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Abstract:  Cross-impact matrices define pairwise direct impacts between variables representing the complexity of 
various social, economic and technological systems. Business and management-related research primarily 
utilizes the row and column sums of direct impact matrices to identify critical, influential, dependent, neuter, 
and inert variables. However, the impact of drivers and outcomes in complex systems is usually difficult to 
interpret accurately without considering the indirect impact of variables. This paper considers all impacts of 
direct and indirect impact paths (known as the total impacts) between variables using the decision-making 
trial and evaluation laboratory (DEMATEL) approach for direct impact matrices in which the rank order 
remains stable (i.e., a stable equilibrium state exists). Numerical experiments show that the rank order of 
variables and their role (influence or dependence) can change significantly when considering total impacts 
between variables compared with when considering direct impacts only. This analysis can be used to support 
management in strategic planning and decision-making, e.g., in an international business environment: 
Management should attempt to obtain the total impacts matrix defining all direct and indirect impacts that 
determine the rank order on which informed decisions are subsequently based. The results presented in this 
paper indicate that impact paths between variables should be incorporated into the system with an in-depth 
domain understanding. This enables the realistic capture of impacts and the establishment of a stable state for 
obtaining an unbiased understanding of the roles of variables. 

1 INTRODUCTION 

As decision-makers, managers are faced with 
strategic challenges when projects and processes are 
affected by factors representing the complexity of 
interdependence in business model innovation, 
product innovation, strategy development, or 
reorganization, as these factors are usually difficult to 
understand and interpret. Cross-impact methods are 
commonly used as analysis and decision support tools 
in such cases. When few statistical or empirical data 
are available, these methods enable theory-driven and 
expert-oriented systems modeling (Panula-Ontto & 
Piirainen 2018; Weimer-Jehle, 2006). Expert 
judgments are processed and synthesized in a 
systematic, formalized, and structured manner, with 
the aim of identifying both direct and indirect impacts 
between identified variables (Asan et al. 2004). In 
contrast to the widespread use of direct impact 
matrices in the cross-impact approach, few studies 
(Arcade et al., 1999; Zimmermann & Eber, 2014; 

Jodlbauer, 2020; Jodlbauer et al., 2021) have 
addressed powered impact matrices. 
 This study investigates the cross-impact approach of 
using the total impact matrix, which considers all 
direct and indirect impacts from a given direct impact 
matrix obtained by the decision-making trial and 
evaluation laboratory (DEMATEL) approach (Gabus 
& Fontela, 1972). This study draws on Gordon and 
Hayward’s (1968) cross-impact approach, Vester and 
Hesler’s (1982) sensitivity model, and Godet’s (1987) 
MICMAC method. We present an analysis based on 
simulated matrices of different orders that remain 
stable when all direct and indirect impacts are 
considered. Numerical experiments show that the 
rank order of variables in the total impact matrix, as 
compared with the direct impact matrix, can change 
significantly depending on their categorization into 
influential and dependent variables. This study 
attempts to present a numerical analysis method that 
can assist management in strategic planning by 
emphasizing the importance of using the total impact 
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matrix for decision-making. In addition, it lays the 
foundation for future empirical research that applies 
the proposed method in practice. The following 
sections provide an overview of cross-impact 
analysis, discuss the current state of research, and 
present the research questions. 

1.1 Cross-impact Analysis 

Based on direct impact matrices, Gordon and 
Hayward (1968) introduced the cross-impact 
approach. The model starts with the definition of the 
relevant variables ଵܸ, ଶܸ, … , ܸ. According to Vester 
and Hesler (1982), the pairwise influence between the 
variables is coded using values of 0, 1, 2, or 3: 
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The direct impact matrix describes the pairwise direct 
impact between each pair of variables, and can be 
interpreted as the adjacency matrix of the weighted 
direct graph describing the pairwise direct impact 
between the variables (nodes of the graph). For 
further analysis, the active sum (AS), passive sum 
(PS), Q-value, and P-value are defined as follows 
(Godet & Roubelat, 1996): 

,
1

,
1

 active sum

(sum of the  row of the matrix )

 passive sum

(sum of the  column of the matrix )

 -value

(quotient active sum over passive sum)

n

i i k
k

n

j k j
k

i
i

i

i i

i th
AS a

i th A

j th
PS a

j th A

i th QAS
Q

PS

P AS P

=

=

−
=

−
−

=
−

−
=

=





 -value

(product active sum by passive sum)i

i th P
S

−

 

(3)

AS can be interpreted as the weighted outdegree of the ݅ −  ℎ variable (node), whereas PS refers to theݐ
weighted indegree of the ݅ −  ℎ variable (node). Aݐ
variable with a high AS value has a significant impact 

on all other variables, and vice versa. A variable with 
a high PS value is strongly influenced by the other 
variables, and vice versa. The ܳ -value reflects these 
categories, as the variable with the highest ܳ -value 
has the greatest overall impact on the other variables, 
i.e., it is the most active variable, while the variable 
with the smallest ܳ -value is most dependent on the 
other variables, i.e., it is the most passive variable. 
Active variables can be used to control or improve the 
system. It is important to be able to manage active 
variables, otherwise there is a risk of losing control of 
the system. Passive variables can be considered as 
output variables that measure success. 

