
Discovering How to Attack a System

Fabrizio Baiardi1, Daria Maggi2,3,∗ and Mauro Passacantando1 a

1Dipartimento di Informatica, Universita di Pisa, Largo B. Pontecorvo 3, Pisa, Italy
2Dipartimento di Ingegneria Informatica, Universita of Pisa, Pisa, Italy

3Cisco Systems Portugal, Portugal

Keywords: Genetic Algorithm, Rule based System, Attack Strategy, Digital Twin.

Abstract: We evaluate the performance of a genetic algorithm to discover the best set of rules to implement an intrusion
against an ICT network. The rules determine how the attacker selects and sequentializes its actions to imple-
ment an intrusion. The fitness of a set of rules is assigned after exploiting it in an intrusion. The evaluation of
the distinct sets of rules in the populations the algorithm considers requires multiple intrusions. To avoid the
resulting noise on the ICT network, the intrusions target a digital twin of the network. We present a prelimi-
nary experimental results that supports the feasibility of the proposed solution.

1 INTRODUCTION

This paper discusses the adoption of a genetic algo-
rithm, GA, to discover a set of rules that implements
the best attack strategy against an ICT network. Each
rule implements an attacker action; the GA returns
the best ones to implement an intrusion and control
some network modules. To evaluate each rule set, we
use it to drive an intrusion and the fitness of a set de-
creases with the time to reach the goal. Intrusions tar-
get a digital twin of the network, i.e. a labeled graph.
The first experimental results confirm that a GA can
discover the best strategy. This work is organized as
follows. Sect.2 briefly discusses the emulation of an
intelligent adversary. Sect.3 describes the kernel ideas
of the proposed solution and the modeling of both the
attacker and target network. It also introduces the GA
design and how it generates and refine the set of rules.
Sect.4 presents the rule-based system and details the
prototype implementation. The last section presents
first experimental results.

2 STATE OF THE ART

We discuss strategies for adversary emulation and de-
note by intrusion the sequence of attacker actions to
control some network modules.

a https://orcid.org/0000-0003-2098-8362
∗Consulting Engineer

2.1 Adversary Emulation

Attackers are intelligent and alternate attacks and col-
lection of information on the vulnerabilities of net-
work modules to discover the shortest sequence of
actions to reach a goal, the control of some module.
The knowledge of the attacker strategy to select ac-
tions is fundamental to detecting and stopping intru-
sions. This requires accurate information on both the
selection and the actions.

A penetration test is an emulation exercise where
a red team implements an intrusion. Proper counter-
measures are adopted if the team is successful. The
team lacks information on the module vulnerabili-
ties to mimic that an attacker collects it as the intru-
sion goes on. The accuracy of this test is low be-
cause, due to the network size, the time to consider
all the vulnerabilities might as well encompass the
exercise time frame. Hence, the red team cannot dis-
cover all the intrusions. Furthermore, real attackers
may apply strategies that differ from those of the red
team because, while they are interested in the quick-
est intrusion they also prefer to use the same exploits
against distinct targets (Allodi et al., 2021). Lastly,
information collection is as important as attack exe-
cution (Applebaum et al., 2017). Hence, the same red
team should attack a network at most twice: to dis-
cover critical vulnerabilities and then to verify they
have been removed. Further exercises to discover
other intrusions require a new team, because the pre-
vious ones have already collected information on the

548
Baiardi, F., Maggi, D. and Passacantando, M.
Discovering How to Attack a System.
DOI: 10.5220/0011270000003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 548-553
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



modules and their vulnerabilities. Tools to automate
the intrusion and emulate the attackers can solve the
shortcomings of human teams and time constraints
but multiple tests results in a large noise in a network.
To avoid the noise, we introduce a digital twin, i.e.,
a digital version of the network (Baiardi and Tonelli,
2022). A twin abstracts most of the target details but
it represents system assets, i.e. nodes with their mod-
ules, vulnerabilities and connections. Furthermore, it
describes the attacks these vulnerabilities enable in
terms of preexploitation and postexploitation states,
as in (Inokuchi et al., 2019). When using a twin, in-
trusions are automated through a software platform
that emulates the red team actions. Distinct emula-
tions return information on the effectiveness of dis-
tinct strategies.

