
A Novel Approach to Functional Equivalence Testing

Ranjith Jayaram and Jetendra Kumar Borra
Mercedes-Benz Research and Development India, Bengaluru, India

Keywords: Model, Software, Functional Equivalence, Verification.

Abstract: In Model Based Software Development, sometimes it is required to transform the model and respective
software code from one platform to another platform that is having different tool setup. For example,
transforming a legacy model to the newly adapted architecture or transforming a model supplied from third
party to production model and so on. Once the model is adapted to the new platform, there will be changes in
the model, hence the code generated from the model can be different from that of legacy artifacts. After
transformation activity, developers have to be sure that the new model and code is functionally equivalent to
that of the old set. It is also important from quality standpoint that there are no deviations in the functionality
after migration. With most of the compilation toolchains being closed source it is difficult to identify the
issues during migration unlike in systems engineering. Achieving functional equivalence between the
production artifacts and the reference/legacy artifacts provide conformity to the engineer of successful
migration. In this paper, a methodology is proposed in which even with non-availability of few artifacts from
legacy setup, functional equivalence is achieved using Model in loop and software in loop simulation results
matchup. The method and the results are presented in the paper with two different use cases.

1 INTRODUCTION

The automotive industry is evolving very fast and
automotive engineering is becoming more software
driven. In software development, it is very common
that different components of software are developed
across different teams, different suppliers and
integrated into production code after rigorous testing.
Different strategies and tools are being followed in
different organizations while planning and carrying
out the software development. There are cases where
the documentation for the legacy artifacts such as
requirements, model, code are not available. One
such case is legacy models that are being improved
from time to time, grown big and not having enough
documentation for requirements. When there is no
stringent process for the software development, it is
common that sometimes documentation is not
available for the old models. In cases where proper
documentation is not available, the engineers working
on the respective functionality are the only source
with knowledge of the requirements. Another case is,
third party unit develop the model with the
requirements given in descriptive format or model
format, generate model based code and tested. After
testing is complete, the code is flashed in Electronic

Cntrol Unit (ECU) and only the ECU will be
delivered to the product owner from the supplier. In
all the above cases, when the software team plan to
transform the models and software to new platform,
with at least one of the information resources like
requirements, code and test specifications missing,
obtaining functional equivalence after migration
guarantees the engineer that there is no deviation
during migration from one platform to another
platform. Functional equivalence in this context
means the legacy code and the transformed code both
should work in the exact manner as a product without
deviation in the functionality.

2 PROBLEM

Two of the cases mentioned earlier are considered in
this paper to explain our methodology and the
application of the methodology is not limited to these
but can be used for multiple use cases. First case
considered in this paper is to adapt the legacy floating
point model to TargetLink based fixed point model.
The floating point model is not accompanied with
code, unit test specifications and the tool used for
generating code from floating point model is

244
Jayaram, R. and Borra, J.
A Novel Approach to Functional Equivalence Testing.
DOI: 10.5220/0011269900003274
In Proceedings of the 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2022), pages 244-251
ISBN: 978-989-758-578-4; ISSN: 2184-2841
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

unknown, which make the transformation and
obtaining functional equivalence difficult. Since the
idea is to transform the model from one set up to
another, it is important to make sure that there is no
deviation in the functionality after migration. Before
going forward, to avoid confusion and for easier
explanation here onwards consider the legacy floating
point model as reference model and the model
developed with latest architecture as production
model. In Model Based Development (MBD), across
projects different tools are used for validating and
verifying the code generated. Let us explore how
different verification methods were fared in the
current case. Model compare tools can be used to
compare the models to identify the differences. Both
the production and reference models are different in
nature of development i.e, floating point and fixed
point respectively. Since in production model fixed
scaling is given to each variable and parameter in the
model, there will be differences in the properties of
each model block hence making it difficult to confirm
from model comparison that code works as expected.
As the model grows bigger, the model comparison
activity becomes more laborious and less efficient.
Due to the reasons mentioned above, model
comparison do not fare well in ensuring the functional
equivalence.