The ܲ -value provides a measure of relevance. A 
variable with a high ܲ -value has a great impact on 
the other variables and is strongly influenced by them. 
Variables with high ܲ -values are referred to as 
critical variables and require the highest level of 
management attention. Critical variables and their 
relationships have to be understood to ensure the 
successful configuration and management of the 
system. Variables with small ܲ -values are called 
inert variables and should not be the focus of 
management. In the so-called influence–dependency 
chart (Godet and Roubelat, 1996), the system, 
variables, and their relationships or significance can 
be visualized (see Figure 1). The x- and y-axes of the 
influence–dependency chart represent the passive 
sum and the active sum of the variables, respectively. 

 

Figure 1: Influence-dependency chart. 

The influence–dependency chart and 
distinguished between five categories of variables: 
critical, influential, dependent, neuter, and inert. The 
critical variables are those at or near the upper-right 
corner. Critical variables are affected by and impact 
many other variables. They are the most important 
variables to be considered and can be expressed as 
stake variables. Influential variables are located at or 
near the upper-left corner. These variables influence 
many other variables in the system, but are relatively 
less affected by other variables. They can be 
expressed as determinant variables. Dependent 
variables are positioned at or near the bottom-right 
corner. Dependent variables are more affected by the 
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system than they affect it. They can be expressed as 
result variables to be monitored. Inert variables are 
located at or near the bottom-left corner. These have 
little influence on and low dependency on other 
variables. They are relatively unconnected to the 
system and can therefore be excluded from the impact 
matrix. Neuter variables are averagely influential 
and/or dependent variables. Nothing definite can be 
said about them. A similar division of variables can 
be found in Linss and Fried (2010), who use 
categories of reactive, critical, inert, and active. 

To illustrate the cross impact analysis method, an 
example based on Vester (2000) is presented. For 
better comprehensibility, only the first four variables 
regarding urban development are utilized: 
attractiveness for recreation ( ଵܸ), need for leisure 
facilities ( ଶܸ), frequent use of open spaces ( ଷܸ), and 
variety of plant species ( ସܸ). The relationships 
between these variables can be shown by a directed 
weighted graph called an effect–cause diagram (see 
Figure 2), or equivalently by the direct impact matrix 
(see Table 1). 

 

Figure 2: Effect-cause-diagram for the simple example. 

Figure 2 shows the effect–cause diagram 
(weighted directed graph) for the first four variables 
discussed in Vester (2000). Table 1 presents all 
pairwise impacts, AS values, PS values, ܳ -values, 
and ܲ -values. Figure 3 illustrates the four variables 
in the influence-dependency chart. Variable ଷܸ has 
the highest AS and the highest ܳ -value (i.e., the 
highest impact on all other variables), as well as the 
highest ܲ  -value (i.e., most critical variable). Variable ଵܸ has the smallest ܳ -value as well as the highest PS 
(i.e., influenced the most by all other variables). ଶܸ 
and ܸ ସ both have the smallest ܲ  -value (i.e., most inert 
variables). 

Table 1: Corresponding impact matrix for the simple 
example. 

 

There are many other models similar to Vester’s 
sensitivity method (Vester & Hesler, 1982). The 
analysis of several scenarios by Gausemeier et al. 
(2001) is based on an impact matrix with the same 
structure as Vester’s impact matrix: ܣVester = ൫ܽ,൯ୀଵ,...,ୀଵ,..., ∈ ሼ0,1,2,3ሽ 

and ܽ, = 0 for all ݅ = 1, . . . , ݊                         (4) 

The cross-impact approach (Gordon & Hayward, 
1968) utilizes a transfer matrix describing the 
pairwise probability of the occurrence of an event that 
is dependent on another event: 

cross impactܣ         = ൫ܽ,൯ୀଵ,...,ୀଵ,..., ∈ ሾ0,1] 
    and        ܽ, = 0 for all ݅ = 1, . . . , ݊             (5) 

Godet (1987; 2000) developed a scenario analysis 
whereby the structural analysis uses the impact matrix 

Godetܣ  = ൫ܽ,൯ୀଵ,...,ୀଵ,..., ∈ ሼ0,1ሽ 
and ܽ, = 0 for all ݅ = 1, . . . , ݊                (6) 

It does not matter which coding the weighting has—
as long as ܽ, ≥ 0 and ܽ, = 0, the model developed 
in section 2 is applicable. 

 
Figure 3:  Corresponding influence-dependency chart for 
the simple example. 
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1.2 State of Research and Research 
Questions 

The various applications of the cross-impact 
approach or similar methods cover different areas 
such as social network analysis (Wasserman & Faust, 
1994), international business networks (Bolívar et al., 
2019; Caraiani, 2013; Ho & Chiu, 2013; Joseph et al., 
2014), project management (Frahm & Rahebi, 2021; 
Reiss, 2013), scenario analysis (Bañuls & Salmeron, 
2007; Bañuls & Turoff 2011; Medina et al., 2015), 
and strategic management (Alizadeh et al., 2016). 

Based on the adjacency matrix for weighted 
directed graphs, Wasserman and Faust (1994) 
investigated social networks. Following the so-called 
“sociomatrices” of Wasserman and Faust (1994), Ho 
& Chiu (2013) filtered more than 20,000 patents and 
created a network of patent activities and knowledge 
flows among 30 semiconductor companies. Caraiani 
(2013) derived a complex network based on a 
Granger causality matrix of relationships between 
countries, allowing them to characterize international 
business cycles. Joseph et al. (2014) applied a so-
called multiple linear regression (MLR)-fit network 
(MLR combined with big data and network science) 
to model global economic interactions, providing an 
accurate phenomenological description with high 
predictive power despite the large number of possible 
interaction channels. Global foreign direct investment 
networks were analyzed by Bolívar et al. (2019), who 
prepared a directed network matrix covering 229 
countries for each year. 

