
Using Procedure Cloning for Performance Optimization of Compiled
Dynamic Languages

Robert Husák1 a, Jan Kofroň1 b, Jakub Mı́šek2 c and Filip Zavoral1 d

1Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague, Czech Republic
2iolevel s.r.o., Zelená 1743, Prague, Czech Republic

Keywords: Compilers, Dynamic Languages, Optimization, Procedure Cloning, Type Analysis.

Abstract: Compilation of dynamic programming languages into strongly typed platforms such as .NET and JVM has
proven useful in enhancing the security and interoperability of the resulting programs, as well as in enabling
their source-less distribution. In order to produce the best intermediate code possible, dynamic language
compilers can employ advanced interprocedural type analysis and perform various optimizing transformations.
However, these efforts are often limited due to the ambiguity of types in these languages and the need to
preserve soundness. In this paper, we improve the performance of global functions by adapting the technique
of procedure cloning, focusing on different parameter types those specialized clones can be called with. We
devise several heuristics to identify the most promising specializations and call them from their respective call
sites. Our technique was implemented into PeachPie, a compiler of PHP to .NET, and evaluated on standard
benchmarks distributed with PHP. Benchmarks containing deep recursion show a speedup factor up to 3.65,
while benchmarks of computation-intensive loops reveal a speedup factor up to 2.64.

1 INTRODUCTION

Dynamic programming languages have become
highly popular, mainly for their gentle learning curve
and vast community support. The typical way to ex-
ecute them is by using a runtime environment spe-
cialized for a particular programming language, such
as Zend Engine1 for PHP and V82 for JavaScript.
However, there have been several successful attempts
in their ahead-of-time (AOT) compilation to interme-
diate languages of strongly typed platforms such as
.NET or Java (Mı́šek and Zavoral, 2019). This ap-
proach enhances their security, enables source-less
distribution, and simplifies integration with other pro-
gramming languages on the respective platforms.

This kind of AOT compilation has its own unique
benefits and challenges in performance optimization.
As both .NET and Java runtimes are equipped with a
highly optimized just-in-time (JIT) compiler and their

a https://orcid.org/0000-0001-7128-6163
b https://orcid.org/0000-0003-0391-4812
c https://orcid.org/0000-0002-0792-2054
d https://orcid.org/0000-0003-3140-8538
1https://www.php.net
2https://v8.dev

intermediate representations are stack-based, an AOT
compiler of a dynamic language does not need to per-
form low-level optimizations such as common subex-
pression elimination or copy propagation. On the
other hand, the AOT compiler cannot directly intro-
duce low-level runtime optimizations of its own, spe-
cialized for the particular dynamic language. Further-
more, runtime optimizations on these platforms are
usually aimed at strongly-typed object-oriented lan-
guages instead of dynamic languages with dynamic
typing. For example, their JIT compilers lack the
ability to specialize compiled code according to the
object types actually occurring in program execu-
tion, which is a common feature of runtimes designed
for dynamic languages (Chambers and Ungar, 1991;
Ottoni, 2018; Chevalier-Boisvert and Feeley, 2014;
Chevalier-Boisvert et al., 2010).

As a result, the optimization effort of AOT dy-
namic language compilers targeting .NET or Java is
limited to producing the most type-specific and effi-
cient intermediate code possible. The main problem
arises from how dynamic languages treat variables, as
the types of their values can change during variable
lifetimes and differ from one execution to another.
While careful flow-sensitive type analysis can iden-
tify variable types in some cases (Mı́šek et al., 2016),

Husák, R., Kofroň, J., Míšek, J. and Zavoral, F.
Using Procedure Cloning for Performance Optimization of Compiled Dynamic Languages.
DOI: 10.5220/0011272300003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 175-186
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

175



its precision is limited by the need to stay conserva-
tive and not allow any transformations which would
possibly introduce runtime errors. One of the main
sources of this imprecision is the parameters of global
functions because the compiler must assume that each
function can possibly be called with arguments of any
type. As a result, any operations on parameters must
be accompanied by type checks, causing significant
overhead, especially in deeply recursive functions and
computation-intensive loops. This is the problem we
decided to tackle in this work, and we explain it fur-
ther in section 2.

Our contributions are as follows:

• In section 3, we describe the overall idea of us-
ing procedure cloning with specialized parameter
types and how it integrates into a dynamic lan-
guage compiler.

• Section 4 explains different approaches to gener-
ate procedure clones specialized by their parame-
ter types.

• Selecting the suitable targets of call sites is de-
scribed in section 5.

• We measure the efficiency of our optimization and
its different variants in section 6.

Section 7 describes the most relevant work related
to our research, while section 8 concludes.

2 PROBLEM

To illustrate the challenges faced by AOT dynamic
language compilers to strongly-typed platforms, we
use PHP code and its compilation to .NET using the
compiler PeachPie (Mı́šek and Zavoral, 2019). While
certain aspects of the problem might be unique for
both PHP and PeachPie, the fundamental issue of dy-
namic typing stands for other languages and runtimes
as well.

The current state-of-the-art type analysis during
the compilation is shown on the PHP code in Figure 1
and the C# equivalent of the Common Intermediate
Language (CIL) produced by PeachPie (Mı́šek et al.,
2016) in Figure 2a3.

As we can see, the three global PHP functions
foo, bar and baz were compiled into the correspond-
ing methods in .NET. All of them have PhpValue as
their return type, which is a union-like structure con-
taining a value of any possible type. It must be used
whenever there is any uncertainty about the type of
the particular value. While PhpValue preserves the

3Note that we simplified certain implementation details
and renamed several library functions to enhance clarity.

expected semantics, any operations later performed
on it cause additional overhead, because the exact
value type must be checked during runtime. Further-
more, returning more precise types than PhpValue
can help to better propagate type information among
the program.