In order to do code comparison between both
production and reference model based codes, there is
no code available with the reference model artifacts.
Automated code can be generated for reference model
using a relevant compiler and it can be compared with
the code of production model. The code from
production model is generated in TargetLink
platform. When auto generated reference model code
is compared with the implicit automatically
optimized, typecasted TargetLink based code
(production code), the number of differences found is
high due to inclusion of scaling and property
differences. It is a laborious task for the engineers to
identify the deviations among the differences. Even
with the sincere efforts of the engineers there are high
chances of inefficiencies, and makes the whole idea
resource heavy, time intensive and inefficient. If test
specification is available with the reference model,
same test matrix can be used on both the production
and reference artifacts for software in loop unit
testing and result matchup. With some extra test cases
for the fixed point data range, resolution testing and
comparing the results functional equivalence can be
achieved. Since the test matrix and reference model
code are not available, software in loop testing and
result matchup is not possible. Vehicle testing is
costly and the test engineer has to drive, test for all

the functionalities which is very costly and
inefficient. Some of the software level bugs related to
scaling and resolution of data variables can go
without being identified in vehicle testing. Direct
vehicle testing also contradicts with the whole idea of
making the software vehicle ready with minimum
issues and pre-validated sufficiently for vehicle
testing. One interesting idea would be to prepare the
test specification for the reference model and the
production code can be validated by the same test
specification. Since the requirements are embedded in
the form of reference model, writing test cases using
reference model sounds like a possible solution. But
even with this solution how to completely validate the
production code that has calculations with fixed point
scaling with less efforts of resource is unanswered.
The results on the production code has to be analysed
for resolving the failed cases, which is time intensive
for engineers. Since there is no reference code, it is
not possible to do software in loop simulation on
reference artifacts and there are no reference results
to compare with the production code testing results.
As driver drives the car with the code but not with the
model it is very important for the engineer to
completely validate the production code, hence this
idea can be ignored.

The second case considered in the paper is a set of
reference model which is Non-AUTOSAR
TargetLink fixed point scaling environment model,
code and test matrix for unit testing. Production
model is AUTOSAR platform based model
transformed from reference model and code. Starting
with similar analysis like the one in first case, model
comparison will not work, as there will be a change
in the model architecture. Due to difference in
platform setup, it is difficult to find the differences in
the code as there will be restructuring in the code.
Since the test matrix is available for the reference
model the same can be used on the production code,
by comparing the results, we can make sure that
software is equivalent and hence functional
equivalence can be achieved. However, for unit
testing done with various coverage metrics, for
example like C1 coverage there is a chance that some
branches in code could be missed in testing. The
functional equivalence process should be developed
such that if there is any minor issue underlying, it
should not go unreported without being registered
with the engineer. In both the cases, even though the
context and settings are different the target is to
achieve the functional equivalence of the production
code with that of reference. In search of solution for
this problem we researched the literature and our

A Novel Approach to Functional Equivalence Testing

245

findings from our literature survey are given in the
next section.

3 LITERATURE AND
MOTIVATION

In order to integrate the legacy systems into the
system, there are three methods mentioned in
literature (C. Chiang, 2007) wrapping, rewriting and
reengineering. Considering the cost for a short
duration project or project of small scale perspective
wrapping process will suffice but with a compromise
on quality of legacy code. For large scale projects
with use case for longer period of time, reengineering
option will work as good solution but consumes lot of
resources. In case of converting the legacy models to
a different platform rewriting helps in adopting the
characteristics of the new platform faster. While
integrating the legacy with new setup, or rewriting the
setup, stability of the software plays a significant role.
As mentioned in (P. Atcherley, 1994), testing the
replacement for a legacy system is not well explored
in literature. Once the legacy system is adopted to the
new desired platform, functional test cases prepared
from understanding of the requirements will give a
good understanding of what is the region that is being
covered and what is not. Adding new test cases can
cover the uncovered regions. In (P. Atcherley, 1994),
it was pointed that there must exist a platform to test
the cases on the legacy code for better results to run
both the legacy code and reengineered code on the
same platform to assure that the migration is defect
free. With reference to the experience report
(Antonini, Canfora, Cimitile, 1994), it points that
adequate setup to test the re-engineered work with
original work is marginally tackled. In (Hocking,
Knight, Aerllo and Shiraishi, 2014), one of the
common problems and similar to the current problem
is taken i.e, a 32 bit development model is tested for
equivalence with its corresponding 16 bit production
model using the novel concept constrained
equivalence. The concept of constrained equivalence
is analogical to the concept of a transfer function.
Given the valid inputs for the first model, second
model should have same results as first model,
obviously with in the acceptable tolerance limits. The
support tool that is being used in the work is
Prototype Verification system (PVS) along with
Simulink to simulate the models. Using constrained
equivalence concept model equivalence is achieved
but no details are mentioned regarding total system
validation i.e. model and code together. In the current

