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Abstract: The control of a prosthetic leg for above-knee amputees is fraught with several challenges. While the 
dynamics of the knee-ankle system are complex and unknown, the control problem is exacerbated by the lack 
of desired joint trajectories as they are dictated by the locomotion needs of the individual. Improper movement 
of the knee and ankle joints can have serious implications for the safety of the user. Further, dissimilarities in 
the gait of the amputated side and the intact side can result in gait abnormalities that result in increased 
metabolic energy consumption and musculo-skeletal pains in the short term, and cardiovascular and other 
health complications in the long term. In this paper, we propose a novel neuro-dynamic control strategy that 
can guarantee stable control of the prosthetic limb while minimizing the gait asymmetry between the intact 
and prosthetic limb. Further, the algorithm learns the unknown elements of the dynamics and adapts to the 
changing locomotion needs of the individual. The efficacy of the proposed approach is demonstrated through 
numerical simulations. 

1 INTRODUCTION  

Above knee amputation has lasting effect on the 
ability of an individual to perform daily activities and 
can result in adverse long term consequences to the 
mental and physical health (Myers & Chauvin, 2021). 
Therefore, a proper fitting and functioning prosthetic 
device is essential to rehabilitate an amputee and 
avoid post-surgical complications such as pressure 
sores, arthritis, gait asymmetry and depression (Mai, 
2012). In addition to providing adequate support to 
the individual during stance, an ideal prosthetic 
device should enable the individual to regain near-
natural gait. To accomplish this the device must be 
able to ascertain the intent of the user and then 
generate movement of the joints to address the 
walking speed and the nature of terrain. Further, the 
response must be in real-time and should ensure the 
stability of the device and safety of the individual. 
Many of the commercially available lower limb 
prosthetic devices are passive, cannot adapt to 
changing gait requirements of the individual, and use 
extra metabolism energy during locomotion (Bhat et 
al., 2018; Versluys et al.). Computer-controlled 
powered prosthetic devices can address some of the 
requirements however, they cannot ascertain the 
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intent of the user. Currently available powered 
prosthetic legs are heavy and their control mechanism 
is not sophisticated enough to support all daily 
activities (Fleming, 2021). Some researchers 
developed spring-based powered limbs to improve 
the performance of these devices (Bhat et al., 2018; 
Carney, 2020). But these powered limbs cannot be 
used for a long term as they are unable to compensate 
for the unknown dynamics (Carney, 2021). There are 
some model reference adaptive control approaches 
but these approaches are based on linearized model 
and their performance deteriorates rapidly outside a 
small region of operation (Pagel, 2017). 

Several companies such as Ossur, Ottobock, 
SpringActive, BionX Medical Technologies, 
Freedom Innovations etc., have commercialized 
active powered limbs (Windrich, 2016). Though 
these devices provide good performance in terms of 
locomotion, they use traditional control techniques 
based on linear approximations of the system and are 
unable to compensate for unmodeled dynamics.  
Further, the control parameters of these devices have 
to be adjusted to address the requiremnents of each 
individual. Several researchers explored the use of 
neural networks and reinforcement learning to control 
artificial knee and ankle joint with varying degrees of 
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success (Mai & Commuri, 2016; Stolyarov, 2021; 
Wen, 2017). However, these approaches ignore the 
coupled dynamics between the knee and the ankle 
thereby limiting the performance of these devices. 

While the primary function of a lower-limb 
prothesis is to provide support during stance, the 
ability to provide near-natural gait is essential to the 
long-term health of the individual. Asymmetric gait 
can cause individuals to expend more metabolic 
energy (Ryan et al., 2020). Asymmetric gait  can also 
lead to serious long-term injuries and poor quality of 
life (Pirker, 2017). Impaired gait in the elderly can 
lead to dementia and other neurological diseases 
(Mielke et al., 2012). Therefore, it is desirable for a 
prosthetic device to reduce gait asymmetry between 
the intact and amputated side of an individual. 

Design of a control system for above-knee 
prosthesis is difficult for following reasons: 

 Ideal joint displacement profiles cannot be 
specified prior to locomotion because it depends 
on the intent of the indivisual. 

 During a gait cycle the knee and ankle joints are 
affected by dynamical coupling of the prosthetic 
leg system and residual hip.  