Another overhead stems from how PHP handles
assignments of strings and associative arrays. Al-
though both structures are allocated on the heap and
can be large, assigning a value of one of these types
into a variable has a copy-by-value semantics. The
same behavior takes place when such an argument
is passed to a function. For example, if foo passed
an array to baz and its content was modified in there
through the parameter $a, these changes must not be
propagated back to the array referenced by the vari-
able $r2 in foo. The same behavior is expected for
strings, as they are mutable in PHP. Because a param-
eter of the type PhpValue can, among other things,
contain a string or an array, a call to PhpValue.Copy
is made to ensure that the copy-by-value semantics is
preserved.

Notice that bar and baz use PhpValue for their
parameters, whereas foo uses more specific ones,
namely int and PhpArray, because its parameters are
enhanced with type declarations. Although a still has
to be copied explicitly, it can use PhpArray.Copy to
bypass the type check. Moreover, we were able to
skip the copying of i, because integers are passed by
value in .NET.

Because parameter type declarations are optional
and bar and baz do not use them, they had to be
compiled with no particular types. Therefore, we
must convert all the arguments passed to them on
their call sites in foo to PhpValue, losing compile-
time type information and postponing the decisions
based on it to runtime. For example, bar must dy-
namically find the implementation of the operator +
using PhpValue.Add, as it can represent both a num-
ber addition and an array union.

As we can see, the overhead associated with
calling bar exceeds its actual semantics by a great
amount. If bar is called several million times in a
loop or as a part of a deeply recursive function, most
of the computation time will be spent on type check-
ing inside the methods of PhpValue.

Nevertheless, there are multiple opportunities to
simplify the produced code and make it more effi-
cient. Thanks to the type analysis, we know which
types are passed as arguments to both bar and baz.
Therefore, we can create their overloads with spe-
cialized types and call them from the respective call
sites in foo, as depicted in Figure 2b. The original
overloads with unspecified parameter types are not

ICSOFT 2022 - 17th International Conference on Software Technologies

176



function foo(int $i, array $a) {
$r1 = bar($i, 4);
$r2 = bar($a, []);
$r3 = baz($r2);
return $r3;

}

function bar($x, $y) {
return $x + $y;

}

function baz($a) {
if (is_array($a)) {

return count($a);
} else {

return $a;
}

}

Figure 1: A sample PHP code to showcase the potential improvements of interprocedural type analysis.

PhpValue foo(int i, PhpArray a)
{

a = PhpArray.Copy(a);
PhpValue r1 =

bar((PhpValue)i, (PhpValue)4);
PhpValue r2 =

bar((PhpValue)a,
(PhpValue)new PhpArray());

PhpValue r3 =
baz((PhpValue)r2);

return r3;
}

PhpValue bar(PhpValue x, PhpValue y)
{

x = PhpValue.Copy(x);
y = PhpValue.Copy(y);
return PhpValue.Add(x, y);

}

PhpValue baz(PhpValue a)
{

a = PhpValue.Copy(a);
if (a.IsArray)

return (PhpValue)Variables.count(a);
else

return a;
}

(a) The result of the current state-of-the-art technique,
without routine cloning.

int foo(int i, PhpArray a)
{

a = PhpArray.Copy(a);
PhpNumber r1 = bar(i, 4);
PhpArray r2 = bar(a, new PhpArray());
PhpValue r3 = baz(r2);
return r3;

}

PhpNumber bar(int x, int y)
{

return PhpNumber.Add(x, y);
}

PhpArray bar(PhpArray x, PhpArray y)
{

x = PhpArray.Copy(x);
y = PhpArray.Copy(y);
return PhpArray.Union(x, y);

}

int baz(PhpArray a)
{

a = PhpArray.Copy(a);
return Variables.count(a);

}

(b) The result after the application of procedure cloning
with parameter type specialization.

Figure 2: The C# representation of the CIL compiled from the PHP code in Figure 1.

displayed to save space, but they must be defined as
well, in case they were called dynamically, e.g., using
call user func.

The first specialized overload of bar expects the
parameters x and y to be integers. As a result, the
compiler could eliminate their initial copying, select
the proper addition operator, and find a more spe-
cialized return type. In PHP, the sum of two inte-
gers becomes a floating-point number if it overflows
the integer range; therefore, the specialized structure
PhpNumber is used. Although not as efficient as int,
its overhead is still lower than the one of PhpValue.

The second specialized overload of bar receives
arrays as its parameters, enabling the compiler to

eliminate the type checks used in the operations
of PhpValue, and select the proper operation of
PhpArray.Union for the + operator. Furthermore, the
return type of the overload has been made more pre-
cise, as it must certainly be an array. Note that the
enhanced precision of return types is critical, as the
information gained from it can spread throughout the
code.

Furthermore, because r2 in foo becomes an in-
stance of PhpArray, passing it to baz creates its spe-
cialized overload. In this case, the branch condition
is array is evaluated to true, discarding the else
branch. This specializes the return type of baz to int,
propagating to the return type of foo as well.

Using Procedure Cloning for Performance Optimization of Compiled Dynamic Languages

177



ASTs← ParseSyntaxTrees()
CFGs← BindCFGs(ASTs)
Analyse(CFGs)
while CFGs changed and maxIters not reached do
specCFGs← CreateClones(CFGs)
Analyse(specCFGs)
CFGs← CFGs ∪ specCFGs
SpecializeCallSites(CFGs)
Transform(CFGs)
Analyse(CFGs)

Emit(CFGs)

Figure 3: Overall pipeline of a dynamic language compiler
enhanced with procedure cloning.

The particular technique selected in the example
produces procedure clones according to the argument
types passed at call sites. While this approach is nat-
ural, there are multiple other options worth explor-
ing. For example, the compiler can inspect the code
of the cloned procedure itself and search for indica-
tions about possible parameter types. Comparing the
most promising procedure cloning techniques is one
of the main contributions of this paper.

The following section describes the general struc-
ture of the solution and how it can be integrated into
a dynamic language compiler.

