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Abstract: Finding the prime factors of large composite integers is the fundamental computational problem in number
theory. Currently, the fastest known integer-factoring algorithm is the General Number Field Sieve method
(GNFSM) which has been used by the research community to factor RSA moduli of sizes 500–800 bits. One
of the steps of this method involves finding non-zero solutions of the linear system available from the sieving
stage. Since the linear systems involved in GNFSM are necessarily sparse, special iterative system solvers
are used. One such solver is called the Wiedemann method. This paper reports our efficient implementa-
tion of the Wiedemann method, and its block version. We start with a single-core sequential implementation,
and then make efforts to parallelize the implementation to run on multiple cores of a single machine. Spe-
cial load-balancing techniques are designed to reduce synchronization overheads after each iteration. Finally,
we distribute the computation across multiple computing nodes. Our load-balancing ideas are refined, and
computation-communication overlapping techniques are explored in order to absorb the communication over-
heads. Speed-up figures achieved by the different improvements incorporated in our implementations are
reported. To the best of our knowledge, we are the first to report distributed implementations of the Wiede-
mann method.

1 INTRODUCTION

Public-Key Cryptographic (PKC) algorithms like
RSA (Rivest et al., 1978) serve as the fundamental se-
curity primitives to ensure confidentiality, authentic-
ity, and non-repudiation of Internet communications
and data storage. Like other public-key encryption
algorithms, RSA uses two keys: one public key or en-
cryption key available to all, and a private key or de-
cryption key which is kept secret. RSA involves four
significant steps: (i) key generation, (ii) key distribu-
tion, (iii) encryption, and (iv) decryption. The secu-
rity of RSA depends on the difficulty of factoring the
product of two large prime numbers. Many general-
purpose integer-factoring algorithms are developed in
the last few decades. The fastest known such al-
gorithm is the General Number Field Sieve Method
(GNFSM) (Cowie et al., 1996; Case, 2003) which is a
generalization of another algorithm known as the Spe-
cial Number Field Sieve Method (SNFSM) (Lenstra
et al., 1993; Montgomery et al., 1997). Besides cryp-
tographic applications, factoring large composite in-

tegers is the fundamental computational problem in
number theory.

Many integer-factoring algorithms (including
GNFSM) require a linear-algebra step. A large lin-
ear system of equations is generated in the sieving
stage. Subsequently, multiple non-zero vectors in the
null space of this system are computed. The sys-
tems available from GNFSM are necessarily sparse.
Therefore, a study of sparse system solvers is impor-
tant from number-theoretic and cryptographic points
of view.

A way to solve linear systems of equations is
structured Gaussian elimination (SGE) (Bender and
Canfield, 1999; Pomerance and Smith, 1992). SGE
can significantly reduce the system size by eliminat-
ing many rows and columns, eventually leading to a
significantly dense system which is then solved by a
general-purpose system solver. Although SGE can be
used as a precomputation to the final system-solving
algorithm, it is not efficient in practice for very large
systems. Current literature suggests that for solving
large sparse systems, iterative algorithms collectively
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known as Krylov-space methods (Krylov, 1931) work
more efficiently than SGE. Two popular variants of
Krylov-space methods are the Lanczos method (Lanc-
zos, 1952) and the Wiedemann method (Wiedemann,
1986). Both these methods use a black-box model for
solving large sparse systems (unlike SGE which ex-
ploits the structural properties of the matrices). They
perform a linear number of matrix-vector products
and other vector operations. Their complexity is mea-
sured in terms of the dimensions of the input matrices.

Speeding up the performances of the sparse sys-
tem solvers involves several optimization techniques.
One such optimization technique introduces the con-
cept of blocking for both the methods in order to en-
hance parallelization possibilities and to get multiple
solutions simultaneously. (Coppersmith, 1994) intro-
duces the block version of the Wiedemann method,
and (Montgomery, 1995) introduces the block ver-
sion of the Lanczos method.