 Ground reaction force is proportional to the 
body weight of a person and provides the 
necessary propulsion for the gait (Perry, 2010). 
While walking, lower limb joints are influenced 
by ground reaction force which in turn affects 
the knee and ankle joints in the form of 
disturbance torque. Uncompensated disturbaces 
will degrade the performance of the controller. 

Neuro-dynamic programming (NDP) has shown 
promising results in the control of uncertain complex 
dynamical systems (Bugeja, 2008; Lu et al., 2008; 
Mahmud et al., 2021). NDP is based on 
approximation theory and neural networks and uses 
Bellman’s optimality principle to improve the control 
decision at each step to result in lower long term cost 
(Bertsekas, 1995). However, traditional optimal 
control had limited success in the control of prosthetic 
leg (Chen et al., 2020; Rigatos, 2017). 

In this paper, we implement a neuro-dynamic 
control approach for above-knee prosthetic system to 
reduce gait asymmetry and achieve near natural gait. 
The controller action is two-fold: At a lower level, a 
filtered tracking error system ensures that the joints 
follow the prescribed dipslacement profile. At a 
higher level, the Critic Network computes the “to go” 
cost and modifies the control action to minimize the 
long-term cost. As a result, the performance of the 
controller improves after each step, i.e., after each 
stance phase of the gait. For this approach to be 

successful, desired displacement profiles for the knee 
and the ankle are first selected using gait information 
from the intact side of the individual. A filtered 
tracking error system generates the control torque that 
enables the knee and ankle joints to track the 
prescribed trajectories. A neural network is used to 
learn the unknown dynamics of the system. After 
each stance phase the “look ahead” costs are 
computed and the wieghts of the critic network are 
updated to minimize the costs. Simulation results 
demonstrate that the knee and ankle joints as well as 
the angle the foot makes with the ground track the 
corresponding profiles on the intact side, thereby 
improving stance and reducing assymetry.  

The rest of the paper is organized as follows - a 
dynamical model of the prosthetic system is 
developed in section 2. In section 3, the modeling of 
kinematic profiles and ground reaction force is 
described. The design and detailed formulations of 
the proposed controller are provided in section 4. The 
stability of the proposed approach and the efficacy in 
reducing gait assymetry is demonstrated through 
simulation results in section 5. Conclusions of the 
proposed technique and scope of future work are 
discussed in section 6.  

2 DYNAMICAL MODEL  

In this study, we examine the dynamics of a 
transfemoral prosthesis used to improve the mobility 
of an above knee amputee. The prosthetic device 
comprises of a knee joint and an ankle joint connected 
to the residual limb through a snug socket (Figure 1). 
While the dynamics of such a device are complex, we 
consider a simplified link segment representation of 
residual limb (Figure 1) that captures the movement 
in the sagittal plane (Mai & Commuri, 2016):  

𝑀ሺ𝜃ሻ𝜃ሷ  𝑉൫𝜃, 𝜃ሶ൯𝜃ሶ  𝐺ሺ𝜃ሻ  𝐹൫𝜃ሶ൯  𝜏ௗ

ൌ 𝜏  𝜏ீ 
(1)

where, ′𝑀ሺ𝜃ሻ′ denotes the inertia matrix of the 
coupled dynamics representing the knee-ankle 
system, ′𝑉ሺ𝜃, 𝜃ሶሻ′ stands for the Coriolis/ centripetal 
matrix, ′𝐺ሺ𝜃ሻ′ stands for the gravitational vector, 
′𝐹ሺ𝜃ሶሻ′  represents the frictional terms, ′𝜏ௗ′ 
represents the disturbance torque. On the right side of 
equation (1), ′𝜏′ is a 2x1 dimensional vector that 
represents the torque generated by each joint and ′𝜏ீ′ 
represents the ground reaction torque. ′𝜃′ and ′𝜃′ሶ  are 
vector quantities that represent joint angles and 
angular velocities. ′𝜃ሷ ′ represents angular acceleration.  
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The details of the matrices in equation (1) are 
given in the Appendix. 

 

Figure 1: Link segment representation of the prosthetic leg. 
Subscripts ‘k’ and ‘a’ denote quantities corresponding to 
knee joint and ankle joint respectively. 

