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Oblivious inference is the task of outsourcing a ML model, like neural-networks, without disclosing criti-
cal and sensitive information, like the model’s parameters. One of the most prominent solutions for secure
oblivious inference is based on a powerful cryptographic tools, like Homomorphic Encryption (HE) and/or
multi-party computation (MPC). Even though the implementation of oblivious inference systems schemes has
impressively improved the last decade, there are still significant limitations on the ML models that they can
practically implement. Especially when both the ML model and the input data’s confidentiality must be pro-
tected. In this paper, we introduce the notion of partially oblivious inference. We empirically show that for
neural network models, like CNNs, some information leakage can be acceptable. We therefore propose a novel
trade-off between security and efficiency. In our research, we investigate the impact on security and inference
runtime performance from the CNN model’s weights partial leakage. We experimentally demonstrate that in
a CIFAR-10 network we can leak up to 80% of the model’s weights with practically no security impact, while

the necessary HE-mutliplications are performed four times faster.

1 INTRODUCTION

Artificial intelligence (Al), and in particular, machine
learning (ML) technology is transforming almost ev-
ery business in the world. ML provides the ability
to obtain deep insights from data sets, and to cre-
ate models that outperform any human or expert sys-
tem in critical tasks, like face recognition, medical di-
agnosis and financial predictions. Many companies
offer such ML-based operations as a service (Ma-
chine learning as a service, MLaaS). MLaaS facili-
tates clients to benefit from ML models without the
cost of establishing and maintaining an inhouse ML
system. There are three parties involved in the trans-
action; the data owner, the model owner and the in-
frastructure provider.

However, the use of ML models raises crucial se-
curity and privacy concerns. The data set used for
the ML model training and/or the MLaaS client’s in-
put in the inference phase can leak sensitive personal
or business information. To complete the scenery of
security threats, in several applications, like medical
or financial, the ML models are considered as the
MLaasS provider’s intellectual property, and they must
be protected.

Oblivious inference is the task of running a
ML model without disclosing the client’s input, the
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model’s prediction and/or by protecting the owner-
ship of the trained model. This field of research is
also referred to as Privacy-preserved machine learn-
ing (PPML).

Several solutions for oblivious inference have
been proposed that utilize powerful cryptographic
tools, like Multi-party Computation (MPC) primitives
and the Homomorphic Encryption (HE) schemes.
MPC based protocols facilitate the computation of an
arbitrary function on private input from multiple par-
ties. These protocols have significant communication
overhead as they are very interactive. On the other
hand, using HE cryptography we are able to perform
computations on encrypted data, but with significant
computation and storage overhead.

Several PPML schemes have been proposed that
are either based solely on one of these technologies
or that they leverage a combination of them (hybrid
schemes). So far, literature has focused on two attack
models. It is assumed that either the model owner is
also the infrastructure provider or that the ML model
that it is used, it is publicly known. This is a rea-
sonable choice, as in both cases, the ML model’s
weights can be used in plaintext form. That is that, the
schemes designers avoid expensive computations be-
tween ciphertexts and thus, they introduce inference
systems that are practical.
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In this paper, we consider the use cases in which
the ML model’s confidentiality must be protected.
The service provider wants to outsource the ML pre-
diction computation (for instance to a cloud provider
or to an edge device). However, the ML model con-
stitutes intellectual property and it’s privacy must be
preserved.

Protecting both the client’s input data and the
model’s privacy can increase prohibitively the com-
putational complexity as all the computations must be
performed between encrypted data. Just as a rough
estimation, the runtime of a single HE multiplication
increases ten times when it is performed between two
ciphertexts compared to HE multiplication between
a plaintext and a ciphertext. At the same time, HE
multiplications between encrypted data (ciphertexts)
increase significantly the accumulative level of noise
and they limit the applicability of the HE schemes.
Thus, they must be avoided when possible.

Building on this observation, we introduce the no-
tion of partially oblivious (PO) inference. In a PO in-
ference system, the ML model owner decides to leak
some of the model’s weights in order to improve the
efficiency of the inference process. PO inference can
be seen as a generalization of oblivious inference that
offers a trade-off between security and efficiency. The
PO inference systems lie between the two extreme use
cases, the most secure but the less efficient in which
all the ML model weights are encrypted and the less
secure and the most efficient in which all the weights
are revealed. The optimal point of equilibrium be-
tween efficiency and security depends on the use case.

Our work is summarized as follows:

1. We introduce the notion of Partially Oblivious in-
ference for ML models.

2. We provide a security definition for the evaluation
of the information leakage impact. In our analy-
sis, the attacker is passive (“honest-but-curious”)
and she aims to compute a model that simulates
the protected one as accurately as possible. We
use accuracy improvement as our security metric.

3. As a proof-of-concept use case, we apply the
notion of PO inference to protect Convolutional
Neural Networks (CNN) inference.

4. We experimentally measure the security and per-
formance trade-off. We use two models trained
with the MINST (LeCun et al., ) and CIFAR-10
datasets (Krizhevsky, 2009), respectively. For the
PO inference implementation, Gazelle-like (Ju-
vekar et al., 2018) approach is used. Impressively,
itis shown that in some scenarios, leakage of more
than 80% of the model weight’s can be acceptable.

The paper is organized as follows. In Section 2,
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the necessary background is provided. In Section 3,
we analyze our motivation, we introduce the security
attack model and the security definition for PO infer-
ence and we demonstrate the application of the PO
inference to CNN models. Finally, in Section 4, we
implement and evaluate the two CNN models and in
Section 5, we conclude the paper.