One step of the Wiedemann method finds a mini-
mal generating polynomial of a sequence of matrix-
vector products. The block version is extended to
minimal generating matrix polynomials (Kaltofen,
1995; Villard, 1997). To improve the efficiency of the
method, a particular effort is made by (Thomé, 2002)
that focuses on optimizing the step of computing the
minimal generating matrix polynomial. An initial at-
tempt to implement the block-Wiedemann method in
a distributed environment is reported by (Kaltofen
and Lobo, 1999). However, the matrices considered
are smaller than those generated after the post-sieving
stages. In 2009, the block version of the method is im-
plemented in a grid platform by the team of interna-
tional researchers to break the 768-bit RSA challenge
key (Kleinjung et al., 2010). It is reportedly used
in the factorization of RSA keys of different other
lengths (Bai et al., 2012; Bai et al., 2016). The ef-
fort of (Yang et al., 2017) on the factorizations of
381-bit RSA keys is made on a cloud platform, and
also uses the block-Wiedemann method for the linear-
algebra step. Other papers focus on implementations
in multi-core environment (Penninga, 1998) or on lin-
ear systems generated over large prime fields (Bar-
bulescu et al., 2014). (Bhateja and Kannan, 2017)
propose a cache-optimized version of both the Lanc-
zos and the Wiedemann methods. (Cavallar et al.,
2000) and (Chen et al., 2008) both use the block-
Lanczos method in their efforts to factor 512-bit RSA
keys.

In this paper, we report optimized versions of the
Wiedemann and the block-Wiedemann methods, their
implementation details, and the experimental results
for the sequential, parallel (single-node), and dis-
tributed (multi-node) settings. The rest of the paper

is organized as follow. In Section 2, the Wiedemann
and the block-Wiedemann methods are described.
Section 3 describes our implementational details of
the Wiedemann and the block-Wiedemann methods,
where we describe our load-balancing strategies and
other practical optimizations. In section 4, experi-
mental setup and results achieved are shown. Section
5 concludes the paper after enumerating some scopes
of extending our study.

2 THE WIEDEMANN AND
BLOCK-WIEDEMANN
METHOD

This section starts with a detailed foundation of the
Wiedemann method, together with the Berlekamp–
Massey method which is used for finding the mini-
mal polynomial. This is followed by an introduction
to Coppersmith’s version of the block-Wiedemann
method.

2.1 The Wiedemann Method over GF(2)

Introduced by Douglas Wiedemann (Wiedemann,
1986) to solve large sparse linear systems over fi-
nite fields, the Wiedemann method is a Krylov-space
method. It is a randomized Las Vegas algorithm
that always provides a correct output or reports fail-
ure. Unlike the Lanczos method (Lanczos, 1952),
it does not require the matrix to be symmetric or
positive definite. It involves only the arithmetic op-
erations of GF(2). The Wiedemann method uses
an external algorithm called the Berlekamp–Massey
method (Berlekamp, 1968; Massey, 1969) for finding
minimal polynomials.

Given a matrix B of size M×N over GF(2) with
M > N and a non-zero vector u, we want to solve the
linear system

Bx≡ u (mod 2). (1)

The objective is to find multiple solutions for the vec-
tor x. The Wiedemann algorithm requires the system
to be in the form

Ax = b, (2)

where A is an N ×N matrix. In order to adapt the
algorithm, the input system (1) needs to be converted
to equation (2) as

A = BtB (3)

and
b = Btu, (4)

where Bt is the transpose of the input matrix B. The
characteristic polynomial of A is defined as χA(x) =
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det(xI−A), where I is the N×N identity matrix. By
the Cayley–Hamilton theorem, A satisfies χA(x), that
is, χA(A) = 0. The minimal polynomial of A is the
monic non-zero polynomial of the smallest degree for
which µA(A) = 0. It is known that µA(x) divides the
characteristic polynomial χA(x), that is, µA(x) | χA(x)
in GF(2)[x]. Wiedemann’s method computes the min-
imal polynomial of A as