The cross-impact approach has been applied in 
project management to contribute to stakeholder 
management for mega projects (Frahm & Rahebi, 
2021) and to model all project stakeholders and their 
relationships (Reiss, 2013). Scenario analysis has 
been used to assess national technology policies 
(Bañuls & Salmeron, 2007; Bañuls & Turoff 2011), 
identify the barriers that influence decisions to invest 
in solar power (Medina et al., 2015), and develop 
more resilient conservation policies in the energy 
industries (Alizadeh et al., 2016). 

Other diverse applications relate to the 
investigation of sustainable development strategies 
using the sensitivity model (Chan & Huang, 2004; 
Huang et al., 2009), the combination of cross-impact 
analyses with patent analyses to estimate 
technological impacts based on multiple patent 
classifications (Choi et al., 2007), the analysis of the 
potential for telemedicine (Gausemeier et al., 2012), 
as well as the development and analysis of key 
performance indicators for organizational structures 
in construction, real estate management 

(Zimmermann & Eber, 2014), and production 
(Köchling et al., 2018). Dubey and Ali (2014) 
employed a fuzzy cross-impact analysis approach to 
identify flexible manufacturing system dimensions 
and their interrelationships. Asan et al. (2004) 
presented a qualitative cross-impact analysis in terms 
of fuzzy relationships. The analytic hierarchy process 
(AHP) decision model has been combined with 
cross-impact analysis as a technological forecasting 
approach by Cho and Kwon (2004) and Saaty (2004). 
Barati et al. (2019) presented an integrated method 
that combines AHP techniques with cross-impact 
analysis to identify important strategic factors in 
agriculture. 

In most of the papers on the cross-impact 
approach, the direct impact matrix is used to 
determine AS and PS. Relatively few authors have 
addressed powered impact matrices (Arcade et al., 
1999; Jodlbauer, 2020; Zimmermann & Eber, 2014). 
The direct impact matrix shows the direct pairwise 
impact between two variables ܸ and ܸ. In 
comparison, the squared impact matrix shows the 
indirect impact of variable ܸ on variable ܸ via 
exactly one intermediate variable. The squared 
impact matrix refers to all indirect connections with 
path length two i.e., one intermediate variable (node). 
Generally, the ݇ −  ℎ power of the impact matrixݐ
describes the indirect pairwise impact between the 
variables via all possible paths with length ݇, i.e., ݇ −1 intermediate variables. For illustration, the squared 
impact matrix is shown for the simple example 
mentioned above (see Table 2): 

ܣ = ൮0 1 3 02 0 1 22 3 0 33 0 1 0൲ , ଶܣ = ൮ 8 9 1 118 5 8 315 2 12 62 6 9 3 ൲     (7) 

Godet (1987) introduced the MICMAC (Impact 
Matrix Cross-Reference Multiplication Applied to a 
Classification: Matrices d’Impacts Croises—
Multiplication Appliqué un Classement) method to 
analyze the indirect relationships and diffusion of 
impacts through paths and loops involving 
intermediate variables. Godet defined both the 
influence and the dependence rank. The influence 
rank is based on the AS value (row sum) of the impact 
matrix. The variable with the highest AS has influence 
rank 1, the variable with the second-highest AS has 
influence rank 2, and so on. The dependence rank is 
based on the PS value (column sum). The variable 
with the highest PS is assigned dependence rank 1, 
and so on. Indirect classification is obtained by 
increasing the power of the impact matrix and 
determining the row and column sums of the powered 
matrices. According to Coates and Godet (1994), the 
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classification, especially the rank order, generally 
becomes stable for power degrees higher than 5. Our 
research contribution builds on precisely this point, 
first, by identifying counter examples, second, by 
demonstrating analytically that there are cases in 
which no stable state exists, and third, by deriving an 
analytical categorization of the direct impact matrix 
that leads to stable rank orders. Linss and Fried 
(2010) presented an advanced impact analysis 
technique for processing data from cross-impact 
analyses considering both direct and indirect impacts. 
They examined manually calculated matrix 
multiplications and then evaluated the stability of 
sequences of active or passive sums. Gräßler et al. 
(2019) modeled the indirect impacts by applying the 
page-rank algorithm (Page et al., 1999) to the 
corresponding adjacency matrix. The determined 
page-ranks are then applied instead of the 
aforementioned influence ranks when using powered 
impact matrices. The dependency rank is determined 
by the page-rank of the transposed impact matrix. 

Table 2: Squared impact matrix with active sum, passive 
sum, ܲ -values, and ܳ -values. 

 

For a time-discrete Markov chain (Norris, 1998), the 
transition matrix ܣெ௩ describes the transition 
probability from one state to another. A Markov 
transition matrix has some similarities to the impact 
matrix introduced by Gordon and Hayward (1968), 
but also some structurally different characteristics: 

ெ௩ܣ  = ൫ܽ,൯ୀଵ,...,ୀଵ,..., ∈ ሾ0,1] 
and ∑ ܽ,ୀଵ = 1 for all j = 1, . . . , ݊ (8) 

The column sum (PS) for a Markov transition matrix 
has to be equal to one for every column, and the 
diagonal elements are not necessarily equal to zero. 
Under certain assumptions, a Markov chain is stable 
and converges to the unique invariant distribution p
: 

 ݈݅݉→ஶܣெ௩   =  
for every arbitrary initial state  (9) 

 

Figure 4: Influence-dependency chart and categorization 
regions. 

