
Code-based Key Encapsulation Mechanism Preserving Short Ciphertext
and Secret Key

Jayashree Dey and Ratna Dutta
Department of Mathematics, Indian Institute of Technology Kharagpur, Kharagpur-721302, India

Keywords: Public Key Encryption, Key Encapsulation Mechanism, MDS Code, Companion Matrix.

Abstract: Post-quantum cryptography has recently drawn considerable attention from both industry and academia due
to the impending threat by quantum computers. Developing key encapsulation mechanism (KEM) that resists
attacks equipped with quantum computers has become relevant as KEM is used in practice quite heavily.
Coding theory is an attractive option to guarantee secure communication in the post-quantum world. Motivated
by the goal of improving efficiency, we revisit code-based KEM in this article. We present basicPKE, a public
key encryption (PKE) scheme using a parity check matrix of maximum distance separable (MDS) code. Our
construction is built on top of a companion matrix in deriving an MDS code. This significantly reduces the
secret key size. We support the conjectured security of basicPKE by analysis and prove that the scheme
achieves security against indistinguishability under chosen plaintext attacks (IND-CPA) in the random oracle
model. Following the design framework of basicPKE, we construct fullPKE that leads to the design of fullKEM.
We have shown that fullPKE is secure against one-wayness under plaintext and validity checking attacks (OW-
PCVA) and fullKEM achieves security against indistinguishability under chosen ciphertext attacks (IND-CCA)
in the random oracle model. An appealing feature of fullKEM is that it exhibits better performance guarantee
in terms of communication bandwidth and secret key size when contrasted with existing similar approaches.

1 INTRODUCTION

With the proliferation of a wide range of Internet of
Things (IoT), IoT devices are increasingly used to
store secrets that are used to authenticate users or
enable secure payments. Many IoT devices are not
equipped with proper environments to store secret
keys and provide developers with little programma-
bility for their applications. It is therefore desirable to
leverage the fact that users own multiple devices such
as smart phone, smart watch, smart TV, etc. and en-
able multi-device cryptographic functionalities with-
out making strong assumptions about a device’s se-
curity features. Given the limited computation and
communication power of IoT devices, it is essential
to come up with cryptographic primitives that meet
short communication bandwidth as well as short se-
cret key.

Key encapsulation mechanism (KEM) is an im-
portant building block in cryptography which plays
a vital role in transmitting symmetric key information
securely utilizing asymmetric algorithms. Although
public key cryptosystems are incompetent to commu-
nicate long messages in practice, KEM is beneficial

to exchange relatively short symmetric key which is
then used for encrypting a longer message. More pre-
cisely, one can encrypt a random symmetric key us-
ing the preferred public key algorithm. The receiver
recovers the symmetric key by the decryption proce-
dure of the public key algorithm.

Given the rapidly expanding set of KEM ap-
plications and public key encryption (PKE), there
is a strong interest in making PKE and KEM
post-quantum secure. Error-correcting codes play
a significant role in designing quantum-safe alter-
natives while offering reasonable performance with
solid security guarantees as code-based cryptographic
schemes are usually very fast and can be implemented
on several platforms.
Our Contribution. Since its introduction by
McEliece (McEliece, 1978) in 1978, numerous
proposals in constructing PKEs and KEMs based on
error correcting codes have been presented yielding
various improvements in security and efficiency. A
line of recent work are offered to NIST call in 2016
for standardization of quantum safe cryptography
(Barreto et al., 2017), (Bardet et al., 2017), (Yamada
et al., 2017), (Bernstein et al., 2017), (Kim et al.,

374
Dey, J. and Dutta, R.
Code-based Key Encapsulation Mechanism Preserving Short Ciphertext and Secret Key.
DOI: 10.5220/0011273900003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 374-381
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2018), (Aguilar-Melchor et al., 2018), (Albrecht
et al., 2019), (Aragon et al., 2017a), (Banegas et al.,
2018), (Baldi et al., 2018), (Szepieniec, 2017),
(Wang, 2017), (Aragon et al., 2017b), (Melchor et al.,
2017), (Aragon et al., 2017c), (Aragon et al., 2017b),
(Melchor et al., 2017), (Aragon et al., 2017c), (Mel-
chor et al., 2019), focusing on constructing KEM
offering improvements in security and efficiency. The
challenge lies in the requirement of low communi-
cation bandwidth and short key size while providing
strong security guarantee. This motivates our search
for a code-based KEM featuring indistinguishability
under chosen ciphertext attacks (IND-CCA) security
under the hardness of the syndrome decoding with
relatively short ciphertext and short secret key. Using
the structure of a companion matrix, we form an
MDS code and integrate it to design basicPKE by
coupling with the Niederreiter encryption (Nojima
et al., 2008). We have shown that basicPKE achieves
indistinguishability against chosen plaintext attacks
(IND-CPA). More specifically, we use the parity
check matrix of the MDS code as the public key
matrix and keep the last row of the companion
matrix as secret key. Our approach yields significant
reduction in the secret key size and communication
overhead, making the scheme useful in applications
with limited communication bandwidth. Moreover,
use of parity check matrix instead of generator matrix
enables faster encapsulation. MDS codes satisfy
the Singleton bound and have efficient decoding
algorithm which is employed to decode ciphertext
during decryption.