µA(x) = xd +ud−1xd−1 +ud−2xd−2 + · · ·+u1x+u0.
(5)

Here, d = deg(µA(x)) ≤ N. The coefficients of µA(x)
are solved using the Berlekamp–Massey algorithm.
This requires the computation of Akv for a non-zero
vector v, and for k = 0,1,2, . . . ,2d−1. Since µA(A) =
0, for any k ≥ d, we have

Akv−ud−1Ak−1v−·· ·−u1Ak−d+1v−u0Ak−dv = 0.
(6)

A solution for x is obtained by putting v = b as

x =−u−1
0 (Ad−1b+ud−1Ad−2b+ud−2Ak−3b+u1Ab).

(7)
We consider the solution if x 6= 0 and Ax = 0. One
of the most time-consuming task here is computing
the matrix-vector product in each iteration of the two
loops.

2.2 The Block-Wiedemann Method over
GF(2)

Coppersmith (1994) introduces a block version of the
Wiedemann method to increase the scope of paral-
lelization. In the block method, the concept of the
scalar sequence by Wiedemann (1986) is replaced by
a linearly generated matrix sequence. Subsequently,
the minimal matrix polynomial is generated. In or-
der to compute the minimal matrix polynomial, the
concept of multivariate Berlekamp–Massey method
is introduced by (Coppersmith, 1994; Kaltofen and
Yuhasz, 2013). (Kaltofen and Lobo, 1999) uses a ho-
mogeneous block Toeplitz system. The Fast Power
Hermite-Padé Solver (FPHPS) algorithm of Becker-
mann et al. (Beckermann and Labahn, 1994) to com-
pute the minimal matrix polynomial is proposed by
(Villard, 1997). (Kaltofen and Saunders, 1991) de-
scribe an asymptotically faster algorithm than the bi-
nary search algorithm that Wiedemann proposes to
compute the rank of a black-box matrix over large
fields.

In Coppersmith’s version of the block-
Wiedemann method, The first step (called BW1),
consists of computing the sequence

AL
(i) = (UT AiZ). (8)

This step starts with two random blocks U of size
N × m and V of size N × n. Multiplying succes-
sively by the input matrix A, it computes AiV , and
U is used to compute the projections UT AiV of size
N× n. To obtain kernel vectors, only the first L co-
efficients of the sequence are required, where L =
N/m+N/n+O(1).

In Step BW2, Coppersmith modifies the
Berlekamp–Massey method as the matrix
Berlekamp–Massey method or block Berlekamp–
Massey method. It takes the sequence AL

(i)

output by Step BW1, and defines the polynomial
AL(λ) ∈ GF(2)(m×n) of degree N/m+N/n+1. It
generates a matrix sequence F(λ) of degree dN

n e.
This is the main step of the Block Wiedemann
algorithm. Unlike the scalar version, this step is the
most complex.

Steps BW3 involves deg(F) matrix-block multi-
plications and block-vector multiplications. It also
performs δ(F) matrix-vector multiplications, and
δ(F) tests for the nullity of vectors.

3 IMPLEMENTATION DETAILS
OF THE WIEDEMANN AND
THE BLOCK-WIEDEMANN
METHODS OVER GF(2)

In this section, our implementational details of the
Wiedemann and the block-Wiedemann methods over
GF(2) are explained, including space optimizations,
introduction to new load-balancing strategies, and
other practical optimizations that help us gain im-
proved speed-up for both the methods.

3.1 Representing the Matrix

To store the sparse matrices, there are various possi-
bilities (Lin et al., 2003; Bhattacherjee and Das, 2010)
like the compressed column-storage format (CCS),
the compressed row-storage format (CRS), and the
linked-list representation. The CRS and the CCS
formats provide efficient storage schemes because of
their low memory requirements, so we adopt these
formats.