1.1 Related Work

There are several lines of work for PPML systems that
leverage advanced cryptographic tools, like MPC and
HE. The most promising solutions are hybrid, and
they are using HE to protect the linear and MPC to
protect the non-linear layers.

CryptoNet ((Gilad-Bachrach et al., 2016)) is the
first scheme that deploys the HE primitive for PPML
on the MNIST benchmark. In the same research line,
CHET (Dathathri et al., 2019b), SEALion (van El-
sloo et al., 2019) and Faster Cryptonets (Chou et al.,
2018) use HE and retrained networks. There are
HE based schemes that use pre-trained networks, like
Chimera (Boura et al., 2020) and Pegasus (Lu et al.,
2020). In the pre-trained PPML category, we can find
several proposals that use only MPC schemes, like
ABY?3 (Mohassel and Rindal, 2018), and XONN (Ri-
azi et al., 2019).

The most promising type of PPML systems are
hybrid, i.e. the proposals that use both MPC and the
HE schemes. Hybrid HE-MPC schemes provide an
elegant solution for pre-trained networks. The MPC
is responsible for the non-linear part (activation func-
tion) and HE for the linear transformations (FC and
convolutional layers). Gazelle (Juvekar et al., 2018)
is a state-of-the-art hybrid scheme for CNN prediction
and several works have followed, like Delphi (Mishra
et al., 2020), nGraph-HE (Boemer et al., 2019b),
nGraph-HE2 (Boemer et al., 2019a), and PlaindML-
HE (Chen et al., 2019). All these schemes assume
that either the model owner runs the models locally or
that the ML model is publicly known.

There are several open source HE libraries that
implement the operations of a HE schemes and offer
higher-level API (Viand et al., 2021) and there is an
ongoing effort to standardize APIs for HE schemes
(sta, 2018). However, dealing directly with HE-
libraries and operations is still a very challenging task
for the developers. In order to facilitate developers
work, HE compilers have been proposed to offer a
high-level abstraction. There is a nice overview of
existing HE-compilers in (Viand et al., 2021).
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2 BACKGROUND

2.1 Homomorphic Encryption

In the last decade, the performance of HE schemes
has impressively improved up to several orders of
magnitude thanks to advances in the theory and
to more efficient implementations. However, it is
still significantly slower than plaintext computations,
while realizing HE-based computations is complex
for the non-expert.

Modern HE schemes belong into one of two main
categories. The schemes that compute logical gates
and thus, they are most efficient for generic applica-
tions, and the schemes that operate nicely on arith-
metic or p-ary circuits and thus, they are used for
the evaluation of polynomial functions. The CKKS
(Cheon et al., 2017) scheme belongs in the second
category. As it operates to arithmetic circuits on com-
plex and real approximate numbers, CKKS is suitable
for machine learning applications. We are going to
use it in our experiments.

Following the last version of the HE Standard (sta,
2018), all the schemes must support the following
types of operations: key and parameters management,
encryption and decryption operation, HE evaluation
of additions and multiplications, and noise manage-
ment.

2.2 HE Evaluation Operations Cost

Practically, all the modern HE schemes are based on
the hardness of the Learning With Errors (LWE) prob-
lem (Regev, 2005) and its polynomial ring variant.
Depending on the scheme the plaintext, the keys, and
the ciphertexts are elements of Z{} or Z,[X]/(X" + 1),
i.e. they are either vectors of integers or polynomials
with integer coefficients.

In order to protect a message m a randomly se-
lected vector (or polynomial) e is selected from a dis-
tribution and it is added to produce a noisy version of
m. The level B of this added noise must always be
between two bounds B,,;; and Bj,.x. When B < By,
the ciphertext cannot protect the message, while when
B > By,.x, the noise cannot be removed and the correct
message cannot be retrieved anymore.

Thus, it is crucial to manage the level of noise in-
duced by the HE operations. It has been demonstrated
that the best noise management approach is to treat
the ciphertext’s noise level B as an invariant. That is
that, after each HE operation, the level of noise must
remain close to B.

In the CKKS (Cheon et al., 2017) scheme, the
ciphertext is a pair of polynomials ¢ = (cp,c;) over
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a ring of polynomials Z,[X]/(X" + 1), for appropri-
ately selected integers ¢ and N. The four main eval-
uation operations of CKKS scheme are summarized
as:

1. Plaintext-Ciphertext Addition.
Let m and m’ be two plaintexts and ¢’ = (c{,c})
be the encrypted value of m'. The output of the
addition 1S coupur = (m+ ¢y, ¢}) and decrypts to
m~+m' and the noise level is B.

2. Ciphertext Addition.
Let ¢ = (co,c1) and ¢’ = (¢, ¢) be the encrypted
values of plaintexts m and m’. The output of the
addition is Coupur = (co +cpy,c1+¢}) and it is the
ciphertext of m+m’ (approximately with good ac-
curacy). The level of noise is upper bounded by
2B.

3. Plaintext-Ciphertext Multiplication.
Let m and m’ be two plaintexts and ¢’ = (c{,c})
be the encrypted value of n’. The output ¢, put =
(m-cj,m-c}) decrypts to m-m' and the level of
noise is mB.

4. Ciphertext Multiplication.
Let ¢ = (co,c1) and ¢’ = (c{, ) be the encrypted
values of plaintexts m and m’. The output of the
multiplication is three polynomials, ¢ouspur = (co -
¢y o~ ¢y +ch-ci,c1-¢)) and the noise level is B2.