We extend basicPKE to fullPKE which is proven
to be one-wayness under plaintext and validity check-
ing attacks (OW-PCVA) secure in the random oracle
model. Finally, we build indistinguishability under
chosen ciphertext attacks (IND-CCA) secure fullKEM
from fullPKE. We briefly discuss our fullKEM in refer-
ence to the previous similar works.
• As exhibited in Table 1, our fullKEM offers sev-
eral strong advantages over the existing approaches
((Albrecht et al., 2019), (Aragon et al., 2019), (Bern-
stein et al., 2017), (Baldi et al., 2018), (Bardet et al.,
2017), (Banegas et al., 2018), (Dey and Dutta, 2019))
that are constructed over finite fields with character-
istic 2. The most appealing feature of our fullKEM is
that we use MDS code in our work owning the bi-
nary structure and the use of the companion matrix
helps to reduce the secret key size. A bit more pre-
cisely, the secret key size of our construction is com-
paratively shorter than the schemes ((Albrecht et al.,
2019), (Bernstein et al., 2017), (Bardet et al., 2017),
(Baldi et al., 2018),(Banegas et al., 2018), (Dey and

Dutta, 2019)) although the size of public key remains
large. The BIKE variants and LEDAkem are efficient
in terms of public key sizes and achieve IND-CCA se-
curity. However, they experience a small decoding
failure rate unlike our candidate.
• More interestingly, our fullKEM supports low

communication overhead and performs better in terms
of ciphertext size over DAGS (Banegas et al., 2018)
and (Dey and Dutta, 2019). It uses parity check ma-
trix during encapsulation instead of generator matrix
which leads faster encapsulation in contrast to DAGS
and NTS-KEM. In fact, the encapsulation procedure
of fullKEM is closest to the work in (Bardet et al.,
2017).
• To prove the security of fullKEM, we follow the
generic transformations by Hofheinz et al. (Hofheinz
et al., 2017). More concretely, our basicPKE sup-
ports IND-CPA security in random oracle model un-
der the hardness of syndrome decoding problem and
the indistinguishability of the public key matrix from
a random matrix. We prove that breaking OW-PCVA
security of our fullPKE would lead to breaking the
IND-CPA security of basicPKE in the random ora-
cle model. Achieving IND-CCA security of fullKEM
seems quite tricky despite of its potential for compar-
ative simplicity. As OW-PCVA security always im-
plies one-wayness under validity attacks (OW-VA) se-
curity with zero queries to the plaintext checking ora-
cle, the OW-PCVA security and consequently the OW-
VA security of fullPKE follows from the IND-CPA se-
curity of basicPKE. We show that the OW-VA security
of fullPKE implies the IND-CCA security of fullKEM
in the random oracle model. We can further extend
our security proof in the quantum random oracle fol-
lowing the work by Hofheinz et al. (Hofheinz et al.,
2017).

2 PRELIMINARIES

In this section, we provide mathematical background
and preliminaries that are necessary to follow the dis-
cussion in the paper.
Notation. We use the notation x

U←− X for choosing a
random element from a set or distribution, a←− A for
the sampling according to some distribution A, wt(x)
to denote the weight of a vector x, (x||y) for the con-
catenation of the two vectors x and y. The matrix In is
the n×n identity matrix. We let GF(q) to denote the
Galois field of cardinality q and Z+ to represent the
set {a ∈ Z|a ≥ 0} where Z is the set of integers. We
denote the transpose of a matrix A by AT and concate-
nation of two matrices A and B by [A|B]. The uniform
distribution over c× d random q-ary matrices is de-

Code-based Key Encapsulation Mechanism Preserving Short Ciphertext and Secret Key

375

Table 1: Comparative summary of IND-CCA secure KEMs.

Scheme pk size (in bits) sk size (in bits) CT size (in bits) Code used Cyclic/Dyadic Correctness
error

NTS-KEM (Albrecht et al., 2019) (n− k)k 2(n− k+ r)m (n− k+ r) Binary Goppa – No
+nm+ r

BIKE-1 (Aragon et al., 2019) n n+w · ⌈log2k⌉ n MDPC Quasi-cyclic Yes
BIKE-2 (Aragon et al., 2019) k n+w · ⌈log2k⌉ k MDPC Quasi-cyclic Yes
BIKE-3 (Aragon et al., 2019) n n+w · ⌈log2k⌉ n MDPC Quasi-cyclic Yes
LEDAkem (Baldi et al., 2018) n− ℓ n

ℓ w log2 ℓ ℓ LDPC Quasi-cyclic Yes
Classic McEliece (Bernstein et al., 2017) k(n− k) n+mt +mn (n− k)+ r Binary Goppa – No

BIG QUAKE (Bardet et al., 2017) k
ℓ (n− k) mt +mn (n− k)+2r Binary Goppa Quasi-cyclic No

DAGS (Banegas et al., 2018) k
s (n− k) log2 q 2mn log2 q [n+ k′]log2q GS Quasi-dyadic No

(Dey and Dutta, 2019) k
s (n− k) log2 q 2mn log2 q [k′+(n− k)]log2q GS Quasi-dyadic No

fullKEM k2m2 km 2k′+ km MDS – No

pk=public key, sk=secret key, CT=ciphertext, k=dimension of the code, n=length of the code, ℓ=length of each blocks, t=error correcting capacity,
k′ < k,s,r,w, p1, p2 are positive integers (ℓ << s), s = 2p2 , q = 2p1 , λ=security parameter, m= the degree of field extension, r=the desired key length,

GS=Generalized Srivastava, MDPC=Moderate Density Parity Check, LDPC=Low Density Parity Check

noted by Uc,d .

