 shows results
of a study of 5 circuits that are part of the ISCAS-
85 benchmark set. While the Relaxed algorithm has
the greatest power to incorporate potential subcircuit
components with recursion depth, some algorithms
surprisingly show that they return less subgraphs than
the Basic Algorithm to begin with. Algorithms such
as Combined and Extended for example that return on
average a greater # of subgraphs than the Basic Algo-

rithm, also appear to better identify subcircuits even
after the four transformation algorithms we studied
were used. Based on the component study, some algo-
rithms under-performed the Basic Algorithm: Adap-
tive and Relaxed with recursion depth 1 and 2. Again,
this corresponds roughly to the fact that these algo-
rithms enumerate less subgraphs than expected, as
seen in figure 18.

% of Components Found
29%

30% 27%
25%
2%~ 17% 17% 16%
14%
15% - 13%
9%
10%
5%
i
0%
s & @ £ &> 5 >
& 9@‘ v\@ & & VPQ-Q 25@ wﬁ
¥ & F S A S

&

& \(@"

Figure 17: Enumeration Algorithm Effectiveness.

Subgraphs Enumerated by Algorithm

80000 Size |In) Out Edges + Gates|
€432 |120| 36 7 336 456
oo
€499 | 162| 41 32 408 570
€0000 €880 | 294 | 60 26 729 1023
0000 C1908|441| 33 25 1498 1939
€2670| 676 | 233 140 2152 2828
.
=
-
1 g - 5
.
o & » & >
B & & & &
& s & & R & & s
& & & o & & &
< & & & & &
<; & < < <
«

W (C432 mC499 m(C880 C1908 mC2670

Figure 18: Subgraph Enumeration by Algorithm.

7 CONCLUSIONS

All component hiding algorithms we studied were
considered effective: they concealed one or more
components and on average increased time for iden-
tification. The most effective of our six new pos-
sible extensions to the Basic Algorithm at identify-
ing components were the Combined and Extended
approach. Our study showed that for the analyz-
ers tested, the Component Encryption-Espresso and
Boundary Blurring-Level One obfuscation algorithm
concealed all components for 3 out 4 circuits and had
the highest overall hiding rate. Our future work will
consider large-scale studies of industry scale circuits
and component libraries with knowledge gained from
this study.

191

SECRYPT 2022 - 19th International Conference on Security and Cryptography

REFERENCES

Aksoy, L., Nguyen, Q., Almeida, F., Raik, J., Flottes, M.,
Dupuis, S., and Pagliarini, S. (2021). High-level In-
tellectual Property Obfuscation via Decoy Constants.
In IOLTS 2021, pages 1-7, Torino, Italy. IEEE.

Alcaraz, C., Miciolino, E. E., and Wolthusen, S.
(2013). Structural controllability of networks for non-
interactive adversarial vertex removal. In Critical
Information Infrastructures Security, pages 120-132.
Springer.

Alcaraz, C. and Wolthusen, S. (2014). Recovery of struc-
tural controllability for control systems. In Critical
Infrastructure Protection VIII, pages 47-63. Springer.

Azriel, L., Speith, J., Albartus, N., Ginosar, R., Mendel-
son, A., and Paar, C. (2021). A survey of algorithmic
methods in ic reverse engineering. Jour. of Crypto.
Eng., 11(3):299-315.

Bauer, T. and Hamlet, J. (2014). Physical unclonable func-
tions: A primer. [EEE Security Privacy, 12(6):97—
101.

Chakraborty, R. and Bhunia, S. (2009). Harpoon: an ob-
fuscation based soc design methodology for hardware
protection. [EEE Trans. CADIC Syst., 28(10):1493—
1502.

Chow, S., Eisen, P. A., Johnson, H., and van Oorschot, P. C.
(2003). White-box cryptography and an aes imple-
mentation. In SAC ’02, pages 250-270. Springer.

Cocchi, R., Baukus, J., Chow, L., and Wang, B. (2014).
Circuit camouflage integration for hardware ip protec-
tion. In DAC’14, pages 1-5.

Cong, J. and Minkovich, K. (2007). Improved sat-based
boolean matching using implicants for lut-based fp-
gas. In ISFPGA '07, page 139-147.

Design and Reuse (2012). Innovation at risk: Ip infringe-
ment challenges the semiconductor equipment indus-
try.

Doom, T. E., White, J. L., Wojcik, A. S., and Chisholm, G.
(1998). Identifying high-level components in combi-
national circuits. In 8th GLS-VLSI, pages 313-318.

Fyrbiak, M., StrauB3, S., Kison, C., Wallat, S., Elson, M.,
Rummel, N., and Paar, C. (2017). Hardware re-
verse engineering: Overview and open challenges. In
1VSW’19. IEEE Computer Society.