One of the main objectives of this paper is to 
investigate the direct impact matrices for which the 
total impact matrix is stable and convergent in the 
sense of converging rank orders of P-values and Q-
values. 

The research questions addressed in this article 
are: 

(i) How are variables ranked or how do their roles 
change when total impact matrices are used 
instead of the corresponding direct impact 
matrices? To answer this question, we perform 
comparisons between the direct impact matrix 
and the total impact matrix (sum of direct and all 
indirect impacts) of matrices of different orders 
to identify changes in the drivers and outcomes 
(influence–dependence). 

(ii) How do transitive relations affect the ranking of 
variables? To answer this question, the 
influence of transitive relations on the total 
impact matrices compared to their direct impact 
matrices is analyzed. 

(iii) What are the implications of applying the total 
impact matrix for managerial decision-making? 

Jodlbauer et al. (2021) discussed the conditions 
under which normalization occurs, i.e., the ܳ -value 
and the rank orders of the powered impact matrices 
converge to a stable state. Furthermore, the rank 
orders of ܲ -values, AS, and PS converge to a stable 
state. In the case of convergence, the stable state 
matrix should be used to determine the AS, PS, ܳ -values, and ܲ -values, and the influence–
dependency chart for their visualization.  

The remainder of this article is organized as 
follows. Section 2 provides a brief introduction to the 
DEMATEL approach. For impact matrices, the 
DEMATEL model is applied to determine the total 
impact matrix, which reflects all possible direct and 
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indirect impacts between all variables, and to prepare 
an influence–dependency chart and categorize the 
variables. In section 3, numerical analysis is 
conducted to identify the possible differences that 
occur when using the direct impact matrix or the total 
impact matrix. Finally, section 4 discusses the 
implications of the proposed model for research and 
management and identifies the limitations of this 
study, and presents some ideas for future research. 

2 INDIRECT IMPACT MODEL 
(TOTAL IMPACT MATRIX) 

We briefly describe the determination of the total 
impact matrix using the classical DEMATEL 
approach (Gabus & Fontela, 1972), the visualization 
of the influence–dependency chart, and the 

categorization of variables. Let ܣ = ൫ܽ,൯ୀଵ,…,ୀଵ,…, ∈ℝ be a direct impact square matrix with real 
nonnegative entries ܽ, ≥ 0 and ܽ, = 0. The first 
step is the normalization of the direct impact matrix, 
which is defined as: ܦ = ଵ௦               ܣ

(10) 

where s  is defined as follows: ݏ = ݔܽ݉ ൬݉ܽݔଵஸஸ ∑ ܽ,ୀଵ , ଵஸஸݔܽ݉ ∑ ܽ,ୀଵ ൰    (11) 

ܦ  = ൫݀,൯ୀଵ,…,ୀଵ,…, ∈ ℝ, and 0 ≤ ݀, ≤ 1. 

The total impact matrix is obtained by adding all 
direct and indirect impacts: 
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The matrix ܶ = ൫ݐ,൯ୀଵ,…,ୀଵ,…,
 reflects all direct and 

indirect impacts and is called the total impact matrix; 
this is the sum of all powered normalized impact 
matrices. To visualize the stable impact state and 
categorize the variables, the AS, PS, ܲ-values, and ܳ-values are determined for the stable state matrix ܶ 

and the influence–dependency chart is utilized for 
matrix ܶ (see Figure 4). 

 

 

Figure 5: Spearman rank correlation ݎௌ൫ܲ(ܣ), ܲ(ܶ)൯ and ݎௌ൫ܳ(ܣ), ܳ(ܶ)൯ between ܲ -values and ܳ -values with 
respect to the number of non-zero entries of randomly 
generated matrices. 
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The AS, PS, ܲ-values, and ܳ -values are used to 
construct the influence–dependency chart shown in 
Figure 4. The x-axis of the influence–dependency 
chart reflects the PS values and the y-axis reflects the 
AS values. We define ISO-P-curves, ܣ ூܵௌைି(ܲܵ), 
and ISO-Q-curves, ܣ ூܵௌைିொ(ܲܵ), as functions of ܲܵ 
as follows: ܣ ூܵௌைି(ܲܵ) = ܲܲܵ ܣ  ூܵௌைିொ(ܲܵ) = ܳ ܲܵ            

(14) 

An ISO-P-curve for a fixed ܲ -value is a decreasing 
function containing all pairs (ܲܵ,  that have the (ܵܣ
same ܲ -value. The ISO-P-curve for a fixed ܲ-value 
consists of all pairs that have the same relevance ܲ  for 
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the system. An ISO-Q-curve for a fixed ܳ  -value is an 
increasing function of pairs (ܲܵ,  that have the (ܵܣ
same power ܳ to influence the system or to be 
controlled by the system. On the 45° line where ܣ ூܵௌைିொ(ܲܵ) = ܲܵ, there is an equilibrium between 
influential and dependent categories. 