2.1 MDS Codes

Definition 1. (MDS Code (MacWilliams and
Sloane, 1977)). An [n,k,d] linear code with length
n, dimension k and minimum distance d is said to
be a maximum distance separable (MDS) code if
k = n−d +1.

Definition 2. (MDS Matrix (Gupta and Ray,
2013)). Let GF(q) be a finite field and m, n be two in-
tegers. Let x→M×x be a mapping from (GF(q))m to
(GF(q))n defined by the n×m matrix M. We say that
M is an MDS matrix if the set of all pairs (x,M× x)
is an MDS code, i.e. a linear code of dimension m,
length m+n and minimum distance n+1.

Theorem 1. (MacWilliams and Sloane, 1977) An
[n,k,d] linear code with generator matrix G= [I|M]∈
(GF(q))k×n is MDS code if and only if every square
submatrix of M is nonsingular where M is a k× (n−
k) matrix over GF(q). We say M is an MDS matrix if
the corresponding code is MDS.

Definition 3. (Companion Matrix (Gupta et al.,
2017a)). Let g(X) = z0 + z1X + · · ·+ zk−1Xk−1 +Xk

be a monic polynomial over GF(q) of degree k. The
k× k companion matrix Cg associated to the polyno-
mial g is given by

Cg =

 0 1 · · · 0
· · · · · · · · · · · ·
0 0 · · · 1
−z0 −z1 · · · −zk−1


Theorem 2. (Blaum and Roth, 1999) Let GF(q) be
the finite field containing q elements with character-
istic 2, Mat(m,GF(q)) be the ring of m×m matri-
ces over GF(q) and Mat(n,m) be the set of n× n
block matrices over Mat(m,GF(2)). A matrix M ∈

Mat(n,GF(q)) is MDS if and only if every square sub-
matrix of M is nonsingular. Similarly, a block matrix
M ∈ Mat(n,m) is MDS if and only if every square
block submatrix of M is nonsingular.

The following result follows easily from the above
theorem.
Lemma 1. A block matrix M ∈Mat(n,m) is MDS if
and only if its transpose MT is MDS.

The order of a polynomial g(X) ∈ GF(q)[X]
(g(0) ̸= 0), denoted by ord(g), is the least positive in-
teger n such that g(X) divides Xn−1. The weight of
a polynomial is the number of its coefficients that are
nonzero.
Theorem 3. (Gupta et al., 2017a) Let g(X) ∈
GF(q)[X] be a monic polynomial of degree k with
ord(g) ≥ 2k. Then the matrix M = (Cg)

k is MDS if
and only if the weight of any nonzero multiple of de-
gree ≤ 2k−1 of the polynomial g(X) is greater than
k.
Definition 4. (Permutation Equivalent Matrices
(Kesarwani et al., 2019)) Two matrices M and M′

are said to be permutation equivalent, denoted by
M∼pe M′, if there exist two permutation matrices P,Q
such that M′ = PMQ.
Lemma 2. (Kesarwani et al., 2019) Suppose that
two matrices M and M′ are permutation equivalent.
Then M is MDS if and only if M′ is MDS.
Definition 5. (Expanded Codes (Khathuria et al.,
2019)). Let n,k be positive integers with k ≤ n, q be
a prime power and m be an integer. Let C be a lin-
ear code of length n and dimension k over GF(qm).
The expanded code of C with respect to a primitive
element γ ∈ GF(qm) is a linear code over the base
field GF(q) defined as Ĉ = {φn(c) : c ∈ C} where
φn : (GF(qm))n −→ (GF(q))mn is the GF(q)-linear
isomorphism defined by γ as
φn(α0,α1, . . . ,αn−1) = (φ(α0),φ(α1), . . . ,φ(αn−1))

SECRYPT 2022 - 19th International Conference on Security and Cryptography

376

and φ : GF(qm)−→ (GF(q))m is given by

φ(a0 +a1γ+ · · ·+am−1γ
m−1) = (a0,a1, . . . ,am−1).

Lemma 3. (Khathuria et al., 2019). Let C be a
linear code in (GF(qm))n, γ ∈ GF(qm) be a primi-
tive element and φn : (GF(qm))n−→ (GF(q))mn be the
GF(q)-linear isomorphism defined by γ as in Defini-
tion 5.

(i) If G = [g1,g2, . . . ,gk]
T is a generator matrix of

C where g1,g2, . . . ,gk are vectors in (GF(qm))n,
then the expanded code Ĉ of C over GF(q) with
respect to the primitive element γ ∈ GF(qm) has
the expanded generator matrix
Ĝ = [φn(g1),φn(γg1), . . . ,φn(γ

m−1g1),φn(g2),
φn(γg2), . . . ,φn(γ

m−1g2), . . . ,φn(gk),φn(γgk),
. . . ,φn(γ

m−1gk)]
T .