Gascoén, A., Subramanyan, P., Dutertre, B., Tiwari, A., Jo-
vanovié, D., and Malik, S. (2014). Template-based
circuit understanding. In FMCAD’ 14, page 83-90.

Hansen, M., Yalcin, H., and Hayes, J. (1999). Unveil-
ing the iscas-85 benchmarks: a case study in reverse
engineering. Design & Test of Computers, IEEE,
16(3):72-80.

Li, M., Shamsi, K., Meade, T., Zhao, Z., Yu, B., Jin, Y.,
and Pan, D. Z. (2019). Provably secure camouflag-
ing strategy for ic protection. /EEE Trans. on Comp.-
Aided Des. of Integ. Circ. and Sys., 38(8):1399-1412.

Li, W.,, Gascon, A., Subramanyan, P., et al. (2013). Wor-
drev: Finding word-level structures in a sea of bit-
level gates. In HOST’ 13, pages 67-74.

Li, W., Wasson, Z., and Seshia, S. A. (2012). Reverse en-
gineering circuits using behavioral pattern mining. In
HOST’12, pages 83-88. IEEE Computer Society.

192

McDonald, J., Kim, Y., and Grimaila, M. (2009). Protect-
ing reprogrammable hardware with polymorphic cir-
cuit variation. In CSRW ’09.

McDonald, J., Kim, Y., and Koranek, D. (2011). Determin-
istic circuit variation for anti-tamper applications. In
CSIIRW ’11.

McDonald, J., Kim, Y., Koranek, D., and Parham, J. (2012).
Evaluating component hiding techniques in circuit
topologies. In ICC’12, pages 1138-1143.

McDonald, J., Stroud, T., and Andel, T. (2020). Polymor-
phic circuit generation using random boolean logic ex-
pansion. In SAC’20.

Meade, T., Zhang, S., and Jin, Y. (2016). Netlist reverse en-
gineering for high-level functionality reconstruction.
In ASP-DAC’ 16, pages 655-660.

Nohl, K., Evans, D., Starbug, S., and Plotz, H. (2008).
Reverse-engineering a cryptographic rfid tag. In
USENIX’08, page 185-193, USA. USENIX Associ-
ation.

Quadir, S. E., Chen, J., Forte, D., et al. (2016). A survey on
chip to system reverse engineering. J. Emerg. Technol.
Comput. Syst., 13(1).

Shamsi, K., Li, M., Meade, T., et al. (2017a). Circuit obfus-
cation and oracle-guided attacks: Who can prevail? In
Proc. of GLS-VLSI 2017, page 357-362.

Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D. Z., and Jin,
Y. (2017b). Appsat: Approximately deobfuscating in-
tegrated circuits. In HOST’17, pages 95-100.

Shamsi, K., Li, M., Plaks, K., et al. (2019). Ip protec-
tion and supply chain security through logic obfusca-
tion: A systematic overview. ACM Trans. Des. Autom.
Electron. Syst., 24(6).

Shi, Y., Ting, C., Gwee, B., and Ren, Y. (2010). A highly ef-
ficient method for extracting fsms from flattened gate-
level netlist. In ISCAS’10, pages 2610-2613.

Subramanyan, P., Tsiskaridze, N., Pasricha, K., Reisman,
D., Susnea, A., and Malik, S. (2013). Reverse engi-
neering digital circuits using functional analysis. In
DATE 13, page 1277-1280.

Torrance, R. and James, D. (2011). The state-of-the-art in
semiconductor reverse engineering. In DAC’11, pages
333-338.

Vijayakumar, A., Patil, V. C., Holcomb, D. E., Paar, C,
and Kundu, S. (2017). Physical design obfuscation
of hardware: A comprehensive investigation of device
and logic-level techniques. IEEE Trans. on Info. For.
and Sec., 12(1):64-77.

Wendt, J. B. and Potkonjak, M. (2014). Hardware obfus-
cation using puf-based logic. In ICCAD’14, ICCAD
’14, page 270-277. IEEE Press.

White, J. L., Wojcik, A. S., Chung, M., and Doom, T. E.
(2000). Candidate subcircuits for functional module
identification in logic circuits. In Proc. of 10th GLS-
VLSI, page 34-38.

Yasin, M., Mazumdar, B., Sinanoglu, O., and Rajendran, J.
(2020). Removal attacks on logic locking and cam-
ouflaging techniques. [EEE Trans. Emerg. Topics
Comp., 8(2):517-532.

Zhang, J. (2016). A practical logic obfuscation technique
for hardware security. IEEE Trans. Very Large Scale
Integr: Syst., 24(3):1193-1197.