3 ARCHITECTURE

In Figure 3, we explain how to incorporate procedure
cloning into a pipeline of an existing AOT dynamic
language compiler. In the beginning, the compiler
converts a set of abstract syntax trees (ASTs) into a
set of control flow graphs (CFGs). All the other oper-
ations are performed directly on CFGs. This approach
has proven to work well in PeachPie, and we will use
it for the purpose of this explanation. Other ways
are possible, too, such as annotating and transform-
ing ASTs directly.

Let us now focus on the details of our pipeline
shown in Figure 3. Analyse performs a data-flow
analysis (Aho et al., 2006) to discover the possible
types of each expression in the program. The analysis
is flow-sensitive and interprocedural, although it only
propagates return types from callees to callers, not the
other way around. The analysis creates a call graph,
connecting call sites with all the possible callees as
a byproduct. Details of this analysis are explained
in (Mı́šek and Zavoral, 2017). There is a special
value representing any possible type, which is used,
e.g., for parameters without type hints, values read
from global variables, arrays, possibly aliased vari-
ables, and procedures containing eval. While Peach-

Pie supports dynamic code evaluation, the most effi-
cient results can be obtained when most of the code is
provided at compile-time, enabling the utilization of
the aforementioned analysis properly.

The following part of the algorithm in Figure 3
consists of standard analysis and optimizing trans-
formation loop, as known from traditional compil-
ers (Aho et al., 2006). All the information gathered by
Analyse can be then used by Transform to simplify
the program while preserving its semantics, e.g., by
evaluating type checking functions in branch condi-
tions and removing unreachable branches. The whole
mechanism is further explained in (Husák et al.,
2020).

The main contribution of this paper
lies in the functions CreateClones and
SpecializeCallSites, executed right after the
first analysis round. CreateClones is responsible for
selecting the procedures to be cloned and choosing
the parameter types of these clones. Before adding
them to CFGs, Analyse is executed on them so
that they obtain the necessary type annotations.
SpecializeCallSites inspects each call site target-
ing a cloned procedure and selects the clones with the
most fitting parameter types. To preserve soundness,
the set of these clones must always fully cover all the
type combinations of the parameters possibly passed
to it at the given call site.

To illustrate the need of repeating the analysis,
specialization, and transformation in a loop, let us
review the sample PHP code in Figure 1 and the
desired result of its compilation in Figure 2b. As-
sume the most straightforward implementations of
the aforementioned functions: CreateClones sim-
ply traverses all call sites and produces the special-
ized clones according to the parameter types, while
SpecializeCallSites always selects only the clone
with the perfect parameter match and resorts to the
original general definition otherwise. During the first
iteration, two specialized overloads of bar are pro-
duced and used from their respective call sites. How-
ever, baz cannot be specialized yet, because the pre-
cise type of $r2 is not revealed until the next invoca-
tion of Analysis. The second call to CreateClones
finally produces the desired specialized overload, and
its return type is propagated to the return type of foo
in the subsequent analysis of all CFGs.

Due to the simplicity of our example, we were
able to create specialized clones exactly matching the
parameter types of all call sites. However, in real-
world applications, we may not be able to achieve it
due to the inability to properly identify the argument
types the given procedure is called with. As a result,
we can resort to the best-effort approach—we select

ICSOFT 2022 - 17th International Conference on Software Technologies

178



/**
* @param int|string $x
* @param bool|null|array $y
*/

function foo($x, $y) {
if ($x) {

echo $y[$x];
} else if (is_null($y)) {

echo "nothing";
}
// ...

}

Figure 4: A sample PHP code with PHPDoc type annota-
tion.

the clones to enable the best optimizations possible
within the given procedure and let the call sites han-
dle the selection of the appropriate clone at runtime.
This situation occurs when SpecializeCallSites
selects more than one clone for a particular call site.
Later, the call site is emitted as an if-else state-
ment, selecting the appropriate specialized clone by
the parameter types. We must carefully consider
when to apply this strategy, as the added overhead
on the call site could eventually revert the benefit
of the optimizations performed inside the called pro-
cedure. The task to find the desired balance is de-
scribed in the following two sections, as they provide
the particular implementations of CreateClones and
SpecializeCallSites, respectively.

4 SPECIALIZED CLONE
GENERATION

As the situations where our approach might be used
vary greatly, we decided to create a set of different
techniques for clone creation and pinpoint their poten-
tial strong and weak points. Each technique has total
freedom over the parameter types it chooses for the
specialization without the risk of breaking the sound-
ness of the program, as explained in section 5. Our
work covers only the specialization of global func-
tions, but it can be extended to cover class methods as
well. The list of techniques follows:

PhpDoc: Before delving into techniques appli-
cable to any general situation, let us at first focus
on long-lived well-maintained projects whose authors
often write parameter type information inside struc-
tured comments. A format called PHPDoc is used
in the case of PHP; we can see its example in Fig-
ure 4. Although we could compile such annotated
functions directly into a strongly-typed code, this can
change the code semantics by introducing additional
type checks and conversions, which is usually not

wanted. Instead, we can use our approach of spe-
cialized clone creation, possibly improving the per-
formance while preserving the semantics. If each pa-
rameter has at most one type annotation, selecting the
type for the particular parameter is straightforward.
However, in our example, we need to create all the
combinations to maximize the chances of being called
with specialized parameters, hence six clones in total.
If the comment is outdated from the actual implemen-
tation and foo in our example never receives an inte-
ger as the first argument, three clones are produced
unnecessarily. Furthermore, the specialization of an
argument to a particular type may not even benefit
from the specialized routine in terms of more efficient
code.