It is clear that the ciphertext multiplication is the
problematic one. The number of ciphertext polynomi-
als increases linearly (one more polynomial after each
multiplication) and the noise level increases exponen-

tially (it becomes BZL, after L consecutive multiplica-
tions). To manage this size and noise increase, two
refresh type operations are applied. In order to bring
the dimension of the output ciphertext back to two,
the relinearlization algorithm is used. The resulting

ciphertext ¢, is an encryption of the m-m’ and the

level of noise is B2. For the noise management, an al-
gorithm called rescale (or modulo switching in other
HE schemes) is used. However, it can be applied only
a limited and predetermined number of times, usually
equal to the multiplicative depth L of the arithmetic
circuit.

Both algorithms, rescaling and relinearization, are
costly in terms of computational complexity and both
of them are applied after each multiplication between
two ciphertexts. Relinearization has approximately
the same computational cost with ciphertext multipli-
cation and an evaluation key is required. The evalua-
tions keys are created by the encryptor and passed to
the evaluator.

To summarize, the HE multiplication between
cipehrtexts is a very costly operation in terms of com-



putational overhead and noise management. Com-
pared to ciphertext multiplication, the other three HE
evaluation operations are practically for free.

2.3 Plaintext Packing

One of the main features of some HE schemes that
extremely improve performance is plaintext packing
(also referred to as batching). It allows several scalar
values to be encoded in the same plaintext. Thus, for
schemes with cyclotomic polynomial of degree N, it
is possible to store up to N /2 values in the same plain-
text (we refer to them as slots). Thus, homomorphic
operations can be performed component-wise in Sin-
gle Instruction Multiple Data (SIMD) manner. This
encoding has several limitations, since there is not
random access operation and only cyclic rotations of
the slots is allowed.

There are various choices for plaintext packing in
ML, i.e. how the input data and the model weights are
organized in plaintexts (or ciphertexts). Depending on
the workload two are the main packing approaches,
batch-axis-packing and inter-axis packing.

The batch-axis-packing is used by CryptoNets,
nGraph-HE and nGraph-HE2. It is used to a 4D ten-
sor of shape (B,C,H,W), where B is the batch size, C
is number of channels and H, W the height and width
of input, along the batch axis. That is that, each plain-
text (or ciphertext) packing has B slots and C-H - W
are needed. This approach assumes that B inputs are
available for each inference operation.

On the other hand, inter-axis packing is used when
each input is processed separately, i.e. it is not neces-
sary to collect B inputs before performing a prediction
(this is common in medical diagnosis). There are sev-
eral packing choices, all of them encode scalars from
the same input. This approach is used by Gazelle in
which different packing is used for each type of linear
transformation. We will use inter-axis packing in our
analysis. In Section 3.4, we provide more details on
the different inter-axis packing choices.

2.4 CNN Models

The neural-network inference has been identified as
the main application area for privacy preserving tech-
nology, and especially for HE and MPC schemes, as
we have seen in Section 1.1. However, there are prac-
tical limits to the complexity of the use cases that can
be implemented (the unprotected computation must
be at most a few hundreds of milliseconds).

A CNN model consists of linear layers (like con-
volutional layer and fully connected layer) and non-
linear layers, like an activation function, usually a
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ReLU functions or a pooling function, like max-
pooling. A very simple CNN appears in Fig. 1.

A fully connected (FC) layer with M inputs and N
Outputs is specified by a tuple (W,b), where W is an
M x N weight matrix and b is a vector of length N,
called bias. This layer receives as input vector v;, of
length M and computes the output as the linear trans-
formation of the input: v,,; = W’v;, +b.

The convolutional layer has ¢; number of input
channels with image dimension w; X h; each and pro-
duces ¢, output images with dimension w, X h,. The
Conv layer is parameterized by ¢; X ¢, many f,, X fj
filters.

3 PARTIALLY OBLIVIOUS
INFERENCE

3.1 Attack Model

The architecture of the neural network (number of
layers, type of neural network) is publicly known. On
the other hand, the network’s weights constitute in-
tellectual property of MLaaS provider and their con-
fidentiality must be protected. We make no assump-
tions regarding the training data or the training pro-
cess. The training can be based on a private dataset as
well as on a partially public one. Also, the ML model
may has been trained from scratch or it may has been
based on publicly known pre-trained model.

All the model inference computations are out-
sourced to a cloud provider or an edge device (we re-
fer to both as the Server). We assume that the Server
is honest-but-curious, i.e. it executes the operations
correctly, but it wants to reveal any information that
it can. The goal of the attacker is to compute a ML
model that can simulate the original one as accurately
as possible.

Our scenario appears in Fig. 2. We make the as-
sumption that HE schemes are used at least for the
linear layers of the ML model. In our experiments,
we assume that the nonlinear layers are implemented
using an MPC protocol (in our case the Garbled Cir-
cuit from the Gazelle system). However, our attack
model is general and it can easily be adapted to other
privacy preserving technologies as well.

The model’s owner together with the data owner
produce the necessary HE keys, namely, the secret
key for the decryption, the public key for the encryp-
tion and the corresponding evaluation keys that are
sent to the server. In a simplified version of this sce-
nario, the model’s and data owner is the same entity.
The model’s weights and the input data are encrypted
with the public key and they are sent to the server.
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Figure 1: The example of a simple CNN. The green blocks are the linear layers (2 convolutional and one fully connected) and
blue blocks are the non-linear layers.
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Figure 2: Oblivious Inference attack model.

The server runs the encrypted model on the en-
crypted input data, using the evaluation keys for the
HE protected linear layers and any other technology
for the nonlinear ones. The produced output is com-
puted encrypted and it is sent to the legitimate user (it
depends on the use case) who can decrypt it using the
secret key directly or an MPC protocol on secret key’s

shares.