The CRS representation maintains three arrays
value array, column index, and row pointer. We
scan the matrix A row-wise, and the value array
stores the non-zero elements of the matrix. The array
column index stores the column numbers of the non-
zero values stored in the value array, and row pointer
stores the number of non-zero values encountered be-
fore the current row of the original matrix A.
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The value array in the CCS representation stores
the non-zero entries in the column-major order. It
maintains an array row index to store the row num-
bers of non-zero entries and an array column pointer
to store the number of non-zero values encountered
before the current column of the original matrix A.

If the number of non-zero entries in the matrices is
M, then both the CRS and the CCS representations re-
quire space proportional to M. The CRS and the CCS
representations of the following matrix A over GF(2)
are shown in Figure 2 and Figure 2, respectively. We
assume that array indexing starts from 0.

A =


1 0 0 1 0
0 1 0 1 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 1



Figure 1: CCS representation of the matrix A.

Figure 2: CRS representation of the matrix A.

For systems over GF(2) (as our case is), the only
non-zero entry is 1, so the value array list is not ex-
plicitly needed in both the representations.

The Wiedemann method requires a square system,
whereas those available from GNFSM sieves are not
square. We therefore work with the square matrix
AtA, and a matrix-vector product (AtA)v involves two
matrix-vector products v′ = Av and Atv′. This is the
reason why we store the given matrix A in both repre-
sentations.

3.2 Parallelization using a Controlled
Load-balancing Technique

The first step of the Wiedemann method involves
many matrix-vector multiplications. We take a ran-
dom vector v of dimension N× 1, and keep on pre-
multiplying v by the input matrix A. Iteratively it gen-
erates the sequence Aiv for i = 0,1, · · · ,2N−1. In the
i-th iteration, Aiv is computed by multiplying the ma-
trix A with the vector Ai−1v generated in the previous
iteration. In the third step, a random vector b of di-
mension N×1 is taken, and repeatedly pre-multiplied
by the input matrix A for i= 0,1, · · · ,N−1. The num-
ber of iterations in the third step is half of that in the
first step.

It is evident that the iterations behave very sequen-
tially, that is, the output Ai−1v of one iteration should

be fully ready for feeding to the next one for com-
puting Aiv = A× (Ai−1v). The only way to optimize
an iteration of the method is to parallelize the basic
arithmetic operations like sparse matrix-vector multi-
plications. Such methods are not suitable for massive
multi-core parallelization. Moreover, it is essential to
ensure that every core (or processor) shares more or
less the same amount of computational load. Other-
wise, the synchronization step at the end of every it-
eration may keep many nodes waiting, thereby wast-
ing significant (parallel) running time. To sum up, we
face two challenges. First, the parallelization is rather
fine-grained, and second, benefits of parallelization
are lost in absence of effective load balancing.

