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Abstract: Large and highly complex systems can be found in various application areas. Modeling these systems requires
appropriate representation of the underlying phenomena. Furthermore, due to the large dimensions efficient
simulation and low memory requirements are needed for such models. Multilinear modeling is a promising
approach to address these challenges. In this paper, we introduce a reduced canonical polyadic (CP) repre-
sentation for implicit time-invariant multilinear (iMTI) models. This representation is capable of storing large
models with very low memory requirements. This is particularly useful for efficient analyses of large systems
with numerous inputs and states.

1 INTRODUCTION

Modeling and simulation of complex systems is an
active field of research. Currently, e.g., in the field
of modeling energy systems co-simulation method-
ology is used as one approach to address the high
complexity, while maintaining a realistic representa-
tion (López et al., 2019; Farrokhseresht et al., 2021;
Wiens et al., 2021; Vogt et al., 2018). However, mod-
eling of such large and complex systems while cap-
turing the relevant dynamics results in large computa-
tional resources and simulation times with the exist-
ing modeling approaches. Therefore, more computa-
tional power, more efficient algorithms and new mod-
eling strategies are required (F. Milano et al., 2018).

Focusing on modeling strategies, a possibility is
to rethink the fundamental question: Which class of
models has the potential to cover all relevant non-
linear dynamics and at the same time enables effi-
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cient simulations as well as analysis and design al-
gorithms? For some large scale complex application
domains with similar modeling problems, recent re-
search shows that multilinearity and tensor decom-
position methods could lead to breakthroughs (Ver-
straete et al., 2008).

In recent years the multilinear modeling frame-
work have been introduced first in an explicit form
by (Pangalos et al., 2013) and then in the more gen-
eral implicit form (Lichtenberg et al., 2022). The ad-
vantage of multilinear models is, that some nonlinear
phenomena can be modeled while still maintaining
an efficient and structured representation. Applica-
tion examples range from heating systems (Pangalos
et al., 2013) over chemical reactions (Kruppa et al.,
2014) to energy systems (Lichtenberg et al., 2022). In
addition, efficient simulation is possible, when using
decompositions. However, the multilinear model is
still an approximation and therefore, not as exact as
the nonlinear model. In addition, the tools for mul-
tilinear modeling are not yet standard and further de-
velopment is required.

Regarding controller synthesis, approaches to deal
with multilinear models in the application domain
of heating systems are given in (Pangalos, 2016;
Kruppa, 2018). The heating sector has the advantage
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of relatively slow processes, which corresponds to
large time constants. This is in contrast to the electri-
cal energy system, where the need to efficient simula-
tion is therefore even bigger. In this contribution, we
focus on improving the performance and memory re-
quirements of multilinear time-invariant (MTI) mod-
els - as a prerequisite to meet real-time constraints for
enabling model-based control of large scale systems.

First an introduction into multilinear functions is
given. This is followed by the explanation of explicit
multilinear time-invariant (eMTI) models, which in-
cludes decomposition, normalization and lineariza-
tion of eMTI models. The extension of eMTI is then
given with implicit multilinear time-invariant (iMTI)
models. The last chapter shows how an iMTI model
can be represented with very low memory require-
ments. A conclusion and further research is stated in
the end.

2 MULTILINEAR FUNCTIONS

In this section different formats for multilinear func-
tions are discussed as basis for the following model-
ing concepts. A multilinear function can be described
by the factored polynomial

f (x)=
r

∑
k=1

n

∏
i=1

( f1i,k + fxi,k xi), (1)

with a total number of 2rn parameters, where f1i,k ∈ R
and fxi,k ∈ R\{0} for all i = 1,2...n and k = 1,2...r,
and xi are the variables of the function and k describes
the number of the addend.
Remark: The example

(4+2x1)(3+ x2) = (2+ x1)(6+2x2) ,

shows, that the representation (1) is not unique.
Each factor of the polynomial (1) can be visual-

ized in a 2-D Cartesian coordinate system, where the
two parameters f1 and fxi create a vector with one
component in direction of the 1-axis and one compo-
nent in direction of the xi-axis as shown in Figure 1
with an example vector ( f1 fx)

T .
Next, we will use normalization to get unique rep-

resentations, as the following example does for differ-
ent norms,

1
(

1+
1
2

x
)
=

1
2
(2+ x) = 2

(
1
2
+

1
4

x
)
.