Note that, in theory, we can even hide the archi-
tecture of the model, however this is prohibitively ex-
pensive and it is avoided in practice.

3.2 Motivation

The efficiency, and practicality, of a HE-based system
depends strongly on the type of operations that are
performed. Based on the analysis in Section 2.2, two

parameters are crucial:

1. Multiplicative Depth: The number of consecutive
ciphertext multiplications must remain small. As

the depth L increases,

the modulo coefficient g

must also increase and the HE scheme becomes

inefficient.

2. Number of ciphertext multiplications: Even when

multiplications can be

performed in parallel, the

computational complexity is significant. The goal
is to reduce the number of ciphertext multiplica-

tions in total.

In the use cases under consideration the number
of ciphertext multiplications is very high since both
the system’s input values and the ML coefficients are

HE-encrypted.
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Table 1: CKKS operations for security level A = 128-bit.
N is the degree of the polynomial (N/2 slots per plain-
text/ciphertetx) and L is the multiplicative depth. All the
parameters are defined in SEAL from the HE standard (sta,
2018).

N=27 N=28 N=2F
L=2 L=4 L=38
Plain Mult. 1 4 16
Ciph Mult. 2.7 12.3 60
Rescale 7.6 38.5 175.7
Relinearization 16.1 80 477

One of the main techniques used to reduce the
number of the multiplications between ciphertexts is
packing (see Section 2.3), i.e. to organize several
data in the same ciphertext and to compute in par-
allel all the computations with a single HE cipher-
text multiplication. Both the human expert and HE-
compilers use a pre-processing phase aiming to op-
timize the use of packing. For instace CHET, intro-
duced in (Dathathri et al., 2019a), is a compiler that
leverages the huge batching capacity and the rotations
of the CKKS scheme, to decrease the number of re-
quired ciphertext multiplications.

Our goal is to go beyond the capabilities of pack-
ing by building on the computational cost asymmetry
between HE ciphertext and HE plaintext multiplica-
tions. In Table 1, we can see an estimation of the run-
time cost for different HE-multiplication related op-
erations, i.e. plaintext multiplication, ciphertext mul-
tiplication, rescale and relinearization. The CKKS-
RNS is used implemented in the SEAL library.

Each entry of the Table 1 indicates how many
times lower is each operation compared to the plain-
text multiplication for N = 2'? and multiplicative
depth L = 2. For instance for the same parameters N
and L the ciphertext multiplication is 2.7 times slower
and the relinearization is 16 times slower.

While we evaluate each operation separately, in
practice the ciphertext multiplication is always fol-
lowed by the relinearization operation. That it that,
it is almost 19 times slower in practice. Similarly, we
can argue for the rescale opeation.

From Table 1, it is clear that the multiplications
between a plaintext and ciphertext are much more ef-
ficient. Based on this observation, we are motivated
to investigate the possibility of leaking information
that has limited impact on the security of the protected
scheme. The performance benefits are pretty clear in



terms of runtime overhead as the revealed values can
be used in plaintext form.

Note. We need to have in mind that plaintext multi-
plication form leads also to limited noise growth and
as a result a larger variety of functions that can be HE
implemented. This is illustrate in Example 1. In this
paper, we don’t investigate this positive side-effect.

Example 1. Let f(x,y,z,w) = xy + zw be a bilin-
ear function that must be computed homomorphically.
The naive approach requires two ciphertext multipli-
cations, and a single ciphertext addition.

Let’s assume that any two of the four input val-
ues can be leaked, i.e. they can be used as plaintext.
There are (3) different combinations of two inputs, i.e.
6 in total. Due to the symmetry of the function they
belong into two equivalent classes, either both inputs
are the operands of the same multiplication (i.e. {x,y}
or {z,w}) or operands of different multiplications.

In the first case, it requires one ciphertext multi-
plication, and one plaintext-ciphertext addition (the
multiplication between plaintexts is for free). In the
second case, it requires two plaintext-ciphertext mul-
tiplications, and one ciphertext addition. This is much
more efficient.

3.3 Security Definition

In this section, we introduce the notion of Partially
Oblivious (PO) inference and we provide the corre-
sponding security definition.

Let W be the set of weights of a model M and let
L be a subset of W.

Definition 1. A model M is L-Partially Oblivious
(L-PO), when the model is FHE computed and only
the weights w & L are HE-encrypted.

The definition implies that the model’s inference
is computed using HE while the weights that are in
the subset L are used unencrypted, i.e. these weights
are leaked.

When £ = 0, all the weights are encrypted and
we have the standard definition of oblivious inference.
The model is 0-PO.

Next, we introduce a security definition to assess
the impact of the proposed information leakage. In
our attack scenario, we assume that the adversary’s
goal is to steal the model. AThat is that, the attacker
wants to produce a model M that is equivalent to M.

Let .‘7% and ﬂf/[L be the models that the attacker
computes when all the weights are encrypted and
when L are leaked, respectively. Also, let ACCyp and
ACC/ be the accuracy of each model.

Partially Oblivious Neural Network Inference

Definition 2. A £-PO model M is A-secure, if the
advantage of any polynomial-time adversary A,

Adva(M, L) =ACC, —ACCy (D)
is upper bounded by A, i.e.
Adva(M, L) <\

Ideally, A = 0. In that case, the leaked weights
L do not improve the attackers capability to steal the
model.

3.4 CNN Mdel Partially Oblivious
Inference

In this section, we investigate the application of our
Partially Oblivious inference approach to the CNN
use case. From our attack model, the topology of the
network is publicly known, but the weights are confi-
dential.