2.2 Neural Networks

The abstraction capabilities (LeCun et al., 2015) of
deep learning favor its adoption in several domains.
However, deep learning - and in general, machine
learning - is yet to gain momentum in offensive se-
curity. (Aiyanyo et al., 2020) reviews its performance
but there are some reasons why deep learning could
not be the best solution in this field (Marcus, 2018):

1. an intrusion is a hierarchical composition of ac-
tivities, and the current performance of neural
networks is not satisfactory for similar prob-
lems (Lake and Baroni, 2018);

2. while an attacker collects information during the
intrusion, deep learning requires structured infor-
mation on the target;

3. emulation is much more a common sense problem
than a classification one.

Hence, we have investigated a GA as an alternative.

3 The Proposed Solution

This section outlines the proposed solution and dis-
cusses how a twin models the target network, the at-
tacker, and their interactions. Then, it outlines the def-
inition of the GA.

3.1 The Network and Its Twin

A target network is defined by its modules, hardware
and software ones, their connections and their vulner-
abilities. An attacker exploits these vulnerabilities to
acquire access rights on some modules and take ac-
tion on other ones.

A twin represents a network as a labeled graph
where each node n(m) represents a module m and is
labeled by the vulnerabilities of m. An edge from
n(m1) to n(m2) denotes that an attacker can exploit
from m1 a vulnerability in m2 and gain access rights
on the latter. Each edge is labeled by an attack and by
attributes that quantify the attack complexity, its exe-
cution time, success probability, and the largest num-
ber of repetitions. Since a module m1 can take an
action on module m2 if it can interact with m2, the
edges also take into account the network topology.

3.2 Attackers

We describe how attackers behave and how the GA
models them and evaluates their fitness.

3.2.1 Modelling Attacker

In an intrusion, an attacker chains actions and attacks
to gain some rights on modules and reach its final
goal, the control of some modules. Before attacking
a module, an attacker scans it to discover the module
vulnerabilities. Thus, at each step of an intrusion, the
attacker decides whether to attack a module it has al-
ready scanned, or to look for a new potential target
among the modules it can reach from those it has al-
ready attacked. Attacking is usually preferred in the
earlier steps of an intrusion, to increase the number of
sources of a scan. Moreover, by acquiring informa-
tion on promising nodes, an attacker can avoid wast-
ing time and attempts.

We describe an attacker as a rule-based system
where a rule consists of a premise and a conclusion,
according to modus ponens. Each rule models one at-
tacker action and the firing of a rule corresponds to
the action execution. The whole set of rules codi-
fies the attacker strategy. A rule may include distinct
premises, each a condition on some fact in a domain.
In our domain, facts convey information on the sys-
tem assets and the current attack status or on the nodes
the action can target. As an example, a precondition
may check if the attacker has previously scanned a
module or if the module is affected by a vulnerabil-
ity. A rule is activated if all its premises are satis-
fied. The rule conclusion consists of a set of post-
conditions. The intended meaning is that when a rule
fires the corresponding action is executed and, if suc-
cessful, it affects the environment and/or the attacker
so that each rule postconditions becomes true. As an
example, a postcondition may change the state of a
module to scanned or add a new module to those an
attacker can target or control. Distinct rules are ac-
tivated anytime the attacker can execute distinct ac-
tions. To solve this conflict, each rule is paired with

Discovering How to Attack a System

549



an importance value, the salience, that determines the
probability it is chosen and fired.

3.2.2 Emulating Attackers

To evaluate an individual, i.e. an attacker, the GA
executes the corresponding rules. This results in a se-
quence of steps where at each step, the attacker exe-
cutes an action according to the fired rule. The emu-
lation stops when the attacker has reached its goal or
all options have been exhausted and no rules can fire.
Each rule action is associated with a cost and the cost
of a sequence is the sum of the cost of the rules it has
fired, where each action repetition contributes to the
overall cost.

To determine activated rules, an emulation needs
an efficient representation of the security status. This
status is a set of parameters for each module that may
be updated any time a rule fires. The minimal set of
parameters to model both information acquisition and
attack consists of two Boolean values for each mod-
ule. They record, respectively whether the module
has already been scanned and whether the attacker has
acquired some rights on it. A rule precondition may
match some of these values. Anytime a rule fires, the
success or the failure of the action, its outcome, is
determined because a successful action updates the
security status. The outcome is decided through the
output of a random generator according to the action
success probability. If an action may fail, the repeti-
tion factor in the twin determines the number of pos-
sible repetitions. The only action that is always suc-
cessful is the scanning of a module so that a module
is scanned only once. The security status also records
the number of attacks that have used each graph edge.