If we normalize this vector with the euclidean 2-
norm condition to the length of one, the new vector
points to the intersection S2 of the original vector and
the unit circle in Figure 1. The intercepts of the 2-
norm normalized vector are then given by sinα and
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Figure 1: Normalized factor representation.

cosα and the 2-norm normalized polynomial

f (x)=
r

∑
k=1

λα,k

(
n

∏
i=1

(cosαi,k + sinαi,kxi)

)
, (2)

has with

αi,k=atan2
(

fxi,k , f1i,k

)
, (3)

λα,k=
n

∏
i=1

√
f 2
1i,k + f 2

xi,k
, (4)

a much smaller number r(n+1) of parameters as (1).
The atan2 describes the four-quadrant inverse tangent
which gives the angle between the first and the second
argument in radians.

Similarly, the polynomial can be transformed in a
1-norm representation as shown by the intersection S1
with the blue line as

f (x)=
r

∑
k=1

λh,k

(
n

∏
i=1

(1−hi,k +hi,kxi)

)
, (5)

where the new parameters are

hi,k=
fxi,k

f1i,k + fxi,k

and λh,k =
n

∏
i=1

(
f1i,k + fxi,k

)
.(6)

By fixing the x-axis coordinate to one, the inter-
section S4 lead to a polynomial

f (x)=
r

∑
k=1

λz,k

(
n

∏
i=1

(zi,k + xi)

)
, (7)

with the parameters

zi,k=
f1i,k

fxi,k

and λz,k =
n

∏
i=1

fxi,k , (8)

and the zeros xi,k =−zi,k of each factor of the polyno-
mial.

The last intersection point S3 with the green line
in Figure 1 fixes the 1-axis coordinate to one, leading
to a representation

f (x)=
r

∑
k=1

λk

(
n

∏
i=1

(1+ pi,kxi)

)
, (9)
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called ‘sparse’ in the following and having the param-
eters

pi,k=
fxi,k

f1i,k

and λk =
n

∏
i=1

f1i,k fx j,k , (10)

for all f1 j,k 6= 0. In case of f1 j,k = 0, the factor vector
is pointing on the x j-axis and the parameter p j,k→∞.
Like in time-constant formulation of transfer func-
tions, the polynomial can then be represented by

f (x) =
r

∑
k=1

λk ∏
j

x j ∏
i
(1+ pi,kxi) , (11)

and the factors λk = ∏i f1i,k fxi,k ∏ j fx j,k adjusted.
The sparse representation offers advantages for

modeling large systems and is mainly used in the next
sections in this paper, which are outlined by Figure 2
and linked to the related examples and equations in
the sequel.

eMTI
(12)
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CP tensor
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4. Linearization

Reduced
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Figure 2: Multilinear modeling steps.

3 EXPLICIT MULTILINEAR
MODELS

An eMTI state-space model in continuous time can
be expressed by using the contracted tensor prod-
uct, (Pangalos, 2016)

ẋ = 〈F |M(x,u) 〉 , (12)

with the parameter tensor F ∈ R
n+m︷ ︸︸ ︷

2× . . .×2×n, where n
declares the number of states, and m is the number

of inputs. For brevity, we consider no extra output
equations, but the general approach could be easily
extended to this case if needed (Pangalos, 2016). The
next example will be a running one throughout this
paper.

Example 3.1. Consider a second-order eMTI model
with two states x1,x2 and one input u(

ẋ1
ẋ2

)
=

(
0.4u+0.2x2 +0.08ux1 +0.06x1x2
0.6+0.24x1 +0.94x2 +0.296x1x2

)
.