Our goal is to investigate trade-offs between secu-
rity and performance. This is expressed as informa-
tion leakage and more precisely as revealing model’s
weights. We will show that the model’s owner can
use some of the weights in plaintext in order to im-
prove inference runtime performance, while at the
same time this leakage gives a very limited advantage
to the attacker. These weights are only used in the
linear layers.

The linear layers (linear operations of fully con-
nected and convolutional layers) are implemented us-
ing an HE scheme. To simplify our analysis, we as-
sume that the non-linear layers (activation functions)
refresh the ciphertext noise. This is very common in
the hybrid schemes. For instance in Gazelle (Juvekar
et al., 2018), the non-linear layers are implemented
with MPC (using Garbled Circuits) and the output of
the layer is a ciphertext of with fresh noise (the same
applies with TEE based solutions).

The model owner can reveal a certain percentage
of the model’s weights. The higher the percentage
the more efficient the inference process. At the same
time the security level is decreasing. The selection
of the weights is subject to the restrictions imposed
by the packing policy. The weights that are encoded
in the same polynomial must be treated as a group.
That is that, either they will all be revealed and used
in plaintext form or they must all be protected and
used in ciphertext form.

In our investigation, we follow the inter-axis pack-
ing (see Section 2.3) which is more common in medi-
cal diagnosis use cases and we analyze different pack-
ing techniques for the convolutional and fully con-
nected layers. For the fully connected layer, we an-
alyze the three packing techniques from Gazelle (Ju-
vekar et al., 2018), namely the naive approach, the
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diagonal and the hybrid. On the other hand, the two
packing techniques for the convolutional layer (called
in the paper padded and packed SISO) treat each filter
value independently. Thus, the model owner can de-
cide on the confidentiality of the convolutional layer
weights without restrictions from the packing tech-
niques used.

The model owner selects a percentage of the
model weights to reveal following one of the foll-
woign strategies:

1. Random selection: The weight groups of the fully
connected layer and the individual filter values of
the convolutional layer are selected completely at
random.

2. Maximum weight: The weight groups of the fully
connected layer and the individual filter weights
of the convolutional layer with the largest mean
of absolute values are selected.

For example, consider a fully connected layer with
M inputs and N outputs. This layer is represented by
an M x N weight matrix W. The linear output (logit)
is z=WTh,, +b, where h;, is the input vector and b
the biases. The naive approach with rows as groups
will select | pM | rows of W for encryption. The first
policy will randomly select the rows, while the second
will select rows i with the highest mean ﬁ Xlwijl.

In the case of a convolutional layer, the layer is
represented by a k x k x M x N tensor W, where k
is the kernel size, M is the number of input channels
and N is the number of output channels. In this case, a
group can be a “filter” W; with dimensions k x k x M,
or each k x k kernel W;;. For the maximum weight
strategy, the filters with the largest mean of absolute
weights are selected.

For both FC and convolutional layers, encrypting
the biases b is an additional option (the biases are also
encrypted as a group).

Regarding the attacker, we assume that she is try-
ing to produce a model from the leaked information.
We assume that the attacker has a very small set of
data just for the evaluation, but not sufficient data to
train or fine-tune a model. The attacker follows one of
the following policies for the prediction of the miss-
ing weights.

1. Constant (0.0): All the weights are replaced by
the constant value (zero, in the case of our exper-
iments).

2. Mean (u): The mean value of the known weights
of the same layer is used. If no weights of the
current layer are known, then the constant policy
is used for that layer.

3. Normal (N(0,1)): The values are sampled from
a standard normal distribution.
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Table 2: Neural network architectures used in the
experiments with MNIST and CIFAR-10 datasets.
“conv_3 x 3_X” denotes a convolutional layer with X filters
and a 3 x 3 kernel. FC-Y is a fully connected layer with Y
neurons, while “batchnorm” denotes batch normalization
(Ioffe and Szegedy, 2015). The ReLU activation function is
used in all layers except the output FC layer.

model for MNIST | model for CIFAR-10
Input: (28 x 28 x 1) | Input: (32 x 32 x 3)
conv_3 x3.32 conv_3 x3.32
maxpool 2 x 2 batchnorm
conv_3 x 3_64 conv_3 x 3.32
maxpool_2 x 2 batchnorm
FC-10 maxpool_2 x 2
softmax conv_3 x 3_64
batchnorm
conv_3 x 3_64
batchnorm

maxpool 2 x 2
conv_3 x 3_128
batchnorm
conv_3 x 3_128
batchnorm
maxpool_2 x 2
FC-128
Dropout (p =0.5)
FC-10
softmax

4. Fitted normal (N (u,0)): Same as the Normal
policy, but the values are sampled from a nor-
mal distribution that is estimated from the known
weights of the same layer (i.e., with mean equal
to the known weight mean, and standard devia-
tion equal to the unbiased estimate of the standard
deviation of the known weights).

In the following section, we empirically evaluate
the tradeoffs between computational efficiency and
security of the proposed L-PO inference.

4 EXPERIMENTS

4.1 Experimental Setup

For our experiments we have used the MNIST (LeCun
et al., ) and CIFAR-10 (Krizhevsky, 2009) data sets,
using the standard train/test splits. The architecture
of the networks used in each dataset are outlined in
Table 2.

These architectures are used for empirical evalu-
ation of the security and computational efficiency of
the different £L-PO strategies.



4.2 L-PO Security

To evaluate the security of L-PO for CNN networks
we initially train both network architectures of Table
2 using the Adam optimizer (Kingma and Ba, 2014)
with a learning rate of 0.001 and categorical cross-
entropy loss. The MNIST network is trained for 10
epochs without the use of a validation set, while the
CIFAR-10 network is trained for 20 epochs, with 20%
validation set and early stopping if no reduction in
loss is observed for more than 3 epochs.