ParamUsage: Instead of depending on the type
annotations from developers, we can estimate the pa-
rameter types automatically. In our example in Fig-
ure 4, we can see that $y is indexed as an array and
later it is checked for its equality with null. From
this information, we can infer that $y can be an array
or null. Similarly, we can inspect $x and then pro-
duce all the clones as all the combinations of the cor-
responding types. The complete list of patterns rec-
ognized in a routine body for a parameter $p with the
corresponding specialized types is shown in Table 1.
The function type is used to obtain the precise type
of the expression E, previously inferred by type analy-
sis. The function containing scans all the available
classes for those containing all the fields and meth-
ods accessed through the parameter $p. To prevent
an uncontrollable growth of routine clones, should
more than four classes be conforming to those criteria,
only System.Object is selected, being the base class
for all reference types in .NET. Notice the distinc-
tion between System.String and PhpString. While
the former is an immutable UTF-16 string commonly
used by all .NET languages, the latter is a PeachPie
runtime class developed to match the semantics of
mutable PHP strings. As a result, the primary target
for optimization is System.String, as thanks to its
immutability, it is not necessary to copy it upon every
assignment, unlike PhpString.

The main benefit of the approach of ParamUsage
is that we choose the types so that the particular spe-
cialized clone has a significant chance to be optimized
later. For example, specializing the type of $y to
array causes a simpler operation to be generated for
$y[$x] and the removal of the is null check.

CallSites: The previous techniques can suffer
from the fact that although the specialized clones
may be well-optimized, we have no information as to
whether they will indeed be called, and the optimiza-
tion will be worth the increased compilation time. A

Using Procedure Cloning for Performance Optimization of Compiled Dynamic Languages

179



Table 1: Patterns recognized for type specialization of pa-
rameters in the technique ParamUsage.

Pattern Type of parameter $p

is bool($p) bool

is int($p) int

is float($p) float

$p instanceof T T

$p[*], is array($p) PhpArray

$p . * System.String

is string($p) System.String,
PhpString

$p === E type(E)

is null($p) null

$p->F, $p->M(*) containing(F, M)

straightforward solution to this problem is to traverse
all the known call sites of the given routine and gen-
erate the specialized clones according to the types we
know are passed as arguments. Note that by repeat-
edly running the analysis and transformation, we can
even discover new specializations of already special-
ized routines.

Targeted: ParamUsage is not concerned about
the context in which a procedure is called and Call-
Sites does not take into account its actual contents.
Therefore, they may both create a large number of
specialized clones which will never be used in run-
time or will not provide interesting performance ben-
efits. To alleviate the problem while utilizing the in-
formation gathered by these techniques, we can com-
bine them. Targeted selects the intersection of Para-
mUsage and CallSites, efficiently creating clones only
when they have a chance to optimize the generated
code and, at the same time, have high potential to be
called. The downside of this technique is that the ex-
act type combinations may not meet, creating too few
clones.

CallSitesSimplified: Another way to reduce the
number of clones while retaining as most gathered in-
formation as possible is to transform the specializa-
tions suggested by any of the previous techniques. To
demonstrate this approach, we will use CallSites as
the basis, and for each set of clones of a particular
routine, we will create at most two clones. The first
clone is considered the “best-case scenario” while the
second one will be the “worst-case scenario”. As an
example, consider the following three suggested spe-
cialized clones of a function bar:

• bar(int, PhpValue, System.String)

• bar(PhpValue, PhpArray, System.String)

• bar(int, PhpString, System.String)

An important thing to mention is that not all spe-
cialized parameter types bring the same benefits. For
example, simple types such as null, bool, int and
float can reduce a lot of unnecessary overhead by
skipping copying the value at the start of the function.
On the other hand, specialization to PhpArray only
enables to skip certain type checks. As a result, we
can assign a distinct priority to each type, according
to our demand on specializing it in clones:

1. null

2. bool

3. int

4. float

5. PhpNumber (an union of int and float)

6. System.String (.NET UTF-16 immutable
string)

7. System.Object (.NET base class for reference
types)

8. All user-defined classes

9. PhpString

10. PhpArray

11. PhpValue (an union of all possible types)

Given this ordering, we can select the best and the
worst type for each parameter in an easy way, yield-
ing:

• bar(int, PhpString, System.String)

• bar(PhpValue, PhpValue, System.String)

The first clone ensures that we do not miss suitable
optimization opportunities, whereas the second one is
used to optimize this function for its most common
use. In this example, the function bar is always called
with a string constant as its last parameter, while the
types of the first and the second parameter vary.

5 CALL SITE TARGET
SELECTION

The previous section explained how a set of special-
ized clones for each procedure is produced. Now we
focus on the process happening at each call site where
one of the specialized routines is called, showing the
mechanism of how to select the appropriate clone.

We start by ordering all the clones of the given
procedure according to their expected performance
benefits. As a sufficient approximation, we use the
priorities mentioned in the previous section in the
technique CallSitesSimplified and sort the clones in a

ICSOFT 2022 - 17th International Conference on Software Technologies

180



lexicographic manner by their parameters. For exam-
ple, the clones of the function bar used in the recent
example will be ordered as follows:

1. bar(int, PhpString, System.String)

2. bar(int, PhpValue, System.String)

3. bar(PhpValue, PhpArray, System.String)

The following part is unique for each call site, as it
takes the particular arguments into account. Thanks to
the previous type analysis, we know the upper bound
of types of all the arguments passed to the call; there-
fore, we can inspect their compatibility with the spe-
cialized parameters. For each argument and parame-
ter, there are three result options:

• Always: The argument can always be passed to
the parameter, e.g., a subclass to its base class.

• RuntimeDependent: The argument can be passed,
but needs a prior type check at runtime, such as
PhpValue to int.

• Never: The argument can never be passed, e.g., an
integer to an array.

First, we filter out all the clones where any of the
arguments can never be passed to its corresponding
parameter, removing unfeasible specializations. If no
clone is left, the attempt for specialization is aban-
doned, and the original unspecialized procedure is
called. Otherwise, given the aforementioned order-
ing, we search for the first clone where all the argu-
ments can always be passed to their corresponding
parameters. If such a clone is found, the call site is
updated to call the clone instead of the original pro-
cedure, providing a more specialized and potentially
more efficient program without runtime overhead. In
the case when no such a clone exists, we distinguish
between two different approaches:

Branch: The first of the feasible clones is selected
for an opportunistic type check at runtime, potentially
being the one with the highest potential performance
benefit. As a result, the call site is extended to an
if-else branch, and the specialized clone is called if
the types match; otherwise, the original definition is
called. Although our framework allows for more than
one specialization at the call site, the experiments in
the next section show that one runtime specialization
already brings a substantial performance benefit.