(13)

The full parameter tensor F ∈ R2×2×2×2 has the fol-
lowing nonzero elements

F(1,1,2,1) = 0.4,
F(1,2,1,1) = 0.2,
F(2,1,2,1) = 0.08,
F(2,2,1,1) = 0.06,

F(1,1,1,2) = 0.6,
F(2,1,1,2) = 0.24,
F(1,2,1,2) = 0.94,
F(2,2,1,2) = 0.296,

(14)

where the indices are ordered from x1, x2 over u to φ,
which specifies the corresponding row in (13).

3.1 Decomposition

Because of the similarity with the factorization dis-
cussed in Section 2, we focus on canonical polyadic
(CP)-decompostions of the parameter tensor F as one
of the methods, e.g., given in (Kolda and Bader,
2009). The decomposed tensor of rank r is given
by factor matrices Fi ∈ R2×r for all states and inputs
with the common index i = 1, . . .n+m together with
the matrix Fφ ∈ Rn×r distributing factors over state
derivatives and jointly represented by

F=
[
Fx1 , . . . ,Fxn ,Fu1 , . . . ,Fum ,Fφ

]
. (15a)

As the monomial tensor has a rank-1 decomposition

M(x,u) =
[(

1
x1

)
,· · ·,

(
1
xn

)
,

(
1
u1

)
,· · ·,

(
1

um

)]
,

(15b)

the model (12) can also be represented by the CP-
factors, (Pangalos, 2016),

ẋ = Fφ

((
FT

x1

(
1
x1

))
~ · · ·~

(
FT

xn

(
1
xn

))
~

~

(
FT

u1

(
1
u1

))
~ · · ·~

(
FT

um

(
1

um

)))
, (16)

where ~ stands for the Hadamard (element-wise)
product. Any internal structure of the model can be
exploited to find a more compact CP representation
as the full tensor, which is motivated by the running
example next.
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Example 3.2. The full representation can be rewrit-
ten as CP model of rank 8 directly from the 8 addends
in (13). Due to the duplication of variable combina-
tions x2 and x1x2, the model can be reduced to rank 6
with factor matrices

Fx1 =

(
1 1 0 0 1 0
0 0 1 1 0 1

)
, (17a)

Fx2 =

(
1 0 1 0 1 1
0 1 0 1 0 0

)
, (17b)

Fu =

(
0 1 0 1 1 1
1 0 1 0 0 0

)
, (17c)

Fφ =

(
0.4 0.2 0.08 0.06 0 0
0 0.94 0 0.296 0.6 0.24

)
. (17d)

The question of whether the parameter tensor F
could be further reduced, i.e. represented by a lower
number of factors is related to the non-trivial problem
of tensor rank determination (Kolda and Bader, 2009).
For the running example, the answer is yes.
Example 3.3. The tensor F of the running example is
representable as rank 4 shown by the factor matrices

Fx1 =

(
0.4 0.2 0.6 0.4
0.08 0.06 0.24 0.08

)
, (18a)

Fx2 =

(
1 0 1 0
0 1 0.9 1

)
, (18b)

Fu =

(
0 1 1 1
1 0 0 0

)
, (18c)

Fφ =

(
1 1 0 0
0 0 1 1

)
. (18d)

Tensor decomposition algorithms find best rank-r
factorizations of the original tensor by optimiza-
tion (Kolda and Bader, 2009), which can be used for
large models to compute numerical approximation of
predefined sizes. Additionally, the factor matrices
can be normalized for further reduction, which is dis-
cussed next.

3.2 Normalization

The representation of the multilinear model by its CP
factors is not unique. To overcome this, normaliza-
tion as introduced in Section 2 is used for the next
definition.
Definition 3.1. A CP decomposed eMTI model

ẋ=
〈
[F1, . . . ,Fn+m,Fφ] |M(x,u

〉
, (19)

is called l-normalized if all k = 1, . . . ,r columns

||Fi(:,k)||l = 1 , (20)

of its factor matrices Fi with i = 1, . . . ,(n+m), i.e.
except the last factor Fφ have an l-norm of one.