(ii) If H = [hT
1 ,h

T
2 , . . . ,h

T
n] is a parity check matrix of

C where h1,h2, . . . ,hn are vectors in (GF(qm))n−k,
then the expanded code Ĉ of C over GF(q) with
respect to the primitive element γ ∈ GF(qm) has
the expanded parity check matrix
Ĥ = [φn−k(h1)

T ,φn−k(γh1)
T , . . . ,φn−k(γ

m−1h1)
T ,

φn−k(h2)
T ,φn−k(γh2)

T , . . . ,φn−k(γ
m−1h2)

T ,
. . . ,φn−k(hn)

T ,φn−k(γhn)
T , . . . ,φn−k(γ

m−1hn)
T].

(iii) φn(xG) = φk(x)Ĝ for all x ∈ (GF(qm))k,

(iv) φn−k(HyT) = Ĥ(φn(y))T for all y ∈ (GF(qm))n.

2.2 Hardness Assumptions

Definition 6. ((Search) (q-ary) Syndrome Decoding
(SD) Problem (Barg, 1997)). Given a full-rank matrix
H(n−k)×n over GF(q), a vector c ∈ (GF(q))n−k and a
non-negative integer w, the search version of q-ary SD
problem is to find a vector e ∈ (GF(q))n of weight w
such that the syndrome HeT of e satisfies HeT = c.

Assumption 1. The public key matrix, output by
the key generation algorithm of a code-based PKE
scheme, is computationally indistinguishable from a
uniformly chosen matrix of the same size.

3 basicPKE: AN IND-CPA SECURE
PUBLIC KEY ENCRYPTION

We now present the details of our public key encryp-
tion scheme basicPKE = (Setup,KeyGen,Enc,Dec).

• basicPKE.Setup(λ)−→ ppbasicPKE: Taking secu-
rity parameter λ as input, a trusted authority pro-
ceeds as follows to generate the global public pa-
rameters ppbasicPKE.

(i) Sample k (≥ 2),m ∈ Z+, set q = 2m. Let γ ∈
GF(q) be a primitive element of GF(q).

(ii) Set w≤ k/2 and sample k′ ∈ Z+.

(iii) Choose a cryptographic hash function H1 :
{0,1}∗ −→ {0,1}k′ .

(iv) Publish the global parameters ppbasicPKE =
(k,k′,w,q,m,γ,H1).

• basicPKE.KeyGen(ppbasicPKE) −→ (pk,sk): A
user on input ppbasicPKE, performs the following
steps to generate public key pk and secret key sk.

(i) Select z0,z1, . . . ,zk−1 ∈ GF(q) where q = 2m. Let
g(X) ∈ GF(q)[X] be a monic polynomial of de-
gree k ≥ 2 given by g(X) = z0 + z1X + z2X2 +
· · ·+ zk−1Xk−1 + Xk with ord(g) ≥ 2k such that
g(X) has no nonzero multiple of degree ≤ 2k−1
with weight ≤ k. Such polynomials can be con-
structed using the approaches proposed by Gupta
et al. ((Gupta et al., 2017b), (Gupta et al., 2019)).

(ii) The companion matrix associated with the
polynomial g(X) is

Cg =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
z0 z1 z2 · · · zk−1

 ∈ (GF(q))k×k

(iii) Compute M̃ = (Cg)
k which is MDS by Theo-

rem 3 as g(X) satisfies the conditions stated in
this theorem. Therefore, every square submatrix
of M̃ is non-singular by Theorem 2. Hence by
Theorem 1, the matrix G = [I|M̃] ∈ (GF(q))k×n is
a generator matrix of an MDS code C having code
length n= 2k, dimension k and minimum distance
k+1. Then the parity check matrix of the code C
is H = [M̃T |In−k] ∈ (GF(q))(n−k)×n.

(iv) Let Ĥ be the expanded parity check matrix of the
expanded code Ĉ of C with respect to the prim-
itive element γ of GF(q) where q = 2m and the
isomorphism φn as in Definition 5. Here Ĥ is an
(n−k)m×nm matrix over GF(2) by Lemma 3 (ii).

(v) Write Ĥ ∈ (GF(2))(n−k)m×nm in systematic form
[M̂|I(n−k)m] where M̂ is an (n− k)m× km matrix
and n− k = k.

(vi) Publish the public key pk = M̂ and keep the se-
cret key sk = (z0,z1, . . . ,zk−1) secret to itself.

• basicPKE.Enc(ppbasicPKE,pk,m;r) −→ c: Given
system parameters ppbasicPKE, public key pk =

M̂ and a message m ∈ (GF(2))k′ , an encryptor
proceeds as follows to generate a ciphertext c ∈
(GF(2))km+k′ .

Code-based Key Encapsulation Mechanism Preserving Short Ciphertext and Secret Key

377

Algorithm 1: Function G : Error vector derivation.
Input: A binary seed vector σ of any length, integers nm, t.
Output: A binary error vector e = (e0,e1, . . . ,enm−1) of length nm, weight t.

1: Set e←− 1t ||0nm−t ; b← σ;
2: for (i = 0 to t−1) do
3: j← F (b) mod (nm− i−1); // see Remark 1
4: Swap entries ei and ei+ j in e; b← Hsh(b); // Hsh is a hash function

5: end for
6: return e = (e0,e1, . . . ,enm−1)

(i) Select a random vector σ.
(ii) Run Algorithm 1 to generate a unique binary er-

ror vector e of length nm and weight w using σ as
a seed, i.e, e = G(σ). Here, r = e is the random-
ness used in the procedure.

(iii) Using the public key M̂, construct the parity
check matrix Ĥ = (M̂|I(n−k)m) for the MDS code
where n− k = k.