3 KINEMATIC PROFILES AND 
GROUND REACTION TORQUE  

The inability to properly coordinate the movement of 
the knee and ankle joints during locomotion  can lead 
to several musculoskeletal and neurological disorders 
over time (Ranavolo, 2012). Therefore, the knee and 
ankle joints of a prosthetic leg must function in 
coordination to ensure the long-term health of the 
individual. Further, the position of the foot during gait 
is related to the instantaneous displacement of these 
joints. The movement of the prosthetic foot has to be 
nearly identical to that of the intact foot during 
corresponding instants in gait in order to reduce the 
asymmetry between the intact and amputated sides of 
the individual. 

The first step in the design of a controller is to 
determine the desired displacement profiles for the 
knee and ankle joints. This is problematic as these 
displacement profiles are dependent on the intent of 
the user and the terrain and are unknown at the time 
of control. For example, walking at slow pace versus 
walking at a brisk pace results in different 
displacement profiles of these two joints. 

In this paper we explore the use of nominal gait 
profiles that can be parameterized and used to study 
the gait of an individual over a variety of walking 
speeds. Considering the knee and ankle joints of an 
individual as shown in Figure 2, the nominal gait 
profile can be studied by dividing the gait into stance 
and swing phases (Figure 3). In the stance phase, the 
foot is in contact with the ground and supports the 
weight of the body. As the foot progresses from the 
stance to the swing phase, the weight of the body is  
 

 

Figure 2: Prosthetic leg joints angles. 

transferred to the other foot. The stance phase starts 
with ‘Heel Strike’ when the foot comes in contact 
with the ground. As the stance progresses to ‘Foot 
flat’ and ‘Mid stance’ subphases, more of the body 
weight is supported by the foot. After ‘Heel-Off’ and 
‘Toe-Off’ subphases the leg enters into the swing 
phase and the body weight shifts to the opposite leg. 
The nominal gait profiles for knee and ankle joints 
and foot position relative to the ground is given in 
Figure 3. 

 

Figure 3: Nominal gait profiles for knee, ankle joints and 
foot position relative to the ground; HS = Heel Strike, FF= 
Foot Flat, MS = Mid Swing, HO = Heel off, TO = Toe Off, 
MSW = Mid Swing, TS = Terminal Swing.  
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Ground reaction torques acting on the leg joints 
are a direct consequence of ground reaction force. 
Ground reaction force (GRF) is the counter force of 
the ground to human body during a gait. Ground 
reaction force (GRF) is proportional to body weight 
and transferred up to the leg joints and results in 
proportional torques. To maintain a stable forward 
dynamics during a gait, ground reaction force needs 
to be accounted as an external force acting on the 
system (Peasgood et al., 2006). GRF is typically 
evaluated in a loboratory setting using force plates. It 
is difficult to measure GRF outside a motion 
laboratory because of the lack of force plates to 
measure GRF (Recinos et al., 2020). In this paper, we 
estimate the ground reaction force and torque  into the 
knee and ankle joints with following equations 
(Millard, 2008):  

𝐹௭ ൌ 𝑘തሺ𝑧ሻ௦  𝑆𝑡𝑒𝑝ሺ𝑦, 0,0, 𝑑௫, 𝑐௫ሻ𝑧ሶ 
𝐹௫ ൌ µത 𝐹௭ 𝑠𝑔𝑛ሺ𝑣௫ሻ 

𝜏ீ ൌ 𝑑௭𝐹௫  𝑑௫𝐹௭ 

(2)

where, the vertical and horizontal force components 
on the joints are denoted as ′𝐹௭′ and ′𝐹௫′. ′𝑧′ and ′𝑧ሶ′ 
are penetration and penetration rate of the foot, ‘𝑘ത’, 
‘µത’, ‘𝑠𝑝𝑒’ are spring coefficient, friction coefficient 
and spring exponent. ′𝑑௫′, ′𝑐௫′ are maximal 
damping penetration and maximal damping 
coefficient.  ‘𝑣௫’ is the horizontal velocity of the 
contact point relative to the ground. ‘𝜏ீ’ stands for 
the ground reaction torque. ‘𝑑௭’ and ‘𝑑௫’ are the 
vertical and horizontal distances of the joints with 
respect to the foot-ground contact point. 