Static: Since unsuccessful runtime type checks
cause additional overhead without any performance
benefits, this approach does not allow them to be per-
formed. As a result, if a specialized clone whose
parameters can be always assigned from the argu-
ments is not found, the original unspecialized routine
is called.

6 EVALUATION

This section aims to validate our approach on real-
world examples. We will focus both on the solution
as a whole and the differences between the particular
techniques. The research questions are as follows:

• RQ1: What is the performance impact on differ-
ent kinds of programs?

• RQ2: How significant is the compilation over-
head in terms of time and resulting assembly size?

• RQ3: What are the strengths and weaknesses of
different techniques?

For this purpose, we have implemented our tech-
niques into a modified version of PeachPie (Mı́šek
and Zavoral, 2019) and allowed each one of them
to be turned on during compilation. The first sce-
nario consists of the official PHP benchmarks4, orig-
inally used to measure the performance of Zend En-
gine. Among others, they contain the computations
of the Ackermann function, the Fibonacci numbers,
matrix multiplication, and a deeply nested loop. We
skipped the computation of the Mandelbrot set as it
does not take any parameters; therefore, our optimiza-
tion approach cannot be applied. Furthermore, several
short functions with almost immeasurable run time
were not considered, either. The benchmark results
are shown by the particular specialization technique
in Figure 55. The table shows an average of 8 runs of
each benchmark, preceded by 4 warm-up runs. The
name of each technique is enhanced by the -Static or
-Branch suffix to distinguish between their different
variants of call site target selection.

The second scenario simulates sequential requests
to a front page of a website implemented in Word-
Press 5.6.0. The code consists of about 248 KLOC in
933 PHP files; the count of called procedures during
each request is 28,800. To measure performance reli-
ably, we employ the BenchmarkDotNet6 library. For
each specialization technique, the compiled Word-
Press website is requested 300 times to warm up,
and the same number of requests is then performed
for the actual measurement. The results are listed
in Table 3, using the same naming convention as be-
fore. Apart from the performance, we are interested
in other statistics as well, e.g., the compilation time,
the number of produced specialized overloads, and

4https://github.com/php/php-src/blob/master/Zend/
bench.php

5The experiments were conducted on a desktop
equipped with an AMD Ryzen 9 3900X 12-Core CPU and
32GB RAM.

6https://benchmarkdotnet.org

Using Procedure Cloning for Performance Optimization of Compiled Dynamic Languages

181



0

0,5

1

1,5

2

2,5

3

3,5

4

ac
ke

rm
an

n
ar

y
ar

y2
ar

y3 fib
o

ha
sh

1
ha

sh
2

he
ap

so
rt

matr
ix

ne
ste

dlo
op

sie
ve

str
ca

t

ParamUsageStatic ParamUsageBranch CallSitesStatic CallSitesBranch

TargetedStatic TargetedBranch CallSitesSimplifiedStatic CallSitesSimplifiedBranch

Figure 5: Results of the official PHP benchmarks compiled using PeachPie enhanced with our techniques for specialized
overload generation. Each column shows the speedup factor of the given technique against the original program without
specializations.

Table 2: WordPress compilation and front page generation statistics.

Technique Compilation Assembly Specialized Calls
time size clones Unspecialized Specialized

Original 19.12 s 17,527 kB 0 0 0
PhpDocOverloadsStatic 33.47 s 20,840 kB 3,314 22,687 4,321
PhpDocOverloadsBranch 29.79 s 21,191 kB 3,314 13,327 13,681
ParamUsageStatic 28.93 s 22,159 kB 3,059 7,976 2,840
ParamUsageBranch 28.94 s 22,370 kB 3,059 1,472 9,344
CallSitesStatic 33.89 s 20,315 kB 2,487 19,222 6,610
CallSitesBranch 34.71 s 20,489 kB 2,484 12,165 13,667
TargetedStatic 23.78 s 18,101 kB 319 3,109 2,224
TargetedBranch 23.62 s 18,153 kB 319 526 4,807
CallSitesSimplifiedStatic 23.12 s 19,304 kB 1,517 20,464 5,268
CallSitesSimplifiedBranch 23.57 s 19,506 kB 1,517 12,475 13,257

Technique Branched calls
Total Selecting original Selecting specialized clone

PhpDocOverloadsBranch 4,799 485 4,314
ParamUsageBranch 6,800 311 6,489
CallSitesBranch 3,512 901 2,611
TargetedBranch 2,616 40 2,576
CallSitesSimplifiedBranch 4,966 993 3,973

ICSOFT 2022 - 17th International Conference on Software Technologies

182



Table 3: Results of the WordPress front page generation
benchmark measured using BenchmarkDotNet for particu-
lar techniques. Speedup factor of mean time and relative
memory savings (higher is better) are displayed.

Technique Time Memory

Original 66.4 ms 19.3 MB

PhpDocOverloadsStatic 1.003 1.003
PhpDocOverloadsBranch 1.019 1.032
ParamUsageStatic 1.009 1.003
ParamUsageBranch 1.017 1.032
CallSitesStatic 1.017 1.005
CallSitesBranch 1.025 1.038
TargetedStatic 0.998 1.002
TargetedBranch 1.015 1.024
CallSitesSimplifiedBranch 1.006 1.024
CallSitesSimplifiedStatic 0.996 1.003

the resulting assembly size. Other interesting run-
time statistics include, e.g., the number of specialized
overload calls. To gather them, we performed a sep-
arate single front page request with specially instru-
mented code. All the statistics are shown in Table 2.
The instrumentation also served to trace the calls of
all the procedures and their argument values. Those
traces were all equal to the trace of the original ver-
sion without specializations, ensuring that none of the
techniques changed the observable semantics of the
original program.