(iv) Compute the syndrome c = (c1,c2) = (m⊕
H1(e), ĤeT) ∈ (GF(2))(n−k)m+k′ .

(v) Publish the ciphertext c.
• basicPKE.Dec(ppbasicPKE,sk,c)−→ m′ : On re-

ceiving a ciphertext c = (c1,c2), a decryptor exe-
cutes the following steps using public parameters
ppbasicPKE and its secret key sk= (z0,z1, . . . ,zk−1).

(i) First proceed as follows to decode c2 and find bi-
nary error vector e′ of length nm and weight w :
(a) Use sk = (z0,z1, . . . ,zk−1) to form k×k com-
panion matrix

Cg =


0 1 0 · · · 0
0 0 1 · · · 0
· · · · · · · · · · · · · · ·
0 0 0 · · · 1
z0 z1 z2 · · · zk−1


associated with the monic polynomial g(X) =
z0 + z1X + z2X2 + · · · + zk−1Xk−1 + Xk ∈
GF(q)[X] of degree k ≥ 2 and ord(g) ≥ 2k that
has no nonzero multiple of degree ≤ 2k− 1
with weight ≤ k. Then compute M̃ = (Cg)

k

and the parity check matrix H = [M̃T |In−k] ∈
(GF(q))(n−k)×n for n = 2k.

(b) Compute c′2 = φ
−1
n−k(c2) where c2 is a col-

umn vector of length (n− k)m over GF(2), c′2
is a column vector of length (n−k) over GF(q)
and φn−k is the GF(2)-linear isomorphism de-
fined by γ (Definition 5). The (n−k)×n parity
check matrix H is used to decode c2 by first
computing the syndrome S = H(c′2||0)T where
0 is a vector consisting of k zeros and then by
running the decoding algorithm for MDS codes
to find the vector ẽ ∈ (GF(q))n.

(c) Apply φn to get e′ = φn(ẽ) ∈ (GF(2))nm.

(ii) Compute m′ = c1⊕H1(e′).
(iii) Return m′.

Remark 1. The function G in Algorithm 1 uses a
hash function Hsh in line 4 and in F in line 3. Note
that, G returns a binary vector of length nm and
weight t on input an arbitrary binary string and in-
tegers nm, t. For simplicity, we use the notation
G(σ) to denote the output of the error vector genera-
tion algorithm instead of G(σ,nm, t). The subroutine
F (b) mod (nm− i−1)−→ j outputs an integer j on
input a binary vector b of length k as follows.
Step 1. Truncate Hsh(b) to a string of s bytes where
s is larger than the byte size of nm.
Step 2. Convert this s–bytes string to an integer A.

(a) If A > 28s− (28s mod (nm− i− 1)) then go to
Step 1.

(b) else set j = A mod (nm− i−1).

Correctness. While decoding c2, we form an
(n− k)× n parity check matrix H over GF(q) using
the secret key sk and find the syndrome H(c′2||0)T

to estimate the error vector e′ ∈ (GF(2))nm with
wt(e′) = w. Note that, the ciphertext component
c2 = Ĥ(e)T is the syndrome of e where the matrix
Ĥ is a parity check matrix in the systematic form
over GF(2) which is indistinguishable from a random
matrix over GF(2). At the time of decoding c2, we
need a parity check matrix over GF(q). The matrix Ĥ,
a parity check matrix of MDS code in the systematic
form derived from the public key pk, does not help
to decode c2 as the SD problem is hard over GF(2).
The decoding algorithm in our decryption procedure
uses the parity check matrix H derived from the
secret key sk. This procedure can correct upto k/2
errors. In our scheme, the error vector e used in the
procedure basicPKE.Enc satisfies wt(e) = w ≤ k/2.
Consequently, the decoding procedure will recover
the correct e by Lemma 3 (iv).

The method for achieving an indistinguishable
public key matrix by mixing secret key matrix by two
matrices is rather old and shows vulnerability to the
scheme according to Strenzke et al.(Strenzke, 2010).
The most reliable method suggested by Biswas and
Sendrier (Biswas and Sendrier, 2008) to obtain the
public key matrix is to compute the systematic form
of the secret key matrix. In our scheme, we start with
choosing zi, i = 0,1, . . . ,n−1 randomly to construct a
companion matrix and then proceed to obtain a parity
check matrix of an MDS code. After that, we find the
expanded parity check matrix over base field GF(2)
and write it in the systematic form to obtain public
key.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

378

Theorem 4. If SD problem (Definition 6 in Sub-
section 2.2) is hard and the public key ma-
trix Ĥ (derived from the public key pk which is
generated by running basicPKE.KeyGen(ppbasicPKE)
where ppbasicPKE ←− basicPKE.Setup(λ)) is in-
distinguishable, then the public key encryption
scheme basicPKE = (Setup,KeyGen,Enc,Dec) de-
scribed above is IND-CPA secure in the random oracle
model.

4 fullPKE: AN OW-PCVA SECURE
PUBLIC KEY ENCRYPTION

We now discuss a public key encryption fullPKE =
(Setup,KeyGen,Enc,Dec) that is constructed from
the framework of basicPKE.

• fullPKE.Setup(λ) −→ ppfullPKE : A trusted author-
ity runs basicPKE.Setup(λ) and sets global pa-
rameters ppfullPKE = (k,k′,w,q,m,γ,H1) taking se-
curity parameter λ as input.