To develop a control system to generate 
appropriate torque for the knee and ankle joints, we 
parameterize the nominal gait profiles and ground 
reaction torques. Gait profiles and ground reaction 
torques are approximated with following Fourier 
equations:  

𝜃ሺ𝑡ሻ ൌ 𝑎  ሺ𝑎 cos 𝜔𝑡  𝑏 sin 𝜔𝑡ሻ
ହ

ୀଵ

 (3)

𝜏ீሺ𝑡ሻ ൌ 𝑐  ሺ𝑐 cos 𝜔𝑡  𝑑 sin 𝜔𝑡ሻ
ହ

ୀଵ

 (4)

where, ′𝜔′ is the angular velocity of the joint angles 
at ‘t’ instance. ′𝑎′, ′𝑐′, ′𝑎′, ‘𝑏′, ′𝑐′, ′𝑑′ can be 
found out using curve fitting algorithm (Mai, 2013). 

 

4 CONTROLLER DESIGN  

To design a controller to track the gait profiles shown 
in Figure 3, we first define the tracking error vector 
‘e’ and its derivative ‘eሶ ’ as follows: 

𝑒 ൌ ሺ𝜃 െ 𝜃ሻ 
𝑒ሶ ൌ ሺ𝜃ሶ െ 𝜃ሶሻ 

(5)

where, 𝜃୰ ൌ ሾ𝜃୰ 𝜃୰ሿ்; 𝜃ሶ୰ ൌ ሾ𝜃ሶ୰ 𝜃ሶ୰ሿ்; 
′𝜃′, ′𝜃′, ′𝜃ሶ ′, ′𝜃ሶ ′ are desired angular positions 
and velocities for knee and ankle joints. The dynsmics 
of the system in equation (1) can be represented using 
the filtered tracking error ‘r’ as  

𝑟 ൌ 𝑒ሶ  𝜆𝑒 (6)

where, 𝑟 is a 2x1 dimensional vector and 𝜆 > 0 is a 
design parameter. Using equation (5), we can 
represent the dynamics of the prosthetic system (1) as  

𝑀𝑟ሶ ൌ െ𝑉𝑟  𝑓ሺ𝑥ሻ െ 𝜏 (7) 

where, 𝑓ሺ𝑥ሻ comprises the nonlinear terms of the 
system.  

fሺxሻ ൌ 𝑀ሺ𝜃ሷ  𝜆𝑒ሶሻ  𝑉ሺ𝜃ሶ  𝜆𝑒ሻ  𝐹
 𝐺 െ 𝜏ீ  𝜏ௗ 

(8)

To estimate the nonlinear terms of the system, we 
propose a neuro-dynamic control structure that will 
learn the unknown dynamics of the system and 
generate control input ‘𝜏’ that is applied to knee and 
ankle joints to achieve a smooth gait and minimize 
the long-term cost function. The control input to the 
system is designed as:  

𝜏 ൌ 𝑓መሺxሻ  𝐾௩r െ υ  (9)

where, 𝑓መሺxሻ is the estimation of fሺxሻ, 𝐾௩ is design 
parameter, r is the filtered tracking error, υ ൌ
െύsgnሺrሻ is a robustifying term.  

To design the proposed controller, heel strike 
(HS) to heel strike (HS) instances have been 
considered as one gait cycle. During one cycle, in 
each instance we have defined the short-term costs for 
knee joint and ankle joints as a function of their 
tracking errors. The short-term cost function of the 
prosthetic system is defined as 𝑆ሺ𝑡ሻ.  𝑆ሺ𝑡ሻ is a 2x1 
dimensional vector comprises knee and ankle joints’ 
cost functions 𝑆 and 𝑆ୟ.  
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𝑆ሺ𝑡ሻ ൌ ሾ𝑆 𝑆ሿ் 

𝑆ሺ𝑡ሻ ൌ െ
1
2

ሺ
𝜃 െ 𝜃

𝜃
ሻଶ െ

1
2

ሺ
𝜃ሶ െ 𝜃ሶ

𝜃ሶ
ሻଶ 

𝑆ሺ𝑡ሻ ൌ െ
1
2

ሺ
𝜃 െ 𝜃

𝜃
ሻଶ െ

1
2

ሺ
𝜃ሶ െ 𝜃ሶ

𝜃ሶ
ሻଶ 

(10)

where 𝜃, 𝜃, 𝜃ሶ, 𝜃ሶ are desired angular positions 
and velocities for knee and ankle joints. 𝜃, 𝜃, 𝜃ሶ, 𝜃ሶ  
are actual angular positions and velocities for knee 
and ankle joints. 𝜃, 𝜃, 𝜃ሶ, 𝜃ሶ are the maximal 
values for position and velocities for knee and ankle 
joints.  