In general, the structure of a rule is
⟨security state⟩,⟨vulnerabilities⟩,⟨connections⟩ → ⟨

action, security state ⟩
where securitystate, vulnerabilities and connections
are premises, i.e. conditions on the security status,
on module vulnerabilities and connections. If the rule
fires and the action is successful, the security status
is updated. As an example, if the attacker controls
N1, it has scanned but does not control N2 (security
state premise), there is a vulnerability in N2 (vulner-
abilities premise) and N1 is connected to N2 (connec-
tion premise), then it can attack N2 (action). If this
rule fires and the attack is successful, the attacker will
control N2 (new security state).

3.2.3 Evaluating Attackers

If we only consider rule premises and post-conditions,
each attacker is described by the same rules. As an ex-
ample, a rule may state that after scanning a module

M the module can be attacked or that a successful at-
tack to M enables an attack to a module connected to
M.

To pair distinct attacker, i.e. individuals, with dis-
tinct rules, the GA pairs each individual with two
sets that convey information on the network topology
and include, respectively, promising modules and the
deadpoints. A promising module leads the attacker to
its goal, while a deadpoint has no outbound edge or
has resisted all the attack attempts.

The same rule may differ in distinct attackers be-
cause its salience depends upon the nodes it matches.
The salience of a rule that matches a promising mod-
ule is larger than when the rule matches another one.
Hence, the salience of a rule that scans or attacks a
promising module is larger than those of rules target-
ing not promising ones. Furthermore, a rule where
the action targets a deadpoint, has lower salience than
rules that do not match a deadpoint.

To discover promising modules and deadpoints,
the GA analyses a log that stores the actions of an
attacker and the modules it has targeted in an emula-
tion. The GA classifies attackers in three categories.
It also pairs an attacker with a priority and a distance
from the target module in terms of the number of hops
or the success probabilities paired with arcs. Each at-
tacker may be:

• successful if it reaches its goal. Its distance is
0 and the priority decreases with the sum of the
costs of its actions;

• close if its distance is lower than a threshold δ. Its
priority decreases with this distance;

• unsuccessful if its distance from the goal is larger
than δ.

The distance and the priority of an individual deter-
mine its fitness.

3.3 Algorithm Set Up

The GA is applied to a population after evaluating
each of its individuals, i.e. a set of rules plus the set of
promising nodes and the one of the deadpoints. Some
parameters of the GA are set a priori such as the elite
size namely the number of individuals that reproduce.
Other parameters will be determined by the GA, such
as the probability of choosing an action, that is a func-
tion of the salience of the rule, and the sets of, respec-
tively, promising nodes and deadpoints a parent will
transmit to its descendants.

The selection operator analyzes each individual in
the current population and classifies it as either suc-
cessful, close, or unsuccessful. Then, it ranks individ-
uals in a listby increasing distance from the goal. The

SECRYPT 2022 - 19th International Conference on Security and Cryptography

550



last attackers in the list are the unsuccessful ones.
The crossover operator selects the parents of the

next population with a probability that decreases as
the position of an individual in the list increases.
Thus, given two individuals, the operator prefers the
one paired with:

• the highest priority if at least one is successful;

• the lowest distance if they are promising or unsuc-
cessful candidates.

After choosing the parents, the GA transmits to
the offspring the salience, promising nodes, and dead-
points. If both parents are successful, the salience of
each action of a descendant inherits is the weighted
average of those of the parents. The most influential
parent is the most successful one. The individual also
inherits a subset of shared deadpoints and its size is
randomly generated according to a uniform probabil-
ity distribution. If only one parent is successful, its
promising modules are transmitted only. Otherwise,
the sets of promising modules and of deadpoints are
those of the one with the shortest distance.

The mutation operator updates the salience of
each rule to explore the solution space.

In our solution, the features an offspring receives
are either network-specific or network independent.
Promising modules and deadpoints are network spe-
cific, while rule salience is network independent.