problem of interest, production model, which is
developed in TargetLink platform, is used for
generating optimized code and reference is floating
point Simulink model. Even though the method
mentioned is not appropriate for the current problem,
the idea is absorbed for structuring a possible
solution. For regression testing, Back to Back testing
is an interesting testing concept coined decades back
(MA Vouk, 1990). It is a concept that can be adapted
for wide range of cases. Using this concept with the
existing test matrix, we can test the new code and
compare with the previous version to find out the
latest changes in the code compared to its previous
version. This concept has to be adapted as per the
availability of the resources for the case. From the
literature it is evident that there is no clear existing
method to achieve functional equivalence.
With this knowledge from literature and the
motivation to resolve the current problem of interest
with a minimum effort solution, a novel methodology
have to be developed. The solution should be cost-
efficient such that there is no need for the newly
developed software to be tested rigorously in
expensive Vehicle/HIL (Hardware-in-the-Loop)
testing to achieve functional equivalence. Instead,
after passing functional equivalence test with the
proposed method, couple of regression tests on
Vehicle/HIL setup should prove the credibility of the
software.

4 BACKGROUND

For the first case as mentioned earlier (Section 2) MIL
(on reference model) – MIL (on production model)
comparison stands out as good option but the code
validation is still an open question and answering this
question closes the problem. Before going into the
methodology, brief information on BTC Embedded
tester, Back to Back testing and Wrapper is provided
in the following subsections for ease of understanding
of the method.

4.1 BTC Embedded Tester

There are multiple tools available with engineers for
testing activities, we chose BTC EmbeddedTester.
BTC is one of the tools which can offer back to back
testing. BTC Embedded Tester is a tool provided by
BTC Embedded systems AG. It provides an ISO
26262 certified and fully automated back-to-back test
between model and code. It can execute the same test
cases on multiple levels i.e., MIL (Model-in-the-
loop), SIL (Software-in-the-loop) and PIL

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

246

(Processor-in-the-loop). Using this tool, engineers’
set of test cases for functional check can be uploaded
and evaluated. If the test cases are not giving full
coverage, there is a facility with the tool to
automatically generate the test cases for uncovered
parts of the code and missed unique test
combinations. With one click back to back testing
option and automated test matrix generation feature,
this tool is handy for the engineers.

4.2 Back to Back Testing

This is a popular and resource efficient testing
methodology. In this method, same set of test cases
are used for testing different variants of the software
or for testing functionally equivalent components. In
multiversion experiments, at first individual testing of
the software is completed and then the results are
compared with its previous version, we call it as back
to back testing. Based on the reliability target to be
achieved back to back testing strategy is modified
from case to case. The limitation of this testing is in
multiversion software cycles if the issue is missed in
MIL test, it will be missed in SIL testing as well. So,
issues in particular branch of code will go unnoticed,
i.e. if a functional aspect test is missed in MIL testing,

Figure 1: Back to Back testing.

it will be missed in SIL testing as well, because same
test matrix is used for MIL-SIL testing and result
comparison. To overcome this limitation, in our
method an extra step is added for maximum code
coverage. Back to back testing concept is given in
Figure 1. The use case of Back to Back testing for the
current problem of interest is comparison of results
from SIL, MIL of the same model and then
comparing xIL-xIL results of reference and
production model. More information on Back to Back
testing can be referred from (MA Vouk, 1990).

4.3 Wrapper

A wrapper is a function or script which helps in better
abstraction of data/signals of the core function by
means of signal routing. The core function and the
wrapper can be modified independently. In scenarios

Figure 2: Functional Equivalence methodology for Case 1.

Figure 3: Functional Equivalence methodology for Case 2.

A Novel Approach to Functional Equivalence Testing

247

when the interface changes or signal naming
replacements are needed, it can be achieved with
wrapper without modifying the function logic.

5 APPROACH

The approach is similar for both the cases but not the
same. The core idea of the approach is one set of input
matrix, the one that tests the functionality, coverage
and data range of signals in the model, is fed to the
available reference model package and to the available
production model package. We expect the output
values from both the sets to be matched. The first case
is reference model which is floating point model but
code, test specifications are not available with the
resource package. Production model is fixed-point
TargetLink based model and corresponding code is
TargetLink auto generated. The second case discussed
here is, the reference model is TargetLink based fixed
point scaled model with Code, test matix available in
the resource package and the production model is,
same model migrated to AUTOSAR platform with
new tool chain. The approach for both the sections is
explained in the subsequent sections.