A third problem associated with matrices avail-
able from GNFSM sieves is that the sparse matrix
entries are not non-zero with a uniform probabil-
ity. Instead, such matrices have some distinct dis-
tributions of non-zero entries. In order to work
around these problems, an effective load-balancing or
loop-scheduling strategy is needed to compute sparse
matrix-vector multiplications. The load-balancing
constructs of OpenMP (OpenMP, 2016) are exploited
together with additional strategies derived from our
mathematical analysis. During the sparse matrix-
vector multiplication mul1 : v′ = Aiv, we use the CRS
representation of the matrix A. Since the rows fol-
low the same statistical distribution, we evenly dis-
tributed them among all the available P processors or
cores. Initially, no scheduling constructs are used.
For the second sparse matrix-vector multiplication
(mul2 : Atv′) (where v′ = Av) in each Wiedemann it-
eration, we use the CCS representation of A (which is
the CRS representation of the transpose At ). We start
with no load-balancing or loop-scheduling strategies.
As already mentioned, the columns of A are not iden-
tically distributed in terms of counts of non-zero en-
tries. We therefore need to devise custom-made load-
balancing strategies alongside the constructs provided
by OpenMP. One such strategy is called controlled dy-
namic load balancing. Here, the matrix is initially an-
alyzed to extract information like the maximum and
the minimum numbers of non-zero entries in a col-
umn, the indices of the denser columns, the indices of
the columns with all zero entries, and so on. Based on
these information, we implement the concept of shar-
ing and stealing which work as follows. The available
cores are divided into smaller groups, and the range
of column indices are also divided. This groupings
are based on manual calculations based on column-
distribution data. The subgroups are assigned various
chunks or ranges of the columns, and then we use dy-
namic scheduling to process the chunks of columns.
The subgroup sizes and the column ranges are ex-
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perimentally optimized by trying several possibilities.
In the controlled static load balancing scheme, the
static construct (circular scheduling) is used in con-
junction with the pre-analyzed grouping of the cores
and chunking of columns.

3.2.1 Distributed Implementation of the
Wiedemann Method

The implementations reported in the literature use
multi-core (more specifically, shared-memory) archi-
tecture. In addition to single-node implementations,
we also carry out multi-node implementations. We
need to handle inter-node communications efficiently
during the synchronization after every iteration of the
Wiedemann loop.

We investigate two ways of distributing the com-
putational load to multiple nodes. First, we note that
the Wiedemann method falls under the category of
Las Vegas algorithms that may report failure, and we
need multiple solutions in the null space of the given
matrix with the hope that at least one of these leads
to a non-trivial factoring of the input integer. So we
can let every node run the same algorithm with a dif-
ferent random vector v. Here, the parallel running
time remains the same as that of a single execution
of a single-node multi-core implementation. It only
helps in getting multiple non-zero solutions, thereby
increasing the probability of successful factoring. In
this approach, the communication overhead is essen-
tially absent, as every node runs independently of one
another. However, the degree of parallelization is re-
stricted by the number of independent runs required
to obtain a successful factoring (with high probabil-
ity). More precisely, each random vector can factor
with a probability of 1/2, so only a few independent
trials are needed for achieving high success proba-
bility. Having a larger number of nodes than this
requirement cannot be meaningfully exploited using
this idea.

A better option is to run the matrix-vector mul-
tiplications in the distributed setting. We need to
distribute the rows judiciously to the collaborating
nodes. For the matrix A, this can be done by equally
dividing the rows. However, during the multiplica-
tion by the transpose At , we have an uneven dis-
tribution of non-zero entries in different columns of
A. A careful pre-planning is necessary before tak-
ing distribution decisions. More processors need to be
used for handling the denser columns than those han-
dling the sparser columns. We use the same trial-and-
optimize strategy as explained in connection with our
controlled load-balancing policy for single-node im-
plementations. This distribution idea is not arbitrarily
scalable, because each Wiedemann iteration requires

the full vectors v and v′ for synchronization. These
vectors need to be communicated to all the participat-
ing nodes.

3.3 Implementational Details of the
Block-Wiedemann Method

This section explains our implementation and prac-
tical optimization details for the block-Wiedemann
method. We start with a single-node multi-core im-
plementation, and then port it to a distributed imple-
mentation. As before, we represent the matrices in
the CRS and CCS formats. A new load-balancing
technique is developed and reported for the block-
Wiedemann method.

3.3.1 Saving Operations

First suggested by (Thomé, 2002), many operations
are repeated in the block Wiedemann method. Some
of the results can be saved to be reused when needed.
The saved computations particularly boost the perfor-
mance of BW3. In the steps BW1 and BW3, the prod-
ucts of the input sparse matrix A and the already com-
puted blocks AkV are required twice. These results
are saved during step BW1 for use in BW3. This re-
duces the number of matrix-block computations con-
siderably in BW3.