Remark: For Absolute-value and Euclidean norm,
(20) is

||Fi(:,k)||1=
2

∑
j=1
|Fi(j,k)|= |Fi(1,k)|+ |Fi(2,k)|= 1,

||Fi(:,k)||2=

√√√√ 2

∑
j=1

Fi(j,k)2=
√

Fi(1,k)2+Fi(2,k)2 = 1,

and in Figure 1 an example visual summary is pro-
vided, which considers the intersection points S1
and S2 for all i = 1, ...,n+m and k = 1, ...,r, whereas
the last factor matrix Fφ ∈ Rn×r holds the scaling fac-
tors λk.

It follows from (16), that the right side of a CP-
decomposed eMTI model (12) contains polynomials
like (1). Thus, the computation of the state derivatives
of an eMTI model is also possible with normalized
factored polynomials (2) to (7) in 1-norm, 2-norm,
sparse or zero representation, which can be derived
from the corresponding normalized parameter tensors
of (19).

Moreover, each factor matrix Fi ∈R2×r of the pa-
rameter tensor F of an l-normalized eMTI model (ex-
cept the last Fφ) can be represented by a single param-
eter vector F̃i ∈ Rr, from which both elements can be
reconstructed by the norm condition (20). The non-
normalized last factor matrix Fφ will contain the pa-
rameters λk of the corresponding form, which can be
interpreted as the ‘lengths’ of the vectors in this norm.

Example 3.4. The example (18) is rank 4 and has a
CP parameter tensor from (15a),

F=
[
Fx1 ,Fx2 ,Fu,Fφ

]
=
[
F1,F2,F3,Fφ

]
, (21)

where we use sequential indexing for simplification.
Normalizing to 2-norm by applying (2) leads to pa-
rameter vectors containing angles αi,k for i = 1,2,3
and k = 1, . . . ,4:

F̃α
1 =

(
0.2 0.29 0.38 0.2

)
, (22a)

F̃α
2 =

(
0 π/2 0.73 π/2

)
, (22b)

F̃α
3 =

(
π/2 0 0 0

)
, (22c)

F̃α
φ =

(
0.41 0.21 0 0

0 0 0.87 0.41

)
. (22d)

The same model can also be represented in 1-norm
(5) as

F̃h
1 =

(
0.167 0.23 0.29 0.167

)
, (23a)

F̃h
2 =

(
0 1 0.47 1

)
, (23b)

F̃h
3 =

(
1 0 0 0

)
, (23c)

F̃h
φ =

(
0.48 0.26 0 0

0 0 1.6 0.48

)
. (23d)
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The parameter vector build from (7) holds the zeros

F̃z
1 =

(
5 3.33 2.5 5

)
, (24a)

F̃z
2 =

(
∞ 0 1.11 0

)
, (24b)

F̃z
3 =

(
0 ∞ ∞ ∞

)
, (24c)

F̃z
φ
=

(
0.08 0.06 0 0

0 0 0.22 0.08

)
, (24d)

and finally the ’sparse’ form (9) results in

F̃1 =
(
0.2 0.3 0.4 0.2

)
, (25a)

F̃2 =
(
0 ∞ 0.9 ∞

)
, (25b)

F̃3 =
(
∞ 0 0 0

)
, (25c)

F̃φ =

(
0.4 0.2 0 0
0 0 0.6 0.4

)
, (25d)

with a slight abuse of notation.

3.3 Linearization

Linearizing eMTI models is useful to access, e.g., the
large library of linear stability analysis tools, such
as, eigenvalue analysis, or determining the participa-
tion factor in modal analysis. Therefore, an eMTI
model needs to be approximated around an operating
point (x̄, ū) to achieve a linear time-invariant state-
space model

ẋ = A(x− x̄)+B(u− ū) , (26)

with A ∈ Rn×n as system matrix, and B ∈ Rn×m as in-
put matrix. For simplicity, the output equations are
not shown. To obtain a linear approximation of (12),
it is well known that partial derivatives have to be cal-
culated w.r.t. each state and input.