To analyze the prolonged effect of the proposed 
controller, the long-term cost of the system is 
caluclated. Long term cost is defined as the 
accumulated cost of the short time costs in equation 
(10). Long term cost function for prosthetic system 
can be represented as: 

𝐿ሺ𝑡ሻ ൌ  𝑆ሺ𝑡  1ሻ  𝛼𝑆ሺ𝑡  2ሻ  
𝛼ଶ𝑆ሺ𝑡  3ሻ  ⋯ 

ൌ 𝑆ሺ𝑡  1ሻ  𝛼𝐿ሺ𝑡  1ሻ 
(11)

In which, 𝛼 ሺ0 ൏ 𝛼 ൏ 1ሻ, is a discount factor and 
S(t) is the short-term cost function.  
  The critic network generates ‘J(t)’ as an 
approximation of the long-term cost function ‘L(t)’. 
Approximation of long-term cost function is defined 
with an RBF NN:  

ℎሺሻ ൌ 𝑒𝑥𝑝
ି

ห௫ିఓೕห
ೕ  ; 𝑗 ൌ 1,2,3,4, … 𝑘 

𝐽ሺ𝑡ሻ ൌ Wୡ
்hୡሺ𝑥ሻ  𝜀 

(12)

where ‘𝑥’ is the input to the network. ′𝜇′, ′𝑏′ is 
the center and width of the gaussian of the neural net 
‘k’. ‘Wୡ’ represents the weight of the critic network 
and ′𝜀′ is a very small value.  

In this control structure, critic network inputs are:  

𝑥  ൌ ሾ𝑒 𝑒 𝑒ሶ  𝑒ሶ 𝜃 𝜃 𝜃ሶ  𝜃ሶ 𝑓መሺ𝑥ୡሻ 𝑓መୟሺ𝑥ୡሻሿ (13)

In which, 𝑒, 𝑒, 𝑒ሶ, 𝑒ሶ are knee and ankle joints’ 
tracking errors and their derivatives. 𝜃 𝜃 𝜃ሶ  𝜃ሶ are 
knee and ankle joints’ calculated angles and 
velocities. 𝑓መሺ𝑥ୡሻ, 𝑓መୟሺ𝑥ୡሻ are non-linearities 
estimation of knee and ankle joints by actor network. 
Approximation of the non linearities is defined by 
RBF NN:  

ℎሺሻ ൌ 𝑒𝑥𝑝
ି

ห௫ఽౙିఓೕห
ೕ  ; 𝑗 ൌ 1,2,3,4, … 𝑘 

𝑓ሺ𝑥ୡሻ ൌ W
்hሺ𝑥ୡሻ  𝜀 

(14)

where ‘𝑥’ is the input to the actor network. ′𝜇′, ′𝑏′ 
is the center and width of the gaussian of the neural 
net ‘k’. ‘Wୟ’ represents the weight of the actor 
network and ′𝜀′ is a very small value.  

The backpropagation error for critic network 
′𝑒′ is defined as:  

𝑒 ൌ ሾ𝐽ሺ𝑡 െ 1ሻ െ 𝑆ሺ𝑡ሻሿ െ 𝛼𝐽ሺ𝑡ሻ (15)

Update laws of the critic network are defined as:  

Wሶ
ୡ ൌ αFhୡr െ κF‖eୡ‖Wୡ (16)

where ‘𝛼’ is the discount factor, and ‘F’ and ′κ′ are 
design parameters. ‘r’, ‘eୡ’ are filtered tracking error 
and critic network’s backpropagation error 
respectively. Further, ‘hୡ’ for critic network can be 
computed using (12). 

 

Figure 4: NDP Control Structure for prosthetic leg. 