For the five categories addressed in Figure 4—
critical, influential, dependent, neuter, and inert—we 
propose the following definitions: 

( ),  with:

   

and,

  belong to

critical 2 1 and P P1

influential 1 and P P2

dependent 2 and P P2

neuter 2 1 and P2 P P1

inert P P2
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Q Q Q

Q Q

Q Q

Q Q Q

=
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⇔ < ≥
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⇔ <

       (15) 

For practical reasons, the ܲ -values ܲ 1 and ܲ2 and the ܳ -values ܳ1 and ܳ2 can be chosen to ensure that the 
number of essential variables (critical, influential, and 
dependent) is manageable. Let ݊ ௧ be the number 
of manageable critical variables, ݊ூ௨௧ be the 
number of manageable influential variables (input), ݊ை௨௧௨௧ be the number of manageable dependent 
variables (output), and ݊௧ be the number of 
intended inert variables. For these values (݊ being the 
total number of variables and ݊௨௧ being the total 
number of intended neuter variables), the following is 
true: ݊ > 0, ݊௧ > 0, ݊ூ௨௧ > 0, ݊ை௨௧௨௧ > 0, ݊௨௧ > 0, ݊௧ > 0 ݊௧ + ݊ூ௨௧ + ݊ை௨௧௨௧ + ݊௨௧ + ݊௧ = ݊   ܳ2 < 1 < ܳ1, ܲ2 < ܲ1         (16) 

To prioritize management activities, we propose the 
following setting to place the focus on the most 
important issues, that is, the management of key 
variables (i.e., critical, influential, and dependent 
variables). Fix ݊௧, ݊ூ௨௧, ݊ை௨௧௨௧ ܽ݊݀ ݊௧, 
and use the following criteria: (݅)  Choose ܲ2:      |ሼ(ܲܵ, (ܵܣ ∈ ܵܣ ܵܲ|ߗ < ܲ2ሽ| = ݊௧ (݅݅) Choose ܳ1:  

      ฬ(ܲܵ, (ܵܣ ∈ ߗ ൜ฬܵܲܵܣ > ܵܣ ܵܲ ݀݊ܽ 1ܳ ≥ ܲ2ൠฬ = ݊ூ௨௧ (݅݅݅)Choose ܳ2:  

      ฬ(ܲܵ, (ܵܣ ∈ ߗ ൜ฬܵܲܵܣ < ܵܣ ܵܲ ݀݊ܽ 2ܳ ≥ ܲ2ൠฬ = ݊ை௨௧௨௧ (݅ݒ) Choose ܲ1: 
      ฬ(ܲܵ, (ܵܣ ∈ ߗ ൜ฬܳ2 ≤ ܵܲܵܣ ≤ ܵܣ ܵܲ ݀݊ܽ 1ܳ ≥ ܲ1ൠฬ= ݊௧ 
     whereby,            ߗ = ሼ(ܲ ܵ, ܣ ܵ)|݅ = 1,2, … , ݊ሽ                 (17) 

The output variables should be mainly used to 
monitor the system and the input variables should be 
used to control the system. If an input variable is 
mainly controlled by external stakeholders, there is a 
high risk that the system is not manageable. The 
critical variables require the greatest attention from 
management, who must monitor and control all 
critical variables. 

3 NUMERICAL ANALYSIS 

Numerical analyses of randomly generated direct 
impact matrices are now presented to illustrate the 
importance of the total impact matrix T  and its 
comparison with the direct impact matrix A . For the 
analysis, the following tasks must be performed: 

1. Generate random direct impact matrices ܣ of 
order ݊  (variables) by varying nonzero entries of ܣ such that the row sum and column sum of each 
variable are greater than zero. We generate 
direct impact matrices of order ݊ =20,30,40,50,60,80 and 100 with different 
proportions of nonzero entries varying from 0.05,0.1,0.15, … ,1 to analyze the effect of 
higher-order matrices and transitive relations of 
the total impact matrix. For random matrix 
generation, we start with a null matrix ܣ of order ݊, and assign nonzero entries (direct impacts) 
sampled uniformly from {1,2,3}  to m 
nondiagonal entries of ܣ (݉ ≥ ݊, and ݉ ≤݊ଶ − ݊). 

2. Compare the influence–dependence measures 
between direct impact matrices ܣ and 
corresponding total impact matrices ܶ. 
Calculate the influence–dependence measures (ܵܣ, ܲܵ, ܲ, and ܳ) and compare the ܲ -values 
and ܳ -values between matrices ܣ and ܶ by 
computing the Spearman rank correlation 
(Spearman, 1904) to show the differences 
between the ranks of variables with respect to 
the number of nonzero entries in matrix ܣ. 

3. Compute the proportion of variables that change 
from influential to dependent and vice versa by 
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examining ܳ(ܣ) and ܳ(ܶ) values of variables 
considering different values for ܳ1 and ܳ2 (see 
Figure 4). 