For eMTI models, the matrices of the linearized
state-space model (26) can be represented as con-
tracted tensor products column-wise as given in the
following, (Kruppa, 2018),

A(:, j) =
〈
Fx j |M(x̄, ū)

〉
, (27)

B(:, j) =
〈
Fu j |M(x̄, ū)

〉
, (28)

where the partial derivative tensor Fx j of the tensor F
over a variable x j is calculated by the j-mode tensor
matrix product

Fx j = F× j ΘΘΘ , (29)

with the operator matrix ΘΘΘ =

(
0 1
0 0

)
, see (Kruppa

and Lichtenberg, 2018).
These differentiation operations could also be di-

rectly done in CP decomposed tensor form leading to

Fx j =
[
F̄1, . . . , F̄n+m

]
. (30)

To compute this CP representation, all factor matrices
remain the same, except F j, i.e.

F̄i =

{
ΘΘΘFi if i = j
Fi otherwise

, (31)

the factor matrix Fx j corresponding to the state x j,
which needs to be multiplied with ΘΘΘ. Similar equa-
tions hold for the partial derivative w.r.t. the inputs,
for details see (Kruppa and Lichtenberg, 2018).

Example 3.5. The procedure is demonstrated for the
partial derivative of F over x2. Using, e.g., the 1-norm
representation as in (23b), first the CP form can be
constructed, and then the new factor matrix

F̄2 = F×2 ΘΘΘ =

(
0 1
0 0

)(
1 0 0.53 0
0 1 0.47 1

)
(32a)

=

(
0 1 0.47 1
0 0 0 0

)
, (32b)

for the CP decomposed partial derivative tensor

Fx2 =
[
Fx1 , F̄2,Fu,FΦ

]
. (32c)

Remark: The resulting tensor Fx2 can be further re-
duced to rank 3: because the first column of F̄2 only
contains zeros, the first columns of all factors will be
multiplied by zero and thus, can be removed.

Considering (32b), it is evident that partial deriva-
tive of (23b) could be obtained more efficiently with-
out the matrix multiplication by ΘΘΘ.

This leads to an elegant way to derive the lin-
earized model directly in tensor form extending the
description already shown in (27) to (Kruppa, 2018)

A(x̄, ū) = 〈A |M(x̄, ū)〉 ∈ Rn×n, (33)
B(x̄, ū) = 〈B |M(x̄, ū)〉 ∈ Rn×m, (34)

with tensors A∈R
n+m︷ ︸︸ ︷

2×. . .×2×n×n and B∈R
n+m︷ ︸︸ ︷

2×. . .×2×n×m.
Therefore, the linearization is done by a simple eval-
uation of the contracted product. The dimensions of
the tensor B follow the same structure as A. The

first

n+m︷ ︸︸ ︷
2×. . .×2-dimension matches the dimension of

the transition tensor F. The last two dimensions are
the same dimensions as of the matrices of the lin-
ear state-space model. Therefore, the column en-
tries of the Jacobian equivalent to the columns of the
system matrix are now the fibers of the tensor, e.g.,
for A (Kruppa, 2018)

a(iu, ix, :, j) = jf(iu, ix, :, j) = fx j(iu, ix, :), (35)

where j = 1, . . . ,n, and the matching dimensions of
the transition tensor are indicated by the index vec-
tor ix ∈ Rn, and ix ∈ Rm (Kruppa, 2018) and the re-
maining fibers b follow a similar structure.
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Example 3.6. Continuing with the linearization us-
ing (32c), the second columns of the system matrix is
computed using (27)

A(:,2) = 〈Fx2 |M(x̄1, x̄2, ū) 〉,

=

(
0.2ū+0.06x̄2
0.94x̄2 +0.296

)
,

which is also done for the first columns of A, and B.
This finally results in the matrices

A =

(
0.08ū+0.06x̄2 0.2+0.06x̄1
0.296x̄2 +0.24 0.94+0.296x̄1

)
,

B =

(
0.4+0.08x̄1

0

)
,

of the linearized model (13).
Remark: The reader could easily verify all steps of
the running example also from its sparse representa-
tion (25)(

ẋ1
ẋ2

)
=

(
0.2(1+0.3x1)x2+0.4(1+0.2x1)u

0.6(1+0.4x1)(1+0.9x2)+0.4(1+0.2x1)x2

)
.