5.1 Case 1

For the production model, test matrix is developed or
completely auto-generated from BTC Embedded
Tester and MIL-SIL results are compared. If there are
no major deviations in MIL-SIL result comparison
then we can proceed to next step. If there are

deviations in MIL-SIL result comparison they should
be addressed. Most of times by keeping one LSB
tolerance setting to the result analysis, issues of
considerable interest will be reported and minor
deviations due to one LSB, which are very common
can be avoided. With the production code tested test
matrix, reference model is tested and results are
compared. If the results are matching with justifiable
deviations, production model is passed, else root
cause analysis will be done for the failure as it points
a potential bug/deviation. The process is shown in
Figure 2. With the new methodology proposed
instead of going in forward direction that is
comparing the reference model results with
production model results, the functional equivalence
is done in reverse manner. First the production model
and code is tested back to back with MIL, SIL with
the proven test specification and MIL results,
reference model is tested and MIL results are
compared there by achieving functional equivalence.
Explaining the method in easy steps below:

(i) Generate test matrix for production code first
using reference model as requirement source.

(ii) Generate extra test cases for coverage and
unique test combinations automatically from
BTC.

(iii) Generate MIL-SIL results for production code.
(iv) If no deviations in MIL-SIL results, use the

same test matrix from step (i) and step (ii) for
MIL testing on reference model.

(v) Compare MIL results of reference model with
MIL results of production model.

(vi) Justify and resolve the deviations found if any.

Figure 4: Floating point Model – Reference Model Case 1.

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

248

Figure 5: Fixed point Model - Production Model Case 1.

Figure 6: MIL – MIL result for floating to fixed-point model adoption.

5.2 Case 2

In this case the platform to which the production
model is transformed is different to that of reference
model. During migration from one platform to another
there are chances that signal names might be
interchanged or properties will be changed by mistake
which might create a deviation in the functionality. If
the unit test matrix is available for the reference
model, it is used. In cases where function test matrix
is not available, test inputs can be automatically
generated from the unit testing tools. As code of the
reference model is available, SIL-SIL result
comparison will suffice for the functional
equivalence. In this case first the reference model is
taken and with the existing test matrix if the functional
test cases are not reaching 100% coverage, extra test
cases can be automatically generated. With the
enhanced test matrix, on the reference model the MIL-
SIL simulations are done and the results are compared.
Since the reference code is already tested one,
whenever it deemed not necessary SIL-MIL back-to-

back test can be skipped. Wherever there is a deviation
it will be analysed and justified. The enhanced test
matrix is given as test input to the AUTOSAR based
production model and the SIL results are compared. If
there is an unjustifiable deviation, root cause analysis
has to be done for finding the issue. The process is
given in Figure 3. With this approach, if there is any
issue/deviation that was not found earlier, it would not
go unnoticed by the engineer during this process. In
simple steps:

(i) Use the existing test matrix and generate extra test
cases from BTC tool based on the need or
generate full test matrix from tool.

(ii) Use the test matrix on reference model and
generate SIL results.

(iii) Use the same test matrix in step (ii) on production
model and generate MIL-SIL

(iv) Do MIL-SIL analysis and look for any deviations.
(v) Compare the SIL results of reference model and

SIL results of production model, if found any
deviations do root cause analysis

A Novel Approach to Functional Equivalence Testing

249

6 RESULTS AND DISCUSSION

For analysis of the above mentioned method, a demo
model is taken. The floating point model (the
reference model) is given in Figure 4. The model also
represents the functional requirements. As mentioned
in Section 5.1, the reference model is transformed to
fixed point model given in Figure 5, which is
production model. A deviation is introduced in the
production model intentionally at input4 and input5,
OR gate is used in place of XOR gate. This kind of
deviation can happen during migrating or during
fixing the scaling for the calculation of signal or
optimizing the model. In order to replicate similar
issues a deviation is purposefully introduced in the
model. As mentioned in the process, first functional
test cases for the production model are written,
enhanced the test matrix with the automatic unique
combination test cases from the testing tool and
production model is tested. With the same test matrix,
reference model is tested and as a purposeful issue is
introduced in the model, results show that there is a
deviation at Output3 signal. At the MIL-SIL back to
back testing of the production model, the deviation at
Output3 will not appear because the test cases are
written for production model. As same logic given in
model is replicated in the code, MIL-SIL results pass
the back-to-back test. Now the engineer can process
back to model development, the deviation can be
corrected. Once the deviation is corrected, the results
will be as expected. Sometimes the deviations can be
due to one LSB deviation of the signals, as per the
engineers decision and the product requirements
those can be justified and can be moved to next step
in the software development process. Given the
context, one point to note is, in most of the software
development processes unit testing is considered as a
necessary artifact before delivering the code for
software integration and code coverage percentage is
the quality metric. In coverage testing it is possible
that sometimes unique test combinations will be
missed while writing the test matrix. One such case is
explained in the below in Table 1. From the first three
test cases in the table, it covers 100% coverage, when
the same test matrix is used on the production model,
the test passes inspite of having a deviation between
reference model and production model. Unique test
cases from the testing tool helps in adding extra test
cases, which were missed even with 100% coverage.
With the unique test combination, test case when
tested on both the models, it will show the difference
in results. If there is an issue which was hidden in the
earlier process during the functional equivalence