• fullPKE.KeyGen(ppfullPKE) −→ (pk,sk) : A user
generates public-secret key pair (pk,sk) by run-
ning basicPKE.KeyGen(ppfullPKE) where pk = M̂
and sk = (z0,z1, . . . ,zk−1).

• fullPKE.Enc(ppfullPKE,pk,m;r) −→ CT : An en-
cryptor encrypts a message m ∈M = (GF(2))k′

using public parameters ppfullPKE and its public
key pk as input and produces a ciphertext CT as
follows.

(i) Run Algorithm 1 using m as a seed to obtain an
error vector e of length nm and weight w i.e. e =
G(m). Let r= e=G(m). Compute d=H1(m)∈
(GF(2))k′ .

(ii) Use the public key pk= M̂ to construct the matrix
Ĥ = (M̂|I(n−k)m).

(iii) Compute c = (c1,c2) = (m⊕H1(e), ĤeT) ∈
(GF(2))(n−k)m+k′ . Here, n = 2k.

(iv) Return the ciphertext CT = (c, d) ∈ C =

(GF(2))km+2k′ .

• fullPKE.Dec(ppfullPKE,sk,CT) −→m′ : On receiv-
ing the ciphertext CT, the decryptor executes the
following steps using public parameters ppfullPKE
and its secret key sk = (z0,z1, . . . ,zk−1).

(i) Use the secret key sk = (z0,z1, . . . ,zk−1) to form
a parity check matrix H and then find error vector
e′ of weight w and length nm as in the procedure
basicPKE.Dec.

(ii) Compute m′ = c1 ⊕ H1(e′) ∈ (GF(2))k′ ,
d′ = H1(m′) ∈ (GF(2))k′ and e′′ = G(m′) ∈
(GF(2))nm.

(iii) If (e′ ̸= e′′)∨ (d ̸= d′), output ⊥ that indicates
decryption failure. Otherwise, return m′.

Correctness. The decoding algorithm in fullPKE.Dec
uses the parity check matrix H (derived from the
secret key sk) and can correct upto k/2 errors. In
our scheme, the error vector e used in the procedure
fullPKE.Enc satisfies wt(e) = w≤ k/2. Consequently,
the decoding procedure will recover the correct e as
Lemma 3 (iv) holds. We regenerate e′′ and compare it
with e′ obtained after decoding. Since the error vector
generation algorithm G uses a deterministic function
to obtain a fixed low weight error vector, e′ = e′′ oc-
curs.
Theorem 5. If the public key encryption scheme
basicPKE =(Setup, KeyGen, Enc, Dec) as described
in Section 3 is IND-CPA secure, then the scheme
fullPKE = (Setup,KeyGen,Enc,Dec) as described
above achieves OW-PCVA security considering the
hash function G as a random oracle.

As the OW-PCVA security for an encryption
scheme trivially implies the OW-VA security of the
scheme considering zero queries to the PCO(·, ·) or-
acle, we can obtain the following corollary as an im-
mediate consequence.
Corollary 1. If the PKE scheme basicPKE =(Setup,
KeyGen, Enc, Dec) as described in Section 3
is IND-CPA secure, then the scheme fullPKE =
(Setup,KeyGen,Enc,Dec) as described in Section 4
is OW-VA secure considering the hash function G as
a random oracle.

5 fullKEM: AN IND-CCA SECURE
KEY ENCAPSULATION
MECHANISM

We now present the details of our key encapsulation
mechanism fullKEM = (Setup,KeyGen,Encaps,
Decaps).
• fullKEM.Setup(λ)−→ ppfullKEM: A trusted au-

thority runs fullPKE.Setup(λ), chooses another
cryptographic hash function H2 : {0,1}∗ −→
{0,1}r and sets public parameters ppfullKEM =
(k,k′,w,r,q,m,γ,H1,H2) taking security parame-
ter λ as input.

• fullKEM.KeyGen(ppfullKEM) −→ (pk,sk): A user
generates public-secret key pair (pk,sk) by run-
ning fullPKE.KeyGen(ppfullKEM) where pk = M̂
and sk = (z0,z1, . . . ,zk−1).

Code-based Key Encapsulation Mechanism Preserving Short Ciphertext and Secret Key

379

• fullKEM.Encaps(ppfullKEM,pk)−→ (CT,K): Given
system parameters ppfullKEM and public key pk =

M̂, an encapsulator proceeds as follows to gener-
ate a ciphertext header CT∈ (GF(2))km+2k′ and an
encapsulation key K ∈ {0,1}r.

(i) Sample m U←− (GF(2))k′ .

(ii) Run Algorithm 1 using m as a seed to obtain
an error vector e of length nm and weight w i.e.
e = G(m). Compute d = H1(m) ∈ (GF(2))k′ .

(iii) Use the public key pk = M̂ to construct the ma-
trix Ĥ = (M̂|I(n−k)m).

(iv) Compute c = (c1,c2) = (m⊕H1(e), ĤeT) ∈
(GF(2))(n−k)m+k′ where n = 2k.

(v) Set the ciphertext header CT = (c, d) ∈ C =

(GF(2))km+2k′ and the encapsulation key K =
H2(m) ∈ {0,1}r.

(vi) Publish the ciphertext header CT = (c,d) and
keep K as secret.