4. Determine the impact of the transitive relations 
of variables on the total impact matrix. 

For the numerical analysis, ∼600,000 random 
matrices were generated by varying the number of 
nonzero entries in direct impact matrices of order ݊. 
Next, the matrices were analyzed to evaluate the rank 
difference of variables, where the ranks of variables 
were computed from the direct impact matrices ܣ and 
corresponding total impact matrices ܶ . The Spearman 
rank correlation ቀݎௌ൫ܲ(ܣ), ܲ(ܶ)൯, ,(ܣ)ௌ൫ܳݎ ܳ(ܶ)൯ቁ 

between the P-values and ܳ-values of each direct 
impact matrix and corresponding total impact matrix 
was calculated to summarize the rank difference of 
variables of randomly generated direct impact 
matrices. The results are shown in Figure 5. The 
x-axis is the number of nonzero entries in the 
randomly generated matrices. The y-axis is the 
Spearman rank correlation ቀݎௌ൫ܲ(ܣ), ܲ(ܶ)൯, ,(ܣ)ௌ൫ܳݎ ܳ(ܶ)൯ቁ of ܲ-values and ܳ-values, summarizing the rank difference of 
variables. The Spearman rank correlation results 
show that the total impact matrices ܶ provide 
different rankings of variables than the corresponding 
direct impact matrices ܣ. The rank correlation 
variation is higher in sparse matrices than in dense 
matrices, indicating that the rank difference of 
variables is likely to be higher in sparser matrices. 
Next, the highest and lowest rank correlation of ܲ -values and ܳ -values were computed (see Figure 
5). The highest and lowest correlations for ܲ are 
~0.99 (when, for instance, matrix ܣ has 228 nonzero 
entries) and 0.62 (when matrix ܣ has 34 nonzero 
entries). The highest and lowest correlations for ܳ  are 
~0.99 (when, for instance, matrix ܣ has 228 nonzero 
entries) and ~0.66 (when matrix ܣ has 32 nonzero 
entries). The highest rank correlation values indicate 
that the ranking of variables has not changed 
significantly and the same rank is maintained in both 
matrices for ܲ and ܳ. The lowest rank correlation 
values show that the ranking of variables obtained 
using the total impact matrix ܶ has changed 
significantly. A significant change in ranking means 
that the influence–dependence effect of variables on 
each other calculated by the direct impact matrix ܣ is 
significantly different from that given by the total 
impact matrix ܶ. Further, the rank difference for 
matrices varies between the minimum and maximum 
values. 

In other cases, variables may change from 
influential to dependent or from dependent to 
influential in the total impact matrix ܶ compared with 
the direct impact matrix ܣ, defined as a role-change. 
For this analysis, we calculated the proportion of role-
change variables in the total impact matrix as follows. 
We selected different values for ܳ1 and ܳ2 as 
decision boundaries to determine whether ܳ(ܣ) and ܳ(ܶ) for the ݅௧ variable are on the same side of the 
decision boundary (i.e., ܳ(ܣ) > ܳ1 ∧ ܳ(ܶ) > ܳ1 
or ܳ(ܣ) < ܳ1 ∧ ܳ(ܶ) < ܳ1), which defines the 
influence or dependence effect of the variable. The 
selected decision boundaries ܳ1 and ܳ2 were {(1,1), 
(1.05, 0.95), (1.10, 0.90), (1.15, 0.85), (1.20, 0.80), 
(1.25, 0.75)}. If a variable does not lie on the same 
side of the decision boundary for both the direct 
impact matrix and total impact matrix, then the role 
of this variable as an influential or dependent variable 
is different in the total impact matrix than in the direct 
impact matrix. The proportion was calculated as 
follows: 

( )
( ) ( )( ) ( ) ( )( )( )2 1 1 2

1,

n

i i i i
i

I Q A Q Q T Q Q A Q Q T Q
prp D T

n
=

< ∧ > ∨ > ∧ <
=
  (18) 

where ܫ(. ) is an indicator function that returns 1 if the 
input is true and 0 otherwise; n  is the order of the 
matrix. We further estimated the percentage of 
matrices that have role-change variables when using 
the total impact matrix compared with the direct 
impact matrix for randomly generated matrices of 
order ݊ = 20,30,40,50,60,80 and 100. The results 
are presented in Table 3. The first column is the 
interval of the percentage of role-change variables in 
a total impact matrix (ܶ) compared with a direct 
impact matrix (ܣ). The other columns show the 
percentages of randomly generated matrices in 
corresponding role-change intervals for different 
boundaries of ܳ 1 and ܳ 2. The role-change categories 
of variables are divided into four intervals to better 
understand the likelihood of matrices that have no 
change, small change, medium change, or large 
change in the influence–dependence groups of 
variables in ܶ compared with ܣ. The four intervals 
are: 1) no change, i.e., equal to zero, 2) small change, 
i.e., (0,5]% of variables change role, 3) medium 
change, i.e., (5,10]% of variables change role, and 4) 
large change, i.e., >10% of variables change role. 
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Table 3: Percentage of randomly generated matrices in 
different role-change intervals in their total impact matrix ܶ compared to direct impact matrix A. 

 

In Table 3, as the matrix order increases, the 
percentage of matrices in the no change category 
decreases for the cases where ܳ1 = ܳ2 = 1. In 
addition, a significant percentage of matrices show a 
small change, the percentage of matrices that show a 
medium change varies from ~6.4% to 2%, and fewer 
than 1% of matrices fall into the large change 
category. As the width between decision boundaries ܳ1 and ܳ2 increases, the percentage of matrices in 
the no change category increases from 80% to 99.7%. 
Matrices gradually fall into the no change category as 
the width between ܳ1 and ܳ2 increases, with only a 
small fraction exhibiting small or medium change. 
The percentage of matrices in the small change and 
medium change categories decreases from 11.7% to 
0.3% for different values of ܳ1 and ܳ2 (in increasing 
order), and for different orders (n) of matrices. 
However, we did not consider the change in neuter 
variables to influence–dependence groups. This 
analysis provides two important insights. First, it 
highlights the importance of the total impact matrix, 
as we observe that the matrices fall into the categories 
of small, medium, and large change. Second, we can 
see the importance of the selection of decision 
boundaries ܳ1 and ܳ2. The user must select valid 
impact boundary criteria under the supervision of 
domain experts to determine ܳ1 and ܳ2; otherwise, 
the indirect impact model will produce ineffective 
results. 