Then, we apply an “encoding” step, where
weights of the neural network are selected accord-
ing to the strategies described in Section 3.4. In
this step we simulate L-PO by storing the indices
of the weights that would be selected for encryption.
Then, we evaluate the accuracy that an attacker would
achieve in a “decoding” step, for different policies
(also described in Section 3.4). .

Both the original model M, the model M that
is estimated by the attacker, as well as the fully en-
crypted model MMy are evaluated in the test set of each
dataset and the resulting accuracies are used to assess
the security of £-PO in terms of Adva (M, L) defined
in Section 3.3.

In each experiment we define the percentage p of
the weights to be selected for encryption, the weight
selection strategy, whether to select biases for encryp-
tion, as well as the attacker policy. Since some of the
policies applied by the attacker are stochastic, we re-
peat each experiment 10 times and report the average
and standard deviation of Advs (M, L). For each ex-
periment (i.e., combination of these options), the orig-
inal network is trained only once and is used in all 10
iterations. Training a network for each different ex-
periment (instead of using the same network across all
experiments of the same datasets) helps take into ac-
count randomness introduced by model training (e.g.,
due to weight initialization).

Results of the experiments are shown in Table
3, for both datasets and for some combinations of
p, weight selection strategies and attacker prediction
policies. For each experiment, the table provides the
average and standard deviation of the attacker advan-
tage observed in the 10 experiment runs. In all exper-
iments, bias weights have been selected for encryp-
tion.

Note also that, after encrypting all weights (p =
1.0) the model accuracy is roughly equal to the class
prior (i.e., the accuracy of the random classifier). This
ascertains our knowledge of the model architeture by
itself does not lead to any attacker advantage.

An important observation from these results is that
for both datasets and models, the attacker advantage

Partially Oblivious Neural Network Inference

» Constant

\\ -\ (p.0)
k)

Difference in advantage from revealing bias weights
-

.
~——
e T N R S ot n e
0.0 A arar T

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of weights in £

Figure 3: Difference in Adva(M, L) achieved by an at-
tacker by when biases are not included in £, for the max
weight selection strategy. For very small p, the attacker can
benefit from observing the biases, however as p grows this
advantage quickly becomes insignificant.

quickly diminishes as more weights are encrypted.
This is more pronounced in the more complex model
of the CIFAR-10 dataset, where for p > 0.2, the at-
tacker advantage is zero for both weight selection
strategies. But even for a small number of hidden
weights, e.g., p = 0.1, the maximum attacker advan-
tage (obtained with the constant policy) is only 47.9,
as opposed to 70.5 if she or he had access to the full
model. In this case, the attacker would achieve ap-
proximately 0.58 accuracy, while with the full model
she would achieve approximately 0.8. For the max
weight selection strategy the advantage is even lower.

Another interesting observation is that the weight
selection strategy plays an important role especially
for the CIFAR-10 dataset. Max weight selection
seems to be the most effective for both datasets. On
the other hand, random filter and random weight se-
lection conveys the minimum information about how
weights were selected to an adversary. It seems that
the optimal weight selection strategy depends on the
model and more sophisticated methods could be ex-
plored. This is not further discussed in this paper and
is left as future work. In the ideal case, one should
evaluate different weight selection strategies and use
the one that seems to provide the best results for each
model.

Regarding the different attacker weight estimation
policies, replacing all weights with zero leads to very
good results for both datasets, while using weights
from a fitted normal distribution seems to be a good
policy as well. On the other hand, the mean and stan-
dard normal polices do not seem to be as effective.

In all experiments, the biases have been selected
for encryption, since the addition is relatively cheap,
computationally. Figure 3 illustrates the effect of in-
cluding biases in L for the CIFAR dataset for the ran-
dom and the best two weight estimation policies for

165



SECRYPT 2022 - 19th International Conference on Security and Cryptography

Table 3: Results of experiments. Values are average and standard deviation across 10 runs, in 100Adv4 (M, L) (a similar table
with the corresponding accuracy values is provided in the appendix). All runs include hidden biases, while the asterisk ‘*’
indicates the model without any hidden weights. Columns const = 0.0, A(0,1), A (u, o) and u correspond to the different

weight estimation policies of the attacker.