3.3.2 Choice of Parameters

To start with, we need to choose the block size m×n.
The number of useful coefficients in the sequence
AL decreases with m and n, and the complexity of
the block operations increases with m and n. After
many experimental trials, we fix these parameters as
m= 512 and n= 512. In the step BW2, two additional
parameters s and d need to be defined. We notice that
fixing s= 1 as it is suggested (s= m

n in (Thomé, 2002)
or s = 1 in (Anand and II, 2007)) does not provide a
high probability of success. The assumption that the
coefficient of degree zero in the sequence AL is of full
rank also often appears to be wrong. Therefore, we
decide to find at each execution an appropriate value
of s, that is, the one for which the columns of the
matrices AL[0], . . . ,AL[s−1] form a basis of GF(2)m.
Moreover, we fix d =

⌈N
m

⌉
.

3.3.3 An Adaptive Load-balancing Technique

A scheduling approach for a multi-node cluster pro-
posed by (Bhattacherjee and Das, 2010) computes the
time for each unit operation. A runtime adaptive load-
balancing algorithm proposed by (Lee and Eigen-
mann, 2008) uses the cumulative time per core. Every
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core loads the entire sparse representation of the ma-
trix under this approach. Following this approach, we
extend the controlled load-balanced scheduling, and
develop an adaptive load-balancing algorithm for dis-
tributing the load across multiple nodes. In this tech-
nique, we try to normalize the execution capacities
of the cores by ensuring that the average execution
time per core remains the same. Let N be the num-
bers of rows/columns that need to be processed, and
M the number of available cores. Initially, N

M num-
bers of rows/columns are distributed to each of the
M cores. The matrix-vector (or block vector) product
operation is executed, and the execution time for each
row/column is stored in an array/list. The average ex-
ecution time is calculated as total execution time

M , where
the total execution time is the sum of the execution
times of all rows/columns. Finally, the rows/columns
are redistributed to the cores in following manner.

• Compute the sum of the execution times for all
rows/columns in the range 0 to N−1.

• Assign the row/column range i to j to the k-th core
such that the total execution time for the range i to
j is less than the average execution time.

• Record the starting and ending indices of
rows/columns for each core.

4 EXPERIMENTAL RESULTS

Our computations are carried out in Intel Xeon E5-
2683v4 16C/32T Linux machines. Each node has 32
cores clocked at 2.1 GHz, and there are eight worker
nodes, each having 128 GB RAM. These nodes are
connected via an InfiniBand switch. The gcc com-
piler version 9.2.0 is used, OpenMP version 4.5 is
used for thread-level parallelism, and OpenMPI 3.1
is used for the distributed implementations. Pro-
grams are compiled with the –O2 optimization flag.
We have considered two matrices A1 and A2 of sizes
3698651×2934621 and 2100000×1500000, respec-
tively. The speedup figures achieved by the single-
node implementations are listed in Table 1. Here, DS
and SS refer to dynamic and static scheduling without
any explicit load-balancing policy, whereas CDS and
CSS refer to dynamic and static scheduling with our
controlled load-balancing policy. Since the rows of
A are statistically identical, we do not apply our con-
trolled load-balancing strategy for the multiplication
mul1 (computation of Av). This is applied only for
the multiplication mul2 (computation of Av′). Static
scheduling (without load balancing) performs very
poorly for mul2 and is not listed in the table.

Table 1: Speed-up achieved by several single-node multi-
core implementations.

Number mul1 mul2
of cores DS SS DS CDS CSS

A1

4 1.64 1.07 1.67 1.66 0.96
8 2.84 1.79 2.72 3.00 1.18

16 4.52 2.41 4.08 3.81 1.55
32 4.83 4.65 5.06 6.13 3.86

A2

4 2.21 1.24 2.38 2.81 2.11
8 3.64 1.71 3.50 5.29 2.65

16 5.46 3.48 6.78 10.85 4.43
32 6.56 6.30 7.48 19.72 8.34

The effectiveness of our load-balancing strategy
is evident from the table. In general, the strategy per-
forms the best in tandem with dynamic scheduling.