Next, the percentages of matrices in the four 
different role-change categories based on the 
proportion of nonzero entries in random direct impact 
matrices of different orders were calculated. The 
results are shown in Figure 6. More than 50% of the 
sparser matrices (proportion of nonzero entries of 
0.05–0.25) show a small, medium, or large change in 
the influence–dependence groups of variables when ܳ1 = ܳ2 = 1 for different orders of matrices (see 
Figure 6). As the matrices become dense, the rank 
order difference decreases gradually, and the 
percentages of matrices showing a small change in 
influence–dependence groups of variables increase. 
As the width increases between ܳ 1 and ܳ 2, the small, 
medium, and large change categories disappear, and 
a small fraction of the matrices remain in the small 
and medium change categories. 

It is important to note that the small change 
(0,0.05] (interval (only some variables change role), 
in which a significant percentage of matrices are 
grouped (depending on the width between ܳ1 and 
Q2), is not trivial and should not be ignored. Domain 
experts should assess the overall impact of these few 
variables. Even if the number of variables that change 
their group orders is small, the overall impact can be 
large depending on the type of problem that is 
addressed. Nevertheless, the change may be large or 
small, which underscores the importance of a total 
impact matrix from which influence–dependence 
ranks can be calculated to measure the direct and 
indirect impact of the variables. In this numerical 
analysis, categorizing the variables that change 
groups into these four categories highlights the 
importance of the total impact matrix T  for 
measuring the indirect impacts of the variables on 
each other. 

Finally, we examined the effect of transitive 
relations on the proportion of variables that changed 
influence–dependence groups (role-change) in ܶ . We 
searched for transitive relations using a weighted 
transitive measure. A weighted transitive relation in 
the direct impact matrix is defined as follows: in a 
direct impact matrix, a triplet (݅, ݆, ݇) is transitive, 
where ሼ(݅, ݆), (݆, ݇), (݅, ݇)ሽ is a set of ordered pairs 
defining the relations between the ݅௧, ݆௧ and ݇௧ 
variables, if the impact ܽ, ≥ ݉݅݊൫ܽ,, ܽ,൯ given 
that ܽ,, ܽ, > 0. We applied the social network 
analysis package sna (Butts, 2008) to calculate the 
transitive measure for a randomly generated direct 
impact matrix. The transitive measure is the fraction 
of transitive relations for which ܽ , ≥ ݉݅݊൫ܽ,, ܽ,൯ 
(Wasserman & Faust, 1994): 
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     (19) 

The main objective of this analysis is to understand 
whether changing the role of the variables in the 
influence–dependence group in ܶ produces a 
systematic effect as the order of the matrices and the 
number of transitive relationships change. A second 
reason for this analysis is to understand the 
importance of assigning impacts between variables 
with transitive relations. The results of the average 
change in proportion of variables with respect to the 
transitivity measure (divided into different intervals 
in increasing order) are shown in Figure 7 for 
matrices of different orders and with different 
decision boundaries ܳ1 and ܳ2. The results for ܳ 1 =ܳ2 = 1 show that an average of ~2.5% of variables 
change their role in the influence–dependence group 
in ܶ when no or a small number of transitive relations 
are observed. This value decreases gradually as the 
number of transitive relations increases. When the 
decision boundary threshold for ܳ1 and ܳ2 is 
changed, the expected proportion of variables that 
change the influence–dependence group in ܶ 
decreases and the expected proportion is 
insignificant. This trend remains similar for matrices  
 

 

Figure 6: Proportion of randomly generated matrices in 
different role-change intervals with respect to the 
proportion of non-zero entries in the randomly generated 
matrices. 

of different orders; however, there is a slight decrease 
(downward shift) in the average proportion change of 
variables as the order of the matrices increases, 
indicating that the average percentage change in each 
variable becomes smaller. The expected change 
approaches zero in denser matrices (where the 
number of transitive relations is higher) for all matrix 
orders. The complexity of the relations between 
variables (defined as the impact) may result in the 
variables being grouped into different categories so as 
not to ignore indirect impacts when using a direct 
impact matrix for complex decision-making in a 
business scenario. However, the total impact matrix 
may be ineffective and redundant if impacts are added 
arbitrarily without proper consideration, or if the ܳ1 
and ܳ2 boundaries are not carefully selected. 
Otherwise, the results could lead to inaccuracies and 
produce an ineffective impact matrix, resulting in 
incorrect calculations. 

4 DISCUSSION AND 
CONCLUSION 

4.1 Research Implications 

The following research implications arise from this 
study. First, when the direct impact matrix ܣ is very 
sparse (i.e., contains few impacts), there is a high risk 
that using direct impact matrix analysis to identify 
influence–dependence variables will produce 
incorrect results. Second, the numerical analysis 
shows that the rank orders, importance, or category of 
variables can change significantly between the direct 
impact matrix ܣ and the total impact matrix ܶ. 