The purpose of all these benchmarks is to eval-
uate the impact of procedure cloning techniques in
the context of an AOT PHP compiler. The original
PHP runtime is not included in the evaluation be-
cause its comparison with PeachPie is not within the
scope of this paper. We refer anyone interested in this
topic to the existing publications regarding PeachPie
itself (Mı́šek and Zavoral, 2019; Mı́šek and Zavo-
ral, 2017; Mı́šek et al., 2016) and the recent run of
TechEmpower Web Framework Benchmarks7.

Based on the presented data, we can answer the
research questions:

RQ1: Regarding computation-intensive tasks, ac-
cording to Figure 5, our techniques can achieve sig-
nificant speedup factors when applied to the offi-
cial PHP benchmarks. If we focus on the individ-
ual benchmarks, the highest speedup factor of 3.65
is reached by computing the Ackermann function for
values (3,7), while the second-highest speedup fac-
tor 3.31 holds the computation of the 30th Fibonacci
number. Both computations are intentionally imple-
mented as a very high number of recursive calls;

7https://www.techempower.com/benchmarks

therefore, even a slight overhead reduction in each
call leads to a massive improvement of the total time.
The third most improved benchmark is nestedloop,
with the speedup factor of 2.64. Although the func-
tion is called only once in the last case, it performs
more than 4.8 million comparisons during its execu-
tion. Originally, each comparison was required to
check the operand types before selecting the proper
operation. In the specialized versions, simple integer
comparisons are performed instead, significantly low-
ering the overhead. Although the results show scarce
cases of slowdowns, all of them are limited to reason-
able bounds of several percent of performance.

According to the amount of reduced overhead, the
improvements of particular benchmarks vary. The
WordPress scenario recorded in Table 3 shows that the
impact of our techniques on the computation time and
memory consumption is positive but insignificant in
comparison with the previous scenario. Several fac-
tors contribute to this situation. First, in WordPress,
functions are often called by a dynamic name, not
known at compile-time; therefore, our approach can-
not analyze them properly. Second, we may not have
enough information to create proper function special-
izations due to obtaining function arguments from lo-
cations without sufficient type annotation (e.g., arrays
and fields). Third, our techniques currently special-
ize global functions only, while WordPress uses cus-
tom classes as well. Last, much work is performed at
places that we cannot improve with our techniques,
such as database communication, array operations,
and string concatenation. Nevertheless, even though
our techniques have not improved performance sig-
nificantly, they have not worsened it, either. There-
fore, the presented solution can be safely used on
larger projects with a chance to improve certain parts
but without the risk of decreasing their performance.

RQ2: Table 2 shows that the overhead of Word-
Press compilation time ranges from 21% to 81%,
while the assembly size increases within 3% and 28%,
depending on the particular technique. Understand-
ably, the assembly size correlates with the number of
specialized overloads produced, and the techniques
using branched call sites produce larger assemblies
than their static counterparts.

Because the overload specialization is expected to
be done only during a build performed before publish-
ing the particular website into a production environ-
ment, we find the compilation overhead level reason-
able and not limiting for the developers. If a project
is sensitive to assembly size or compilation time, a
technique limiting the number of produced overloads
must be selected, such as CallSitesSimplifiedBranch.

RQ3: The evaluation confirms our concerns ex-

Using Procedure Cloning for Performance Optimization of Compiled Dynamic Languages

183



pressed for the particular techniques in section 4. Be-
fore inspecting the particular techniques, let us review
the differences between the Static and Branch variants
in general. As mentioned before, the first expected
difference is a slight assembly size increase in the
case of the Branch variant, caused by more verbose
call sites. Performance-wise, Branch variant tends to
amplify the ability of the given technique to choose
the particular argument types correctly. Good choices
are awarded a higher ratio of specialized overload se-
lections, while wrong guesses only cause additional
overhead of extra type checking. Generally speaking,
the Static variant presents a conservative approach
with less chance to improve the performance but with
no risk of decreasing it. The Branch variant adds a
slight risk of performance decrease, but the potential
increase tends to be much more significant, as seen in
Figure 5. Furthermore, the last three columns in Ta-
ble 2 show that the branched calls were successful in
calling specialized overloads in most cases.

Let us now focus on the differences between
the particular techniques. As WordPress is well-
documented, PhpDoc works reasonably well there,
producing the highest number of specialized over-
loads and calling the highest number of them during
execution, thus saving resources. However, we can-
not use it for the PHP benchmarks because they do
not contain any PHPDoc comments.

ParamUsage produces a similar number of spe-
cialized overloads as PhpDoc, but they are called by
about 32% less often. Nevertheless, it gives Word-
Press the same performance boost as PHPDoc. How-
ever, this technique cannot exploit all the optimization
potential in the PHP benchmarks because it lacks the
information about which argument types are actually
used in the functions calls.

On the other hand, CallSites focuses on precisely
this problem. De facto creating a dedicated special-
ization for each call site reaches the best performance
boosts in both scenarios. The disadvantage of this
technique is that its compilation takes the longest
time.

Targeted attempts to combine the best features of
the last two mentioned techniques by producing only
the intersection of the specialized overloads produced
by them. The problem with this approach is that al-
though both original sets are large, the resulting inter-
section is too small. Therefore, it misses most opti-
mization opportunities in the PHP benchmarks.

Finally, CallSitesSimplified presents a reasonable
compromise between the compilation time, the size
of the resulting assembly, the number of specialized
overloads, and the efficiency of the produced code.
Although it may miss specific optimization opportu-

nities, the resulting performance is still one of the
highest, while the compilation overhead is one of the
lowest.

As a result, we recommend the Branch variant of
CallSites as the default setting, while the other op-
tions may serve for possible fine-tuning according to
a particular scenario. For example, CallSitesSimpli-
fied can be useful to reduce compilation time and as-
sembly size.