The next section extends the representation to so-
called implicit multilinear models (iMTI), which re-
cently have been shown to be advantageous over
eMTI models because of their closedness w.r.t to stan-
dard compositions.

4 IMPLICIT MULTILINEAR
MODELS

The development of the equations for iMTI models
can be performed in analogy to Section 3. An iMTI
model represented in CP form without outputs reads

〈H |M(ẋ,x,u) 〉=0 , (36)

with parameter tensor H ∈ R
2n+m︷ ︸︸ ︷

2×. . .×2×e, where e is the
number of equations defining the iMTI model and M
is constructed analogously to (15b).
Remark: Be aware that (36) in general is a system
of differential-algebraic equations (DAEs) which de-
mand other methods and tools than ODEs.

To include thresholds and Boolean expressions the
inequality constraint

〈L |M(ẋ,x,u) 〉≥0 , (37)

with L ∈ R

2n+m+p︷ ︸︸ ︷
2×. . .×2×N , where N is the number of in-

equalities is introduced in (Lichtenberg et al., 2022).
To represent an iMTI model, all parameters can be
gathered in the tensor L, which are very large for, e.g.,
energy system models. But the reduced CP form

L=
[
Lẋ1,. . .,Lẋn ,Lx1,. . .,Lxn ,Lu1,. . .,Lum ,Lφ

]
,(38)

might have - depending on the system structure -
a comparable low rank leading to a much smaller
number of parameters in its factor matrices, espe-
cially when given in a normalized form. Analogous
to (15a), the model can be given by

Lφ

(
LT

ẋ1

(
1
ẋ1

))
~ · · ·~

(
LT

um

(
1

um

))
≥0 . (39)

The factor matrix Lφ ∈ RN×r has the row dimen-
sion N, i.e. the number of inequality constraints and a
column dimension of r, i.e. the tensor rank. All other
factor matrices Li ∈ R2×r have a row dimension of 2
and can be normalized as discussed.

The computation of the left side of the iMTI
model from (36) is possible in the factored polyno-
mial form with (5) to (7) if it is transformed in 1-norm,
2-norm, sparse or zero representation in analogy to
the eMTI model in Section 3.2.

The variable vector

(ẋ,x,u) = (ẋ1, ..ẋn,x1...xn,u1...,um)
T , (40)

consists of the state derivatives, states and inputs of
the iMTI system. Because of the dimension of the
parameter Tensor H in CP decomposition the poly-
nomial has 2n+m factors in the products and r ad-
dends. A detailed description to convert any iMTI in
a 1-norm normalized iMTI can be found in (Lichten-
berg et al., 2022). It can be shown that an easy trans-
formation of the eMTI to an iMTI model is achieved
by bringing the derivatives to the other side. This will
be used for the running example next.
Example 4.1. For the example, a sparse representa-
tion (25) of the iMTI model is given by

H̃ẋ1 =
(
∞ 0 0 0 0 0

)
, (41a)

H̃ẋ2 =
(
0 0 0 ∞ 0 0

)
, (41b)

H̃x1 =
(
0 0.3 0.2 0 0.4 0.2

)
, (41c)

H̃x2 =
(
0 ∞ 0 0 0.9 ∞

)
, (41d)

H̃u =
(
0 0 ∞ 0 0 0

)
, (41e)

H̃φ =

(
−1 0.2 0.4 0 0 0
0 0 0 −1 0.6 0.4

)
.(41f)

With this method, the rank of the model increases
in comparison to the eMTI model by the number of
states n = 2 from r = 4 to r = 6.