4 PROTOTYPE
IMPLEMENTATION

We have implemented a prototype to evaluate the GA
performance and the time to converge to an optimal
solution. In the prototype, the action space for an at-
tacker is the minimal one and it includes two actions:
to scan and discover the vulnerabilities of a device,
and to attack. Actions such as exfiltrating information
or evading some defence mechanism are neglected
because the attacker executes them only if it is suc-
cessful. In general, an attack success probability is the
sum of a base success probability (inferred from pub-
lic databases (The MITRE Corporation, 1999)) plus
a bias factor, depending on the attack complexity. To
simplify the twin, any attack has a success probability
equal to 0.7. Furthermore, a twin node corresponds to
a network node rather than to a module.

The rule-based system is implemented in
CLIPS (Cafasso, 2016) that supports the specializa-
tion of rules for promising nodes and deadpoint and
it offers conflict resolution strategies. CLIPS creates
a stack of rules that match distinct facts, nodes in the
prototype. A rule position depends on its salience. A

resolution mechanism use salience to solve conflicts.
We have embedded CLIPS in the Python environment
because CLIPS lacks granular control on the order of
fact presentation in the firing of a rule. A dynamic
update of the salience ensures that a rule will be fired
before other ones, but there is no control in CLIPS on
the order to match rule premises to the security state,
vulnerabilities and connections. We have mitigated
this through Python-calls that update a rule salience
according to the promising or deadpoint nodes it
matches. Further criteria to update the salience will
be described in the following.

5 RESULTS

In the experiments to evaluate the GA performances,
the first parameter is the network size, and, inciden-
tally, its density. We gradually increase this size. In
a small network, the number of paths from the source
to the target gains too much weight in the evaluation.
If there are very few winning options, the population
will converge very quickly to them without a detailed
evaluation of alternative solutions.

The population size, i.e. the number of distinct
attackers the GA considers, is another parameter and
the parent pool is tuned according to this size. The
larger the population size, the larger the breadth size
of the search for the optimal solution. This speeds up
the convergence to the optimal path but larger popu-
lations are not effective for small networks. Notice
that we do not assume each member of a population
will actually attack the target system. The population
size is interesting only to evaluate how it influences
the GA convergence.

The third parameter is the network complexity and
the complexity of exploiting each edge. Ideally, the
larger the edge weight, the harder the success of the
corresponding attack.

5.1 Full Exploration

Here, the Python environment updates the rules so
that an agent fully explores the subtree rooted in a
promising node before moving to another one. As ex-
pected, the convergence slows down and the time to
discover the optimal paths decreases with a larger par-
ent pool. Instead, the time to reach the 100% hitmark
increases with the network size.

5.1.1 20 Nodes, 100 Attackers

In these experiments the system graph is not weigthed
so that the best path is the shortest one and its length

Discovering How to Attack a System

551



Figure 1: 20 Nodes, 100 attackers, 200 generations.

is four. We have tested four distinct elite sizes but all
the attackers are tested on the same path. In Fig. 1
x axis is the number of generations, while the y one
is the number of successful attackers, i.e. that have
reached the target node. A small elite size results
in a steeper growth of successful attackers, with the
80% threshold being hit at around 100 generations.
When the size of the mating pool is larger, in the first
10/20 generations at least, some parents are not suc-
cessful and have reached a ’close-enough’ node with
a small cost. A larger diversity results in slower but
more stable growth. The 80% benchmark is hit after
100 generations. However, the progress in both cases
slows down and neither of the populations reaches the
100% mark in the given number of generations. Fig.
1 shows that an elite size of 15 results in the most
linear growth before the 80% mark and it is the only
case reaching the 100% mark. Furthermore, all the
population has learned how to reach the goal.

5.1.2 80 Nodes, 100 Attackers

The network is larger but with the same edge density
as the 20 nodes one. The length of the path to be dis-
covered is six. This strongly increases the problem
complexity because of the larger network size. The
curve shapes in Fig. 2 are similar to those for the cor-
responding elite size ratios. Due to the larger solution
space, the parent pool will be richer and broader even
if we reduce its size.