7 RELATED WORK

The idea of procedure cloning and specialization is
well-known from the history of compiler research.
Cooper et al. (Cooper et al., 1993) suggested the us-
age of procedure cloning within a Fortran compiler,
enabling more context-sensitive interprocedural op-
timizations. Chambers and Ungar (Chambers and
Ungar, 1991) suggested using method specializations
in object-oriented language runtimes to alleviate the
overhead of dynamic dispatch. This work was later
extended by Dean et al. (Dean et al., 1995). In their
algorithm, a profiling phase is performed to discover
frequently called method chains. This data is then
used to specialize methods according to the types
of their parameters, effectively hoisting dynamic dis-
patches from frequently executed methods to less fre-
quently executed ones. The main contribution of our
solution is that we apply procedure cloning in the
context of an AOT PHP compiler without any ac-
cess to profiling data. According to the experience
of Dean et al., creating specialized procedure clones
based on the Cartesian product of possible parame-
ter types does not cause an uncontrollable growth of
procedure count. We can confirm this observation for
PHP as well.

This work directly builds upon the research related
to compilers from PHP to .NET: Phalanger (Benda
et al., 2006; Abonyi et al., 2009), and its succes-
sor PeachPie (Mı́šek and Zavoral, 2010; Mı́šek et al.,
2016; Mı́šek and Zavoral, 2019). PeachPie already
contains a sophisticated interprocedural type analy-
sis (Mı́šek and Zavoral, 2017) and a code transfor-
mation phase (Husák et al., 2020). However, the type
information could spread only from callees to callers
via return types. Procedure cloning presented in this
work enables the utilization of the type information
available in call sites to produce more efficient spe-
cialized clones of callees.

There are several other examples of dynamic lan-
guage compilers which produce intermediate rep-
resentation targeting existing managed runtimes for

ICSOFT 2022 - 17th International Conference on Software Technologies

184



strongly-typed languages. JPHP8 and Quercus9 com-
pile PHP to Java bytecode. Rhino JavaScript com-
piler10 targets JVM as well, whereas Jurassic11 pro-
duces .NET assemblies. We have not found any evi-
dence about the usage of interprocedural optimization
techniques within these compilers, as their documen-
tations mainly focus on interoperability with other
languages.

Another category of dynamic language compilers
includes those directly producing native (executable)
code, possibly utilizing a C/C++ compiler. In or-
der to maximize the compatibility with the origi-
nal PHP interpreter, phc (Biggar et al., 2009; Big-
gar, 2010) is strongly interconnected with Zend En-
gine, enabling it, e.g., to call existing PHP extensions
directly. Prior to compilation, phc performs a so-
phisticated full-program analysis involving context-
sensitive alias analysis (Emami et al., 1994), type
analysis, and heap abstraction. As a result, programs
compiled with phc can be optimized better than with
our approach, but the scalability of the analysis is
limited, especially considering that it cannot com-
pile just a part of the solution and needs the entire
code in advance. Furthermore, the analysis is entirely
skipped, e.g., when encountering an eval statement.
The HipHop compiler for PHP (Zhao et al., 2012)
does not support dynamic code evaluation as well;
for type inference, it uses Damas-Milner constraint-
based algorithm (Damas and Milner, 1982), discov-
ering specific types where possible. Hopc (Serrano,
2018) compiles JavaScript, targeting mainly embed-
ded devices. Alongside a sound type analysis based
on occurrence typing (Tobin-Hochstadt and Felleisen,
2010), the most likely types for all function parame-
ters are collected, and its specialized version is cre-
ated. The same feature is provided for MATLAB in
the AOT component of MaJIC (Almási and Padua,
2002). Both of these approaches are similar to our
ParamUsage technique with the difference that Hopc
and MaJIC produce only one clone for each function
rather than creating a clone for each possible com-
bination of expected parameter types. Furthermore,
other techniques presented in this paper also consider
the types of arguments the functions are called with,
potentially capturing more opportunities for optimiza-
tion. Our most significant contribution concerning
Hopc and MaJIC is that we introduced procedure
cloning into the compilation of PHP, showing its spe-
cific challenges and optimization opportunities.

While our work is oriented on AOT compilation,

8https://github.com/jphp-group/jphp
9http://quercus.caucho.com

10https://github.com/mozilla/rhino
11https://github.com/paulbartrum/jurassic

the mainstream way to execute programs written in
dynamic languages is customized runtime environ-
ments, usually equipped with JIT compilers. By hav-
ing access to the actual runtime values and the con-
trol of the entire execution, they can afford to per-
form more aggressive and speculative optimizations
than an AOT compiler. HHVM (Ottoni, 2018), run-
time for the language Hack, specializes regions of
CFG blocks by the types of used program variables.
The decision about which blocks to specialize and for
which types is performed based on the information
gathered using profiling. Higgs JavaScript virtual ma-
chine (Chevalier-Boisvert and Feeley, 2014) uses a
technique called lazy basic block versioning, where
each CFG block is compiled only when the execution
reaches it. JIT compiler then specializes it for the ac-
tual variable types obtained in the execution. McVM
MATLAB virtual machine (Chevalier-Boisvert et al.,
2010) compiles a specialized version of a function
for each parameter type combination passed to it at
runtime. Other examples of highly optimized run-
time environments for dynamic languages include V8
JavaScript engine, PyPy (Rigo and Pedroni, 2006),
and GraalVM with Truffle framework (Wimmer and
Würthinger, 2012). Although our work can draw
inspiration from specific technical solutions in the
aforementioned virtual machines, their techniques are
hard to use in the AOT compilation context, as they
usually depend strongly on the actual runtime behav-
ior. An AOT compiler cannot afford to compile only
the functions and CFG blocks that will be actually ex-
ecuted without making sure that there is a fallback in
case any optimistic assumption proves not to be true.
Despite these challenges, moving specialization to the
level of individual blocks within a CFG might be an
interesting research direction for AOT dynamic lan-
guage compilers.