testing, these will pop-out. The MIL-MIL results for
case 1 are given in Figure 6.

In order to explore case 2, an example model is
taken which has undergone signal routing changes to
provide better data abstraction of AUTOSAR model
migration. The reference model is Non-AUTOSAR
model as shown in Figure 7 and the production model
is AUTOSAR model as shown in Figure 8. In Figure
7, the function given is even parity function, whose
function is, if even number of inputs are true then
output is true, else false. With migration to
AUTOSAR architecture, new interface signals are
created to replace old interfaces to be compatible with
AUTOSAR architecture. Sometimes the properties,
scaling of the signals might change during the new
signal creation process or there arise scenarios where
the signal routing can go wrong with migration when
compared to the reference model. One more possible
case of deviation is when the model is migrated,
unnecessary or redundant signals and logics is
removed, in such cases the unit test results of both the
models will not match.

Table 1: Test cases for XOR logic.

Test scenario Test
No.

Input
4

Input
5

Reference
model

Output 3

Production
model

Output 3

Manual test
cases

1 0 0 0 0

2 0 1 1 1

3 1 0 1 1

Unique test
combination
from BTC tool

4 1 1 1 0

Figure 7: Reference Non-AUTOSAR model.

Figure 8: Production AUTOSAR model.

SIMULTECH 2022 - 12th International Conference on Simulation and Modeling Methodologies, Technologies and Applications

250

Figure 9: Functional Equivalence Test Results.

Figure 10: Conventional Test Results.

When tested this in the conventional method by
designing the test scenarios i.e. test step 1, step 2 and
step 5 shown in Figure 9 to cover the requirement and
code coverage, we can notice that some of these
deviations in functionality are not identified in the
results despite achieving 100% code coverage as
shown in Figure 10. Hence functional equivalence
test plays a crucial role in validating the migration of
model in an effective manner. Along with the existing
test cases of the reference model, automatically
generated unique test combinations from the testing
tool are tested on reference and production models.
Test scenarios in step 0,step 3 and step 4 in Figure 9
are the unique test combinations automatically
generated from the testing tool. When the results are
compared as there is a deviation introduced, fail cases
appeared in the results. This will go to the notice of
the engineer and necessary steps can be taken. In the
cases where due to redundancy or optimization if
some signals or any logics are removed, if the
engineer analyses and confirms that the test failures
are as expected due to modifications carried out, fail
cases can be justified and software module can be
moved to next level in the process.

7 CONCLUSION

In the literature, we did not find relevant methodology
to solve the issues during migration activities. We
initially started with an idea and evolved this
functional equivalence process after trialing on
different set of issues and software components. The
sequence of steps given in the process is novel and
carefully designed to identify issues, minimize the
efforts. Future scope of this work to automating this
function equivalence testing process and developing
a Continuous Integration and Continuous
Development (CI/CD) setup to make better use of
resources.

ACKNOWLEDGEMENTS

We thank Kaushik Raghunath and Samiya Behera for
supporting and guiding us in completing this idea.

REFERENCES

C. Chiang (2007). Software stability in software
Reengineering, IEEE International Conference on
Information Reuse and Integration.

P. Atcherley (1994). Reengineering legacy systems into
new environments, IEEE Colloquium on Reverse
Engineering for Software Based Systems.

Antonini, Canfora, Cimitile, (1994). Re-engineering legacy
systems to meet quality requirements: an experience
report, Proceedings 1994 International Conference on
Software Maintenance

A.B.Hocking, J.Knight, M.A.Aiello and S.Shiraishi,.
(2014). Proving Model Equivalence in Model Based
Design, IEEE International Symposium on Software
reliability Engineering Workshops.

MA Vouk (1990). Back-to-back Testing, Information and
Software Technology

BTC Embedded Systems AG, EmbeddedTester,
https://www.btc-es.de/en/products/btc-
embeddedtester.

A Novel Approach to Functional Equivalence Testing

251