5 MODELING FORMATS

In Section 3.2 it was shown, that with the normaliza-
tion procedure the memory requirements of the model
can be reduced by almost 50%. However, this repre-
sentation still contains zeros. For very large systems
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this will increase the size significantly. By making
use of the sparsity this can be further reduced.

The iMTI model from (42) is given in the sparse
representation. These equations are developed by us-
ing (36) with the factor matrices in (41). The param-
eter tensor in (41) contains 42 values. However, only
the non-zero parameters from the parameter tensor H
must be stored, which reduces the size of the sys-
tem, c.f. 5.1. The sparse normalization format outper-
forms the others because a parameter pi = 0 leads to
the corresponding factor (1+ pixi) = 1 which is the
neural element of multiplication. This implies that
the i-th variable has no influence.

The model parameters are saved in a binary file.
In principle, this can also be done in human-readable
formats such as ASCII. However, these formats have
larger disk footprints as binary formats. In addition,
reading and writing of binary files is faster compared
to the ASCII format.

The binary file must have a clear structure such
that it can be read-in and written correctly. A struc-
tured format with integers and floating-point numbers
can be saved as shown in Figure 3. Here, the format
is shown as two rows containing 16-bit integers in the
first row and 64-bit floating-point numbers in the sec-
ond row. However, the two rows are chosen for better
illustration. In the raw binary format the integers and
floating-point numbers are placed alternately. The in-
dices corresponding to the specific states, inputs or
outputs are stored as positive integers. The deriva-
tives are specified with the same indices of the relating
states, but negated. The actual factors for the states,
derivatives, inputs and outputs are stored as floating-
point numbers. An illustration of this is given in ex-
ample 5.1.

int16

float64

0 i1 · · · in 0 i1 · · · in 0 · · ·

· · ·h̃φ11 p1 · · · pn h̃φ12 p1 · · · pn 1

0 i1 · · · in 0 i1 · · · in · · ·

h̃φ21 p1 · · · pn h̃φ22 p1 · · · pn · · ·

· · ·

· · ·

Figure 3: Structure of the general minimal representation.

Example 5.1. The second-order multilinear model
from the running example can be represented in
sparse implicit CP format as(

−ẋ1+0.2(1+0.3x1)x2+0.4(1+0.2x1)u
−ẋ2+0.6(1+0.4x1)(1+0.9x2)+0.4(1+0.2x1)x2

)
= 0 .

(42)
The corresponding minimal memory format will then
be

int16

float64

0 −1 0 1 2 0 1 3 0 · · ·

· · ·−1.0 0.2 0.3 0.4 0.2 1.0

0 −2 0 1 2 0 1 2

−1.0

· · ·

· · ·

inf inf inf

inf 0.6 0.4 0.9 0.4 0.2 inf

Figure 4: Structure of minimal representation for the exam-
ple.

This results in a file of 170 bytes. One zero in the
integer row indicates that a new addend starts. The
number of addends is known by the rank of the system.
Two following zeros indicate that a new equation of
the system starts.

The iMTI model class gives the ability to compose
models easily by appending new system equations.
This is also directly possible in reduced CP represen-
tation if the indices are disjoint or shifted correctly.
Thus, iMTI models allow reduced representation for
large scale systems, which enable efficient composi-
tion, simulation and linearization techniques.

6 CONCLUSION

In this paper, a reduced normalized CP tensor repre-
sentation for implicit multilinear (iMTI) models was
presented. By applying tensor decomposition and
normalization methods the memory requirements for
the model can be significantly reduced. This is partic-
ularly relevant for modeling and simulation of large-
scale systems in broad operational ranges, e.g., energy
systems. Linearization methods have been adapted to
normalized eMTI models providing access to meth-
ods of linear systems theory, such as local stability
analysis. Future work will focus on efficient simula-
tion and linearization methods as well as tool devel-
opment for iMTI models.
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