• fullKEM.Decaps(ppfullKEM,sk,CT)−→ K: On re-
ceiving a ciphertext header CT = (c,d), a decap-
sulator executes the following steps using public
parameters ppfullKEM = (k,k′,w,r,q,m,γ,H1,H2)
and its secret key sk = (z0,z1, . . . ,zk−1).

(i) Using the secret key sk, form a parity check ma-
trix H and then proceed to find error vector e′
of weight w and length nm as in the procedure
fullPKE.Dec (i.e as in basicPKE.Dec).

(ii) Compute m′ = c1 ⊕ H1(e′) ∈ (GF(2))k′ ,
d′ = H1(m′) ∈ (GF(2))k′ and e′′ = G(m′) ∈
(GF(2))nm.

(iii) If (e′ ̸= e′′)∨ (d ̸= d′), output ⊥ indicating de-
capsulation failure. Otherwise, compute the en-
capsulation key K = H2(m′).

Correctness. Correctness of fullKEM follows from
that of fullPKE.

Theorem 6. If the scheme fullPKE=(Setup,KeyGen,
Enc,Dec) as described in Section 4 is OW-
VA secure, then the scheme fullKEM =
(Setup,KeyGen,Encaps,Decaps) as described
above provides IND-CCA security modelling hash
function H2 as a random oracle.

Theorem 7. Depending on the hardness of SD prob-
lem (Definition 6 in Subsection 2.2) and indistin-
guishability of the public key matrix Ĥ that is derived
from the public key pk by running key generation al-
gorithm of fullKEM, the scheme fullKEM described in
Section 5 provides IND-CCA security considering G
and H2 as random oracles.

Proof. This is an immediate consequence of The-
orem 4, Corollary 1 and Theorem 6. Due to limited
space, proofs of Theorem 4, Theorem 5 and Theorem
6 will appear in the full version of the paper.

Remark 2. To prove security in quantum random or-
acle model, it is necessary to show post-quantum se-
curity of a scheme where the adversary can submit
queries to the random oracle having quantum access.
In this scenario, the adversary has quantum access to
the random oracles besides having classical access to
some other oracles like plaintext checking oracles, ci-
phertext validity checking oracles, decapsulation or-
acles, etc. The scheme basicPKE provides IND-CPA
security in random oracle model as the SD problem
is hard and the public key matrix is indistinguish-
able (see Theorem 4). Note that IND-CPA security
always implies OW-CPA security. Following the work
of (Hofheinz et al., 2017), we can show that OW-CPA
security of the encryption scheme basicPKE indicates
OW-PCA security of fullPKE considering G as a quan-
tum random oracle. Then, we can prove that OW-PCA
security of fullPKE implies the IND-CCA security of
fullKEM modeling H1,H2 as quantum random oracles.

Thus we can get the following theorem.

Theorem 8. Depending on the hardness of SD prob-
lem (Definition 6 in Subsection 2.2) and indistin-
guishability of the public key matrix Ĥ derived from
the public key pk by running key generation algorithm
of fullKEM, our scheme fullKEM described in Section
5 achieves IND-CCA security considering the hash
functions G ,H1 and H2 as quantum random oracles.

6 CONCLUSION

In this work, we give a proposal to design a key encap-
sulation mechanism exploiting the structure of a com-
panion matrix. We have shown that our KEM proto-
col provides IND-CCA security in the random oracle
model and quantum random oracle model. However,
the issue regarding the public key size needs to be ex-
plored in near future. In terms of secret key size and
ciphertext size, our work seems promising. There-
fore, we believe that our proposal to design a KEM
will offer an attractive approach in the area of code-
based cryptography.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Ayineedi
Venkateswarlu for his valuable opinions that helped
to improve the manuscript.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

380

REFERENCES

Aguilar-Melchor, C., Blazy, O., Deneuville, J.-C., Gaborit,
P., and Zémor, G. (2018). Efficient encryption from
random quasi-cyclic codes. IEEE Transactions on In-
formation Theory, 64(5):3927–3943.

Albrecht, M., Cid, C., Paterson, K. G., Tjhai, C. J., and
Tomlinson, M. (2019). Nts-kem. NIST submissions.

Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O.,
Deneuville, J.-C., Gaborit, P., Gueron, S., Guneysu,
T., Melchor, C. A., et al. (2017a). Bike: Bit flipping
key encapsulation. NIST submissions.

Aragon, N., Barreto, P., Bettaieb, S., Bidoux, L., Blazy, O.,
Deneuville, J.-C., Gaborit, P., Gueron, S., Guneysu,
T., Melchor, C. A., et al. (2019). Bike: Bit flipping
key encapsulation. NIST submissions.

Aragon, N., Blazy, O., Deneuville, J.-C., Gaborit, P.,
Hauteville, A., Ruatta, O., Tillich, J.-P., and Zémor,
G. (2017b). Lake-low rank parity check codes key ex-
change.

Aragon, N., Blazy, O., Deneuville, J.-C., Gaborit, P.,
Hauteville, A., Ruatta, O., Tillich, J.-P., and Zémor,
G. (2017c). Locker-low rank parity check codes en-
cryption.

Baldi, M., Barenghi, A., Chiaraluce, F., Pelosi, G., and San-
tini, P. (2018). Ledakem: a post-quantum key encap-
sulation mechanism based on qc-ldpc codes. In Inter-
national Conference on Post-Quantum Cryptography,
pages 3–24. Springer.