We observe two types of changes. First, a rank 
change, where the role of the variables remains the 
same. Second, a change in the influence–dependence 
groups in the total impact matrix. Both types lead to 
different interpretations of the system and variables 
when using the total impact matrix ܶ. The proportion 
of influence–dependence variables in the total impact 
matrix ܶ is significantly different for sparser 
matrices. This affects whether decisions should be 
made based on matrix ܣ or matrix ܶ. A greater 
number of transitive relations (high transitive score) 
in the direct impact matrix ܣ will result in a smaller 
difference in the rank orders of variables between 
matrix ܣ and matrix ܶ, and so ܶ does not provide any 
significant results. When matrix ܣ is sparse, the 
difference in rank orders is greater. 
In managerial applications, a higher number of 
transitive relations may indicate one of three things, 
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assuming that for variables ݅, ݆, and ݇, ܽ, ≥݉݅݊൫ܽ,, ܽ,൯ holds (as discussed in section 3): 1) A 
direct impact with an in-depth domain understanding; 
2) Inaccurate/arbitrarily assigned impacts; 3) A 
relation derived by estimating indirect impacts. In the 
second and third cases, the results of the total impact 
matrix are useless or incorrect. It may seem that the 
indirect relations are known, a direct impact matrix 
analysis may be applicable, or a denser random 
relation may lead to ineffective results. It is important 
not to introduce impacts randomly and not to assign 
indirect relations by establishing direct relations 
between variables. Our analysis emphasizes that 
indirect impacts should be computed for managerial 
applications, assigning only direct impacts (using an 
appropriate evaluation criterion) to construct an 
initial direct impact matrix, and using a statistically 
valid criterion with an appropriate domain 
understanding for ܳ1 and ܳ2. 

4.2 Managerial Implications 

Systems that are difficult to understand and interpret 
pose a strategic challenge to decision makers and 
stakeholders. In decision making, for example, at the 
top management level of a multinational company, 
decision makers deal with systems that are difficult to 
oversee and contain pairwise impacts of direct as well 
as indirect variables. Our method makes the indirect 
impact of variables visible and manageable: The 
presented study can contribute to an improved 
visualization (see influence-dependency chart of 
matrix ܶ) as well as to a better understanding of total 
impact matrices compared to the use of direct impact 
matrices, thus supporting consensus building among 
decision makers and helping management in strategic 
planning and decision-making processes (e.g., 
implementing targeted, well-coordinated actions). 
Key variables can be identified and visualized in the 
influence-dependency chart. The decision boundaries 
in the influence-dependency chart should be selected 
carefully so that the overall impact of the variables is 
not over- or underestimated. In addition, management 
can use the chart to determine whether variables in 
the system are critical variables (and should thus be 
treated with the greatest attention) or not. KPIs can be 
derived from dependent output variables and support 
management in decision-making.  

The following recommendation can be made to 
managers: The insight of a cross-impact analysis 
conducted with the DEMATEL approach is that 
significant differences between a direct impact matrix 
and a total impact matrix are possible. However, there 
might be cases where the ranking of variables does 

not change when proportion of non-zero entries are 
higher. This may be due to an arbitrary selection of 
relations resulting in a high proportion of non-zero 
relations, or unassessed transitive relations. If the 
experts correctly assess the transitive relations, this 
will not affect the interpretation of the results, but 
random or incorrect assessment of the relations would 
lead to misinterpretation and potentially provide 
ineffective or redundant results. Therefore, managers 
are recommended to always work with matrix ܶ  when 
estimating the overall impact of variables on each 
other, as the variables may have a different 
categorization compared to the direct impact matrix ܣ. In contrast to matrix ܣ, the total impact matrix ܶ 
also contains all indirect relationships between the 
variables. The potential applications of the model are 
diverse and extend far beyond the management level. 
Especially in international business, when global 
production networks, international operations 
networks, networks of foreign suppliers, global FDI 
networks, or global R&D networks are concerned, the 
method can support decision makers in complex 
decisions. Further application examples are business 
model innovation, urban development, politics, or 
risk analysis. 

 
Figure 7: Average proportion of variables changed. 

4.3 Future Research and Limitations 

In future research, the presented DEMATEL model 
should be applied to pilot projects, case studies, and 
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empirical studies, taking into account the complexity 
of the system’s transitive, modular, or hierarchical 
relationships. The presented approach is applicable in 
practical environments (e.g., production, quality 
control, process optimization, business model 
innovation) and not only in randomly generated 
situations. One limitation of this study is that the 
model has been exclusively applied to positive 
matrices with the coding ሼ1,2,3ሽ. In the future, it is 
recommended that investigations examine whether 
the model can be applied to matrices with other 
codings that allow negative values. A key challenge 
to overcome is the definition of impacts between 
variables, especially in transitive cases. For example, 
in developing a direct impact matrix, different experts 
may assign different impacts, leading to cases of 
transitivity where indirect and direct impacts exist 
between variables and the weights of the sums of 
indirect and direct relations are different. Such cases 
need to be investigated using cross-impact analysis 
matrices that account for direct and indirect impacts. 
Another challenge involves validating the impact of 
variables in practical situations (allowing valid 
interpretation by domain experts) using cross-impact 
analysis matrices that consider direct and indirect 
impacts of realistic business scenarios. 
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