5.1.3 80 Nodes, 1000 Attackers

Here we analyze the performance of a large pop-
ulation targeting a large network. We assume the
larger population compensates for the larger number
of paths so that the initial exploration of the solution
space should result in a broader frontier of the search.
Then, the genetic operators will focus the search on
the cheaper paths. Fig. 3 shows the number of suc-
cessful attackers per generation for distinct elite sizes.
The curves are similar independently of this size.

5.2 Breadth-first Exploration

In these experiments, we update rule salience so that
an attacker adopts a breadth-first strategy. We ex-
pected that the 100 attackers hitmark would have been
reached sooner due to both the network size and the
breadth-first search. In fact, the method analyzes all
promising nodes the attacker can reach almost simul-
taneously. The 20 nodes network is included to high-
light the distinct behaviours for the various sizes.

5.2.1 20 Nodes, 100 Attackers

As in the previous experiments, we have made some
preliminary observations on the 20 nodes network.
Fig. 4 summarizes the curves produced by varying the
elite size. It confirms that the time to reach the 100%
hit-mark depends upon the elite size rather than upon
individual performances.

5.2.2 80 Nodes, 100 Attackers

The number of paths and of the paths to a goal is much
larger than in the 20 nodes case. Moreover, the ratio
of the population size to the number of edges implies
that a smaller elite size might result in a converge to
a local minimum and not to the global one. Fig. 5
compares the various curves and shows how a larger
elite size slows down the convergence.

(a) 10 elite size

(b) 30 elite size

Figure 2: 80 Nodes, 100 attackers, 50 generations.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

552



Figure 3: 80 Nodes, 1000 attackers, 50 generations.

Figure 4: 20 Nodes, 100 attackers, 100 generations.

5.2.3 80 Nodes, 1000 Attackers

The population size may result in a convergence be-
fore the 15th generation. Fig. 6 compares the vari-
ous curves for the 10% to 30% of the population size.
Here a larger elite size speeds up the convergence.

6 CONCLUSIONS

The results of our prototype confirm that a GA can
discover the best strategy, i.e., the best set of rules, to
attack a network. Further experiments will assess the
performance of the GA against larger networks and
with distinct attack success probabilities. Another in-
teresting point is transfer learning. This is related to
the learning speed-up when some rules of the popu-

Figure 5: 80 Nodes, 100 attackers, 100 generations.

Figure 6: 80 Nodes, 1000 attackers, 100 generations.

lation we train to acquire the control of a module M1
have previously learned to acquire the control of a dis-
tinct module of the same network.

REFERENCES

Aiyanyo, I., Samuel, H., and Lim, H. (2020). A systematic
review of defensive and offensive cybersecurity with
machine learning. Applied Sciences, 10:5811.

Allodi, L., Massacci, F., and Williams, J. (2021). The
work-averse cyberattacker model: Theory and evi-
dence from two million attack signatures. Risk Analy-
sis, https://doi.org/10.1111/risa.13732.

Applebaum, A., Miller, D., Strom, B., Foster, H., and
Thomas, C. (2017). Analysis of automated adversary
emulation techniques. In Proceedings of the Summer
Simulation Multi-Conference, SummerSim ’17, San
Diego, CA, USA. Society for Computer Sim. Int.

Baiardi, F. and Tonelli, F. (2022). Twin based continuous
patching to minimize cyber risk. Eur. Journal for Se-
curity Research, pages 1–17.

Cafasso, M. (2016). CLIPS. https://clipspy.readthedocs.io/
en/latest/. Accessed: 2020-02-26.

Inokuchi, M., Ohta, Y., Kinoshita, S., Yagyu, T., Stan, O.,
Bitton, R., Elovici, Y., and Shabtai, A. (2019). De-
sign procedure of knowledge base for practical attack
graph generation. In Proceedings of the 2019 ACM
Asia Conference on Computer and Communications
Security, Asia CCS ’19, page 594–601, New York,
NY, USA. Association for Computing Machinery.

Lake, B. and Baroni, M. (2018). Still not systematic after all
these years: On the compositional skills of sequence-
to-sequence recurrent networks. https://openreview.
net/forum?id=H18WqugAb.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521:436–44.

Marcus, G. (2018). Deep learning: A critical appraisal.
https://doi.org/10.48550/arXiv.1801.00631.

The MITRE Corporation (1999). CVE. https://www.cve.
org/. Accessed: 2020-09-09.

Discovering How to Attack a System

553