A comparison with the reported implementation
of (Dumas and Villard, 2002) is shown in Table 2. For
meaningful comparisons, we use a 423360× 423360
matrix with 23 non-zero entries per row, similar to as
reported in (Dumas and Villard, 2002). Our timing
figures pertain to the CDS strategy on 4 and 32 cores,
whereas Dumas et al. use only 4 cores. The times are
in hours.

Table 2: Comparison of load-balanced parallel Wiedemann
method.

Our time (4 cores) Our time (32 cores) Time by Dumas et al.
23.96 3.92 34.00

Table 3 compares the running times and speedup
achieved by distributed implementations with block-
ing communications (DB) and non-blocking commu-
nications (DNB) over our single-node implementa-
tion (SN). 32 cores are used in each node. The dis-
tributed implementations use eight identical nodes
(with 32 cores per node). In all these experiments,
controlled load-balancing with dynamic scheduling is
used. All times in the table are in seconds.

The table indicates that the blocking communica-
tion mode gives very little boost to the distributed im-
plementation. On the other hand, we are able to get
some decent speedup with the non-blocking commu-
nication mode.

For the block-Wiedemann method, we use a ma-
trix A3 of size 6699191×6699181 with an average of
63 non-zero entries per row, a maximum of 101 non-
zero entries, and a minimum of 52 non-zero entries.
Table 4 demonstrates the benefits of using the adap-
tive load-balancing (ALB) scheme over the controlled
load-balancing (CLB) scheme. The times are in sec-
onds. The ALB scheme applies only to the steps BW1
and BW3. For the step BW2, we only use dynamic
scheduling. All the distributed implementations run
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Table 3: Comparison of single-node and distributed implementations.

mul1 mul2
SN DB DNB SN DB DNB

Time Time Speedup Time Speedup Time Time Speedup Time Speedup

A1

0.43 0.32 1.34 0.13 3.30 0.48 0.27 1.77 0.11 4.36

A2

0.25 0.21 1.19 0.11 2.27 0.11 0.13 0.84 0.07 1.57

Table 4: Distributed running times of block Wiedemann with controlled and adaptive load balancing.

CLB ALB
BW1 BW2 BW3 Total BW1 BW2 BW3 Total Speed-up
54510 27975 14849 83974 33581 27975 11777 73333 1.14

on eight nodes, each utilizing 32 cores. The non-
blocking communication mode of MPI is used in all
the implementations reported in the table.

A comparison with the times reported in (Caval-
lar et al., 2000) and (Chen et al., 2008) is made in
Table 5. Although both these papers use the block-
Lanczos implementation, these target solving a linear
system of dimensions similar to A3, generated from
the sieving stage of RSA-512 factorization. The times
reported are in hours.

Table 5: Comparison with (Cavallar et al., 2000) and (Chen
et al., 2008).

CLB Strategy ALB Strategy Cavallar et al. Chen et al.
23.33 20.37 224 37.51

5 CONCLUSIONS

This paper deals with the parallel and distributed im-
plementations of the large sparse linear system solver
called Wiedemann’s method. The focus is on solv-
ing systems over GF(2) available from the sieving
stage of the general number field sieve method for
factoring RSA moduli. In this paper, the Wiedemann
method is implemented in three settings: sequential
(single-core), parallel (single-node multi-core), and
distributed (multi-node multi-core). Effective load-
balancing ideas are proposed for the parallel and
distributed implementations. The block Wiedemann
method is also implemented, parallelized, and dis-
tributed. An adaptive load-balancing strategy is de-
signed for the block Wiedemann implementations.
Experimental results and speed-up figures are re-
ported extensively to illustrate the effectiveness of our
optimization steps.
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