With the help of the critic network, the actor 
network updates itself to reduce the long-term cost 
and approximate the nonlinearities of knee and ankle 
joints. By learning the nonlinearities of the system, it 
exerts proper torque to the knee and ankle joints for 
smooth locomotion. To learn and estimate the non-
linearities with the actor network we use RBF 
network mentioned in equation (12). Input to the actor 
network are:  

𝑥ୡ ൌ ሾ𝑒 𝑒 𝑒ሶ 𝑒ሶ 𝜃 𝜃 𝜃ሶ  𝜃ሶ  𝜃ሷ 𝜃ሷሿ  (17)

Where, 𝑒, 𝑒, 𝑒ሶ, 𝑒ሶ are knee and ankle joints’ 
tracking errors and their derivatives. 
𝜃, 𝜃, 𝜃ሶ, 𝜃ሶ, 𝜃ሷ, 𝜃ሷ are knee and ankle joints’ 
calculated angles, velocities and accelerations. 

The input law into the system is corrected by the 
actor network to minimize the long-term cost 
function. In order to find out a control goal which 
reduce the infinite horizon long term system cost to 
minimum possible value, we define an ultimate 
control goal ‘Uc(t)’. The ultimate control goal ‘Uc(t)’ 
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= 0, which is the long-term cost approximation of 
‘J(t)’. 

Back propagation error for actor network is given 
as follows:  

𝑒 ൌ 𝑈ሺ𝑡ሻ െ 𝐽ሺ𝑡ሻ (18)

The tuning rule for actor network is given as:  

Wሶ
ୟ ൌ Fhୡr െ κF‖eୡ‖Wୟ (19)

In which, ‘F’ and ‘κ’ are design parameters. ‘r’, 
‘eୡ’ are filtered tracking error and actor network’s 
backpropagation error respectively. ‘hୡ’ for actor 
network can be computed using (14). 

Theorem: The control law in equation (9) with the 
actor and critic network weight update laws in 
equation (16) and (19), ensures the tracking errors in 
equation (5) will be ultimately bounded. Further, the 
cumulative long-term cost will be bounded.  

5 NUMERICAL EXAMPLE 

In this section simulation results have been provided 
to demonstrate proposed controller’s performance. 
These simulation experiments were designed to study 
the performance with respect to: 

a)  tracking the desired knee and ankle joint profiles, 

b)  estimation of the nonlinear terms in the dynamics,  

c)  orientation of the foot relative to the ground 
during a gait,  

d)  adaptability to variable walking speed, and 

e) robustness to measurement and actuator noises.  

5.1 Experimental Setup  

In order to study the performance of the proposed 
control strategy, it is assumed that the prosthetic 
device is fitted on a healthy male of height 1.78 
meters and weighing 90.7 kilograms. Corresponding 
gait data from a similar intact individual is first 
collected and analyzed. In these simulation studies it 
is assumed that the individual is walking in normal 
cadence. Based on the cadence, nominal trajectories 
for knee and ankle joints are then approximated using 
parameterization of nominal gait data collected from 
human subjects (Winter 2009). From Figure 5, it can 
be seen that the approximate displacement profile for 
the knee is close to the actual knee profile of an 
individual.  

 
Figure 5: Nominal and individual’s knee displacement 
profiles. 

Further, data in Table 1 shows that at each phase 
of the gait, the approximate displacement profile is 
within a small bound of the actual displacement 
profile seen in a similar intact individual. Therefore, 
in these simulation examples, the stance time is first 
measured from the intact side and then used to 
generate a desired displacement profiles using the 
parametrization of naminal gait. 

Table 1: Knee, Ankle and Foot angles for nominal and 
individual’s gait profiles during stance phase. Nom. = 
Nominal, Ind. = Individual. HS=Heel Strike, FF = Foot 
Flat, MS = Mid Stance, HO = Heel Off, TO = Toe Off. 

Gait 
Ph.

Knee Angle Ankle Angle Foot Angle
Nom. Ind. Nom. Ind. Nom. Ind.

HS 3.48 1.47 -1.00 -4.67 17.35 7.68 
FF 19.68 11.61 -2.46 1.64 0.00 1.05 
MS 14.63 4.47 6.43 6.43 0.58 -1.09 
HO 9.04 2.85 9.70 12.11 -9.99 -4.18 
TO 58.39 62.69 -15.94 -6.84 -81.60 -71.19

5.2 Simulation Results   

The parameters for model dynamics and design 
values are given in the Appendix (Table 4-5). The 
tracking performance of the knee and ankle joints and 
foot position is shown in Figures (6-8). Figure 6 
shows that the proposed NDP controller is able to 
track the nominal knee and ankle profiles with very 
little error. Actor network is able to accurately 
estimate the non-linearities associate with knee and 
ankle joints (Figure 7). As a result, the foot position 
is maintained close to the desired position during 
different gait phases. It is observed in Figure 8 that 
the foot position in both stance and swing phase of the 
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prosthesis is similar to that of an intact leg. Further 
during the Foot Flat (FF) to Mid Stance (MS) phase, 
the controller is able to maintain desired foot position 
identical to an intact leg. This implies that the stance 
on both intact and prosthetic side is similar leading to 
the conclusion that the weight bearing is similar on 
both sides.  