Random weight selection
MNIST CIFAR10
p | const=00 ] A(0,1) | MN(uo) | u const =0.0 | A(0,1) | N(u0) | u
* 89.2 88.7 87.8 89.2 70.5 70.9 70.5 70.5
0.0 | 89.1(0.0) | 27.4(19.5) | 86.6(0.9) 89.1 (0.0) 47.9 (0.0) 3.1(2.3) | 39.9(12.5) | 40.6 (0.0)
0.1 88.3 (0.6) 0.7 (3.1 82.2 (4.9) 88.4(0.6) | 33.3(11.2) | 0.0(0.7) 11.6 (9.5) | 18.4(13.2)
0.2 | 85.6(3.1) 0.6 (3.0) 62.2 (12.0) | 83.8 (4.6) 18.2 (5.7) 0.8 (0.7) 524.1) 9.2(4.5)
03| 83.82.1) | 0701.0) | 470(13.7) | 83.1(33) | 04¢1.0) | 0.7(0.8) | 1.2(1.7) 0.5 (1.4)
04 | 78.3(4.3) 0.1 (2.0) 29.8 (13.8) | 73.4(6.0) 0.6 (1.1) 0.9 (1.2) -0.2(1.4) 1.2(1.5)
05| 72.0(9.0) | -0.8(32) | 19.1(7.9) | 67.9(7.6) | -0.0(0.5 | 07(1.5) | 03(1.9) | -0.0(L5)
0.6 | 47.6(15.3) 0.3(1.8) 8.8 (4.5) 40.5 (13.4) -0.4 (0.6) 0.4 (0.3) -0.3 (0.6) 0.0 (0.0)
0.7 | 283099 | 06(1.7) | -0043) | 1433.8) | 000.0) | 07(1.1) | 0.1(1L.1) 0.0 (0.0)
0.8 9.6 (7.2) -0.8 (2.7) 2.0(3.0) 9.6 (6.6) -0.1 (0.4) -0.1(0.7) | -0.1(0.7) 0.0 (0.0)
09 | 4.6(5.9) 04(33) | -122.9) | -02(1.5) 0.0(0.0) | -02(1.5) | 0.6(1.0) 0.0 (0.0)
1.0 0.0 (0.0) 0.0 (1.8) 0.0 4.5) 0.0 (0.0) 0.0 (0.0) 0.0 (0.7) 0.0 (1.3) 0.0 (0.0)
Max weight selection
MNIST CIFAR10
p | const=00 ] A(0,1) | N(uo) | u const =0.0 | A(0,1) | N(u0) | u
* 89.0 87.8 89.3 89.0 69.7 69.7 69.9 69.7
0.0 | 88.8(0.0) 16.5 (10.9) | 86.7 (3.8) 88.7 (0.0) 28.0 (0.0) 25@3.6) | 27.7(14.2) | 17.9(0.0)
0.1 75.5 (0.0) 0.2 (2.6) 71.0 (8.6) 79.9 (0.0) 22.2 (0.0) 0.1(0.3) | 13.4(10.0) | 19.8(0.0)
0.2 | 77.9(0.0) -1.2(2.6) | 60.2(10.0) | 76.9 (0.0) 8.2 (0.0) -0.2 (1.0) 352.3) 8.9 (0.0)
0.3 | 67.4(0.0) -23(2.6) | 259 (14.7) | 43.1(0.0) 0.3 (0.0) 0.4 (0.4) 0.9 (1.8) 1.8 (0.0)
0.4 | 52.1(0.0) -0.5 (3.8) 14.3 (4.3) 24.1 (0.0) 0.0 (0.0) 0.0 (1.0) 0.2 (0.9) 0.6 (0.0)
05 | 33400) | -2523) | 3.6@3.3) 3.9 (0.0) 0.0(0.0) | 0.3(0.8) | -0.2(0.9) | 0.0(0.0)
0.6 | 39.4(0.0) -0.7 (2.9) 1.6 (2.7) 3.5(0.0) 0.0 (0.0) -0.2 (0.8) 0.4 (0.5) 1.4 (0.0)
0.7 | 159(0.0) | -1.9(12) | 1.93.1) 2.5(0.0) 0.0(0.0) | 03(0.8) | 0.4(L1) 0.0 (0.0)
0.8 10.3 (0.0) -0.6 (2.7) 1.1 (2.7) 8.1 (0.0) 0.0 (0.0) -0.1 (0.7) 0.4 (0.9) 0.0 (0.0)
09 | 6.2(0.0) 04@33) | 1.032) 6.9 (0.0) 0.0(0.0) | -0.1(0.3) | 0.3(1.0) 0.0 (0.0)
1.0 0.0 (0.0) 0.0 (2.3) 0.0 (2.4) 0.0 (0.0) 0.0 (0.0) 0.0 (0.6) 0.0 (1.3) 0.0 (0.0)
BN F——r————. | tacker across 10 runs and across all different weight
§,\ T e e estimation policies. Ever when encrypting a small
ost 2N percentage p of the weights, the model effectiveness
o "-‘\“\ drops significantly. For example, the maximum ad-
2 AW vantage for p = 0.1 and the max weight selection
Eis A strategy is 0.34, leading to a model accuracy of ap-
02 2\ proximately 0.44, which is significantly worse than
. the accuracy of the original model (close to 0.8).
" I+ ..\\ [ When encrypting more than 20% of the weights, the
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Figure 4: Worst-case across 10 runs, between random filter
selection, random weight selection and max weight selec-
tion on the CIFAR-10 dataset, for varying percentages of
the weights included in L. In all cases, the reference accu-
racy is approximately ACCp = 0.1, (achieved when setting
all weights and biases equal to zero). As p grows, the at-
tacker advantage quickly diminishes.

that dataset.

Figure 4 illustrates the worst-case in the CIFAR-
10 dataset. For each value of p, the plot shows the
maximum advantage Adv, (M, L) achieved by the at-
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worst case.

Overall, these results indicate that it is possible to
only encrypt a portion of the weights of a neural net-
work without enabling an attacker to infer the model
weights. In addition, a significant drop in model ef-
fectiveness is observed even when hiding 10% of the
weights. Finally, the security was higher for the more
complex CIFAR-10 model, compared to the simpler
MNIST model, especially for smaller percentages of
hidden weights.



4.3 CNN Linear Layer
Micro-benchmarks

In this section, we evaluate the impact that the selec-
tion of the model weights type (i.e. plaintext or ci-
phertext) has on the inference performance. We as-
sume that a hybrid inference system is used and more
precisely, a system similar to Gazelle.