8 CONCLUSION

In this paper, we have presented a set of techniques
for dynamic language compiler optimization. The
techniques incorporate procedure cloning into the
compilation workflow, utilizing existing interproce-
dural type analysis to determine specialized param-
eter types. Important parts of the solution are the
heuristics which ensure the specialized clones to be
produced only in appropriate cases, not adding un-
necessary overhead to the compilation nor runtime.

We implemented the techniques into the PeachPie
compiler and evaluated their impact on standard PHP
benchmarks. The results have shown that the highest
execution time optimization can be reached in deeply

Using Procedure Cloning for Performance Optimization of Compiled Dynamic Languages

185



recursive functions, e.g., the Ackermann function of
(3,7) was computed 3.65 times faster; the 30th Fi-
bonacci number was computed 3.31 times faster. The
speedup factor of computation-intensive loops ranges
from 1.24 to 2.64. Although such significant improve-
ments could not be achieved in real-world applica-
tions, validation on a WordPress website has shown
the safety of our optimizations, as they never worsen
the performance nor change the program semantics.

In our future work, we plan to extend the special-
ization mechanism even further and improve its ef-
fect on real-life websites, e.g., by producing clones
not only of global functions but of class methods as
well. Moreover, procedure inlining will be explored
as another possible context-sensitive interprocedural
optimization in dynamic language AOT compilers.

ACKNOWLEDGEMENTS

This work has been supported by the Czech Science
Foundation project no. 20-07487S, Charles Univer-
sity Grant Agency (GA UK) project no. 896120, the
project PROGRESS Q48 and the grant SVV-260588.

REFERENCES

Abonyi, A., Balas, D., Beňo, M., Mı́šek, J., and Zavoral,
F. (2009). Phalanger improvements. Technical report,
Charles University in Prague.

Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. (2006).
Compilers: Principles, Techniques, and Tools (2nd
Edition). Addison-Wesley Longman.

Almási, G. and Padua, D. (2002). MaJIC: Compiling MAT-
LAB for speed and responsiveness. SIGPLAN Not.,
37(5):294–303.

Benda, J., Matousek, T., and Prosek, L. (2006). Phalanger:
Compiling and running PHP applications on the Mi-
crosoft .NET platform. .NET Technologies 2006.

Biggar, P. (2010). Design and Implementation of an Ahead-
of-Time Compiler for PHP. PhD thesis, Trinity Col-
lege Dublin.

Biggar, P., de Vries, E., and Gregg, D. (2009). A practical
solution for scripting language compilers. In SAC ’09,
page 1916–1923. ACM.

Chambers, C. and Ungar, D. (1991). Making pure object-
oriented languages practical. In OOPSLA ’91, page
1–15. ACM.

Chevalier-Boisvert, M. and Feeley, M. (2014). Simple and
effective type check removal through lazy basic block
versioning. CoRR, abs/1411.0352.

Chevalier-Boisvert, M., Hendren, L., and Verbrugge, C.
(2010). Optimizing matlab through just-in-time spe-
cialization. In CC ’10, page 46–65. Springer-Verlag.

Cooper, K. D., Hall, M. W., and Kennedy, K. (1993). A
methodology for procedure cloning. Computer Lan-
guages, 19(2):105–117. ICCL ’92.

Damas, L. and Milner, R. (1982). Principal type-schemes
for functional programs. In POPL ’82, page 207–212.
ACM.

Dean, J., Chambers, C., and Grove, D. (1995). Selec-
tive specialization for object-oriented languages. SIG-
PLAN Not., 30(6):93–102.

Emami, M., Ghiya, R., and Hendren, L. J. (1994).
Context-sensitive interprocedural points-to analysis in
the presence of function pointers. SIGPLAN Not.,
29(6):242–256.

Husák, R., Zavoral, F., and Kofroň, J. (2020). Optimiz-
ing transformations of dynamic languages compiled
to intermediate representations. In TASE ’20, pages
145–152.

Mı́šek, J., Fistein, B., and Zavoral, F. (2016). Inferring com-
mon language infrastructure metadata for an ambigu-
ous dynamic language type. In ICOS ’16, pages 111–
116.

Mı́šek, J. and Zavoral, F. (2010). Mapping of dynamic lan-
guage constructs into static abstract syntax trees. In
ICIS ’10, pages 625–630.

Mı́šek, J. and Zavoral, F. (2017). Control flow ambiguous-
type inter-procedural semantic analysis for dynamic
language compilation. Procedia Computer Science,
109:955–962. ANT ’17 and SEIT ’17.

Mı́šek, J. and Zavoral, F. (2019). Semantic analysis of
ambiguous types in dynamic languages. Journal
of Ambient Intelligence and Humanized Computing,
10(7):2537–2544.

Ottoni, G. (2018). HHVM JIT: A profile-guided, region-
based compiler for PHP and Hack. In PLDI ’18, page
151–165. ACM.

Rigo, A. and Pedroni, S. (2006). PyPy’s approach to vir-
tual machine construction. In OOPSLA ’06, page
944–953. ACM.

Serrano, M. (2018). Javascript AOT compilation. In DLS
’18, DLS 2018, page 50–63. ACM.

Tobin-Hochstadt, S. and Felleisen, M. (2010). Logi-
cal types for untyped languages. SIGPLAN Not.,
45(9):117–128.

Wimmer, C. and Würthinger, T. (2012). Truffle: A self-
optimizing runtime system. In SPLASH ’12, page
13–14. ACM.

Zhao, H., Proctor, I., Yang, M., Qi, X., Williams, M., Gao,
Q., Ottoni, G., Paroski, A., MacVicar, S., Evans, J.,
and Tu, S. (2012). The hiphop compiler for php. SIG-
PLAN Not., 47(10):575–586.

ICSOFT 2022 - 17th International Conference on Software Technologies

186