 

Figure 6: Tracking performance of NDP for knee and ankle 
joints. 

 

Figure 7: Estimation of Nonlinearities for knee and ankle 
joint. 

 
Figure 8: Foot position of the prosthetic leg with NDP 
controller. (HS=Heel Strike, FF = Foot Flat, MS = Mid 
Stance, HO = Heel Off, TO = Toe Off, SwP = Swing Phase, 
StP = Stance Phase). 

To check the effect of variations in walking speed, 
we calculate the long-term costs associated with knee 
and ankle joints with the proposed control model.  We 
have tabulated the long-term cost for 3 steps with 
medium, slow and fast cadence (Table 2). To 
compare the proposed controller’s performance with 
traditional PD and adaptive NN based controllers we 
perform simulation with same set up and observe that 
NDP based controller outperforms both PD and 
Adaptive NN controllers (Table 2). 

Table 2: Long-term cost for different walking cadence. 

Gait Type Joint PD Adaptive NN NDP
Medium 
Cadence  

Ankle joint 1.05 0.4694 0.0082
Knee joint 5.05 1.3513 0.0083

Slow 
Cadence 

Ankle joint 0.65 0.3728 0.0055
Knee joint 5.59 0.9657 0.0055

Fast 
Cadence 

Ankle joint 1.8698 0.6981 0.0984
Knee joint 6.0650 2.0096 0. 0985

To investigate the performance of the proposed 
controller with noise, uniformly distributed 
measurement and actuator noises are added into the 
system. System is affected with 2% added 
measurement noise to 𝜃 and 𝜃ሶ  and 20% actuator noise 
to 𝜏. Considering the individual is walking in a 
medium cadence, we analyze the long-term cost for 
the proposed NDP, PD and Adaptive NN controllers 
in noisy environment. It is observed from the 
simulation results tabulated in Table 3 that NDP 
based controller is less susceptible to added noise and 
performs better than the rest controllers in terms of 
long-term cost.  
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Table 3: Long term cost with increasing measurement and 
actuator noise. 

Noise Joint PD Adaptive NN NDP
2% measurement 

Noise 
Ankle joint 1.34 0.4845 0.0227
Knee joint 5.5678 1.3868 0.0127

20% actuator 
noise 

Ankle joint 1.2686 0.4917 0.0241
Knee joint 5.2235 1.1219 0.0242

6 CONCLUSIONS 

In this paper, a novel neuro-dynamic control 
approach for above-knee prosthetic system was 
developed to reduce gait asymmetry and achieve near 
natural gait. Using a filtered tracking error system and 
an actor-critic network, the controller was shown to 
be able to track synthesised displacement profiles for 
the knee and ankle joints while reducing the long-
term cost. As a result, the performance of the 
controller improves after each step, i.e., after each 
stance phase of the gait.  Data collected in the lab 
indicates that the synthesised gait profiles are close to 
the knee and ankle displacements in an intact 
individual while walking at self-selected pace. 
Simulation results demonstrate that the knee and 
ankle joints as well as the angle the foot makes with 
the ground track the corresponding profiles on the 
intact side, thereby improving stance and reducing 
assymetry. In the future, the  performance of the 
controller will be verified on a prosthetic device 
mounted on a gait simulator. 
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APPENDIX 