As the model weights are only used in the lin-
ear layers, and in order to isolate the impact of the
weights leakage to the system’s performance, we have
implemented only the linear layers using the CKKS
scheme from SEAL (SEAL, 2020). Regarding the
nonlinear layers, we assume that the privacy preserv-
ing techniques, used to implement the nonlinear func-
tions, refresh the noise induced by the HE operations
of the linear layer. Such an implementation is used
in Gazelle that leverages MPC protocols like Garbled
Circuits. Thus, we can further isolate the impact of
the leakage selection, as the multiplicative depth per
linear layer is very small (usually L =1 or L = 2) and
we avoid expensive noise refreshing operations.

The linear layer weights (convolutional and fully
connected) are homomorphicaly encrypted and differ-
ent packing techniques can be used. For our analy-
sis we use the packing techniques from Gazelle. For
more details on these techniques please refer to the
original paper (Juvekar et al., 2018).

All these techniques mainly perform ciphertext
and/or plaintext HE multiplications between the layer
input and the model weights. The resulting prod-
ucts are always ciphertexts. Depending on the pack-
ing technique, some additions and rotations on these
ciphertxts are needed to produce the layer’s output.
However, these last operations (additions and rota-
tions) and their runtime overhead doesn’t depend on
the initial type of the model weights, as they always
operate on ciphertexts. That is that, only the initial
HE multiplications performance reflects the weight’s
leakage impact. Thus, we will only consider these
multiplications in our experiments.

For all both the FC and the convolutional layers,
the input of length is encrypted in a single cipher-
text. In the FC layer with M inputs and N outputs,
the matrix W is partially encrypted up to percent-
age p. Depending on the packing used, the entries of
W are grouped together in cipheretexts or plaintexts.
In the naive packing, each row constitutes a different
group of M elements and there are N groups. Thus,
we need N - (1 — p) plaintext multiplications and N - p
ciphertext multiplications. In the diagonal packing,
the number of multiplications depends on the inputs
M. Similarly, we need M - (p — 1) plaintext and M - p
ciphertext multiplications. Finally, the hybrid pack-
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Table 4: Naive and diagonal packing for the FC layer. The
multiplicative factor of runtime overhead compared to the
all weights in plaintext computation.

[p ][ (128,10) (2048,128) [ (128,10) (2048,128) ||
0.0 I I ] I
0.1 29 44 2.8 47
02 48 7.9 47 8
03 6.7 1.6 6.6 1.8
04 || 87 I5.1 88 153
05 || 104 183 10 1835
06 | 125 21 123 2
07 | 143 253 142 255
08| 159 292 16 30
09 [ 182 325 18 3238
0 [ 198 35.7 20.1 36.2

ing needs the same number of multiplications as the
naive techniques.

We evaluate the overhead of using a partially
encrypted matrix W in Table 4. The overhead is
computed a multiplicative factor compared to the all
weights in plaintext form case. Since after each linear
layer the HE noise is refreshed, we avoid the rescale
operation. Each ciphertext multiplication is followed
by a relinearization operation.

In Table 5, we investigate the impact of the rescale
operation. Since this operation is used after both
the plaintext and the ciphertext operations, the rela-
tive performance gain from the weights leakage is re-
duced.

Finaly, in the convolutional layer, each entry of the
3 x 3 filters are stored in a different ciphertext and al-
most all the slots are filled with the corresponding en-
try’s value. Thus, for each filter application we need 9
ciphertext or 9 plaintext multiplications. That is that,
we assume that the whole filter is either encrypted or
in plaintext form. Each convolutional layer input is
and RGB image 32 x 32 x 3. The result appears in
Table 6.

In our experiments we use the convolutional and
fully connected layers computed in Section 4.2 and
we compute the performance of the linear layers for
different values of the weights leakage percentage p.

S CONCLUSIONS

This paper initiates a new line of research regarding
the oblivious outsourcing of ML models computation.
More specifically, we investigate the trade-offs be-
tween security and efficiency, when some information
leakage is acceptable.

Our work serves mainly as a proof of concept us-
ing CNNs. We have shown that the model owner
of a CIFAR-10 network can reveal 80% of selected
model’s weights in order to reduce the linear lay-
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Table 5: Naive packing for the FC layer using the rescale
operation after the plaintext multiplication and using both
the rescale and relinearization after the ciphertext multipli-
cation. The multiplicative factor of runtime overhead com-
pared to the all weights in plaintext computation.

] p H (128,10) (2048,128) H
0.0 1 1
0.1 1.3 4.4
0.2 1.55 7.9
0.3 1.7 11.6
0.4 1.9 2.2
0.5 2.15 2.5
0.6 2.3 2.9
0.7 2.5 253
0.8 2.7 3.252
0.9 2.95 3.7
1.0 3.11 4.1

Table 6: The convolutional layer using the relinearization
operation after the ciphertext multiplication. All the 9 mul-
tiplications for a filter application are either all ciphertext or
all plaintext. The multiplicative factor of runtime overhead
compared to the all weights in plaintext computation.

Lr [ B3]

0.0 1
0.1 4.5
0.2 8
03| 11.7
0.4 15
0.5 || 18.15
0.6 | 22.3
0.7 || 25.5
0.8 || 29.7
0.9 || 32.55
1.0 || 36.11

ers cost of multiplications by a factor of 4. While
similar security-performance trade-offs are very com-
mon in applied cryptography (in searchable symmet-
ric schemes for instance), it is the first time that such
approach is proposed in ML model inference.

Further research will follow. New attack models
must be proposed and new more fine-grained security
definitions must be introduced per use case. At the
same time, the efficiency gain per use case must be
evaluated both theoretically (complexity asymptotic)
as well as experimentally. Our goal will be to leverage
the results of this research and provide new design
guidelines for efficient HE-compilers.
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