Banegas, G., Barreto, P. S., Boidje, B. O., Cayrel, P.-L.,
Dione, G. N., Gaj, K., Gueye, C. T., Haeussler, R.,
Klamti, J. B., N’diaye, O., et al. (2018). Dags: Key
encapsulation using dyadic gs codes. Journal of Math-
ematical Cryptology, 12(4):221–239.

Bardet, M., Barelli, E., Blazy, O., Canto-Torres, R., Cou-
vreur, A., Gaborit, P., Otmani, A., Sendrier, N., and
Tillich, J.-P. (2017). Big quake. NIST submissions.

Barg, A. (1997). Complexity issues in coding theory.
Electronic Colloquium on Computational Complexity
(ECCC), 4(46).

Barreto, P. S., Gueron, S., Güneysu, T., Misoczki, R., Per-
sichetti, E., Sendrier, N., and Tillich, J.-P. (2017).
Cake: Code-based algorithm for key encapsulation. In
IMA International Conference on Cryptography and
Coding, pages 207–226. Springer.

Bernstein, D. J., Chou, T., Lange, T., von Maurich, I., Mis-
oczki, R., Niederhagen, R., Persichetti, E., Peters,
C., Schwabe, P., Sendrier, N., et al. (2017). Clas-
sic mceliece: conservative code-based cryptography.
NIST submissions.

Biswas, B. and Sendrier, N. (2008). Mceliece cryptosys-
tem implementation: Theory and practice. In Inter-
national Workshop on Post-Quantum Cryptography,
pages 47–62. Springer.

Blaum, M. and Roth, R. M. (1999). On lowest density
mds codes. IEEE Transactions on Information The-
ory, 45(1):46–59.

Dey, J. and Dutta, R. (2019). Secure key encapsulation
mechanism with compact ciphertext and public key
from generalized srivastava code. In International

Conference on Information Security and Cryptology,
pages 175–193. Springer.

Gupta, K. C., Pandey, S. K., and Venkateswarlu, A. (2017a).
On the direct construction of recursive mds matrices.
Designs, Codes and Cryptography, 82(1-2):77–94.

Gupta, K. C., Pandey, S. K., and Venkateswarlu, A. (2017b).
Towards a general construction of recursive mds diffu-
sion layers. Designs, Codes and Cryptography, 82(1-
2):179–195.

Gupta, K. C., Pandey, S. K., and Venkateswarlu, A. (2019).
Almost involutory recursive mds diffusion layers. De-
signs, Codes and Cryptography, 87(2-3):609–626.

Gupta, K. C. and Ray, I. G. (2013). On construc-
tions of mds matrices from companion matrices for
lightweight cryptography. In International Confer-
ence on Availability, Reliability, and Security, pages
29–43. Springer.

Hofheinz, D., Hövelmanns, K., and Kiltz, E. (2017). A
modular analysis of the fujisaki-okamoto transforma-
tion. In Theory of Cryptography Conference, pages
341–371. Springer.

Kesarwani, A., Sarkar, S., and Venkateswarlu, A. (2019).
Exhaustive search for various types of mds matrices.
IACR Transactions on Symmetric Cryptology, pages
231–256.

Khathuria, K., Rosenthal, J., and Weger, V. (2019). Encryp-
tion scheme based on expanded reed-solomon codes.
arXiv preprint arXiv:1906.00745.

Kim, J.-L., Kim, Y.-S., Galvez, L., Kim, M. J., and Lee, N.
(2018). Mcnie: A code-based public-key cryptosys-
tem. arXiv preprint arXiv:1812.05008.

MacWilliams, F. J. and Sloane, N. J. A. (1977). The theory
of error-correcting codes, volume 16. Elsevier.

McEliece, R. J. (1978). A public-key cryptosystem based
on algebraic coding theory. Coding Thv, 4244:114–
116.

Melchor, C. A., Aragon, N., Bardet, M., Bettaieb, S.,
Bidoux, L., Blazy, O., and Deneuville, J.-C. (2019).
Rollo-rank-ouroboros, lake & locker.

Melchor, C. A., Aragon, N., Bettaieb, S., Bidoux, L.,
Blazy, O., Deneuville, J.-C., Gaborit, P., Hauteville,
A., Zémor, G., and Bourges, I.-C. (2017). Ouroboros-
r.

Nojima, R., Imai, H., Kobara, K., and Morozov, K. (2008).
Semantic security for the mceliece cryptosystem with-
out random oracles. Designs, Codes and Cryptogra-
phy, 49(1-3):289–305.

Strenzke, F. (2010). A timing attack against the secret per-
mutation in the mceliece pkc. In International Work-
shop on Post-Quantum Cryptography, pages 95–107.
Springer.

Szepieniec, A. (2017). Ramstake. Technical report, Tech-
nical report, National Institute of Standards and Tech-
nology.

Wang, Y. (2017). Rlcekey encapsulation mechanism (rlce-
kem) specifcation. NIST Submission.

Yamada, A., Eaton, E., Kalach, K., Lafrance, P., and Par-
ent, A. (2017). Qc-mdpc kem: A key encapsulation
mechanism based on the qc-mdpc mceliece encryp-
tion scheme. NIST Submission.

Code-based Key Encapsulation Mechanism Preserving Short Ciphertext and Secret Key

381