Dynamics Matrices: 𝑀ሺ𝜃ሻ ൌ 
𝑀ሺଵ,ଵሻ 𝑀ሺଵ,ଶሻ

𝑀ሺଶ,ଵሻ 𝑀ሺଶ,ଶሻ
൨ 

𝑀ሺଵ,ଵሻ ൌ ሺ𝑚  𝑚ሻ𝑙
ଶ  𝑚𝑙

ଶ  2𝑚𝑙𝑙 cos 𝜃 

𝑀ሺଵ,ଶሻ ൌ 𝑀ሺଶ,ଵሻ ൌ 𝑚𝑙
ଶ  𝑚𝑙𝑙 cos 𝜃 

𝑀ሺଶ,ଶሻ ൌ 𝑚𝑙
ଶ 

𝑉ሺ𝜃, 𝜃ሶሻ ൌ ቈ
െ𝑚𝑙𝑙ሺ2𝜃ሶ𝜃ሶ  𝜃ሶଶሻ sin 𝜃

𝑚𝑙𝑙𝜃ሶ

ଶ sin 𝜃

 

𝐺ሺ𝜃ሻ  

ൌ 
ሺ𝑚  𝑚ሻ𝑔𝑙 cos 𝜃  𝑚𝑔𝑙 cosሺ𝜃  𝜃ሻ

𝑚𝑔𝑙 cosሺ𝜃  𝜃ሻ ൨ 

𝐹ሺ𝜃ሻ ൌ 𝜅ௗሺఏሻ𝑠𝑔𝑛ሺሶ 𝜃ሶ ሻ 

𝜃 ൌ ሾ𝜃 𝜃ሿ்; 𝜃ሶ ൌ ሾ𝜃ሶ 𝜃ሶሿ்; 𝜃ሷ ൌ ሾ𝜃ሷ 𝜃ሷሿ். 

𝜏ௗ ൌ ሾ𝜏 𝜏ሿ்; 𝜏ீ ൌ ሾ𝜏ீሺሻ 𝜏ீሺሻሿ்; 𝜏 ൌ
ሾ𝜏 𝜏ሿ்  

Subscripts ‘k’ and ‘a’ denotes knee and ankle joints 
respectively.  

Table 4: Plant parameters. 

𝑚 ሺ𝐾𝑛𝑒𝑒 𝑡𝑜 𝑎𝑛𝑘𝑙𝑒 𝑙𝑖𝑛𝑘 ሺ𝑆ℎ𝑎𝑛𝑘ሻ 𝑚𝑎𝑠𝑠ሻ 3.16 kg 

𝑚 ሺ𝐴𝑛𝑘𝑙𝑒 𝑎𝑛𝑑 𝑓𝑜𝑜𝑡 𝑚𝑎𝑠𝑠ሻ 1.001 kg 

𝑙 ሺ𝐾𝑛𝑒𝑒 𝑡𝑜 𝑎𝑛𝑘𝑙𝑒 𝑗𝑜𝑖𝑛𝑡 𝑙𝑒𝑛𝑔𝑡ℎሻ 0.07 m 

𝑙 ሺ𝐴𝑛𝑘𝑙𝑒 𝑗𝑜𝑖𝑛𝑡 𝑡𝑜 ℎ𝑒𝑒𝑙 𝑙𝑒𝑛𝑔𝑡ℎሻ 0.093 m 

𝑔 ሺ𝐺𝑟𝑎𝑣𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛ሻ 9.8 ms-2 

𝜅ௗሺఏሻ ሺ𝐷𝑦𝑛𝑎𝑚𝑖𝑐 𝐹𝑟𝑖𝑐𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡ሻ 0.2 

Assuming that the individual is an average male 
weighing 73.0 kilograms (kgs) and of height 1.741 
meters (m), 𝑚, 𝑚, 𝑙, 𝑙 are collected from (P, 
1996)  

Table 5: Design values. 

𝜆ሺ𝐷𝑒𝑠𝑖𝑔𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟ሻ 6 

𝐾௩ሺ𝐷𝑒𝑠𝑖𝑔𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟ሻ 4 

ύሺ𝐷𝑒𝑠𝑖𝑔𝑛 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟ሻ 0.3 

𝛼 (Discount factor) 0.95 

F (NN tuning gain) ቂ22 0
0 22

ቃ 

κ (NN design parameter) 1 

𝑘ത (Spring coefficient to measure 
GRF)

2ൈ 10 N𝑚ିଵ 

𝑆𝑝𝑒 (Spring exponent to measure 
GRF)

2.2 

µത (Friction coefficient to measure 
GRF)

0.2 

Network structure for actor and 
critic 

Input node: 10 
Hidden layer: 30 
Output layer: 2
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