
Using Video Motion Vectors for Structure from Motion 3D
Reconstruction

Richard N. C. Turner, Natasha Kholgade Banerjee and Sean Banerjee
Clarkson University, Potsdam, NY 13699, U.S.A.

Keywords: H264, Structure from Motion, Motion Vectors, 3D Reconstruction.

Abstract: H.264 video compression has become the prevalent choice for devices which require live video streaming and
include mobile phones, laptops and Micro Aerial Vehicles (MAV). H.264 utilizes motion estimation to predict
the distance of pixels, grouped together as macroblocks, between two or more video frames. Live video com-
pression using H.264 is ideal as each frame contains much of the information found in previous and future
frames. By estimating the motion vector of each macroblock for every frame, significant compression can be
obtained. Combined with Socket on Chip (SoC) encoders, high quality video with low power and bandwidth
is now achievable. 3D scene reconstruction utilizing structure from motion (SfM) is a highly computational
intensive process, typically performed offline with high computing devices. A significant portion of the com-
putation required for SfM is in the feature detection, matching and correspondence tracking necessary for the
3D scene reconstruction. We present a SfM pipeline which uses H.264 motion vectors to replace much of the
processing required to detect, match and track correspondences across video frames. Our pipeline results have
shown a significant decrease in computation, while accurately reconstructing a 3D scene.

1 INTRODUCTION

3D reconstruction of a video scene using structure
from motion (SfM) is a highly challenging problem
when using existing techniques (Resch et al., 2015).
Full motion video can produce thousands of overlap-
ping images in just a few seconds of video. Fur-
thermore, high resolution images numbering in the
thousands further challenge the efficiency of feature
detection and matching algorithms needed for corre-
spondence searching. Combined, the difficulties with
processing a single video can become insurmount-
able without a means to filter the overlapping scenes.
A common technique for frame filtering is to select
keyframes found in the video sequence (Hwang et al.,
2008; Whitehead and Roth, 2001). However, selec-
tion of keyframes which would generate an accurate
3D scene reconstruction is difficult as information be-
tween keyframes is lost. Subsequently, increasing en-
coded keyframes to account for the loss of informa-
tion will significantly impact video streaming band-
width and compression, making this technique for
SfM undesirable in full motion video streaming (Ed-
palm et al., 2018).

Our approach leverages the inherit video compres-
sion of H.264 and its encoded Motion Vector Distance

(MVD) to process the information which would oth-
erwise be lost between keyframes. Starting with fea-
ture detection of the keyframe, we suggest the mo-
tion vectors between subsequent inter frames can be
used to accurately predict the matching of said fea-
tures over time. Furthermore, correspondence match-
ing and tracking between inter and keyframes can be
accomplished with a unique feature map. A predeter-
mined frame interval is used to narrow the final views
for incremental reconstruction. Our approach does
not require the sub-sampling of video for frame filter-
ing or image resolution. Instead, we leverage the in-
herit video compression algorithms already in use for
live video streaming to perform the majority of corre-
spondence searching and tracking. We validated our
pipeline with video taken from a MAV flying within
an urban environment (Majdik et al., 2017).

2 RELATED WORK

H.264 is a hybrid block encoder which relies on the
prediction of macroblocks between frames to provide
much of its compression (Richardson, 2010). Mo-
tion estimation techniques are integral to the perfor-
mance of H.264 video compression prediction (Man-

Turner, R., Banerjee, N. and Banerjee, S.
Using Video Motion Vectors for Structure from Motion 3D Reconstruction.
DOI: 10.5220/0011263600003289
In Proceedings of the 19th International Conference on Signal Processing and Multimedia Applications (SIGMAP 2022), pages 13-22
ISBN: 978-989-758-591-3; ISSN: 2184-9471
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

13



Figure 1: Inter-frame prediction of H.264 video compres-
sion.

cas et al., 2012), as they allow for the encoding of
motion between frames, called motion vectors, with-
out having to fully encode every frame. Each frame
is broken down into one of three types—P-frames,
B-frames and keyframes, also known as reference
frames or Intra-frames. P-frames and B-frames are
predicted inter-frames from another frame, as shown
by the flowchart in Figure 1. Keyframes are full
frames that do not rely on inter-frame motion esti-
mation for decoding. The collection of frames to-
gether form a Group of Pictures (GOP). The length
of each GOP is dependent on many factors includ-
ing scene changes and error resiliency between pre-
dictions. Typically for live video, the increase in
keyframes will subsequently increase the video com-
pression size and bandwidth for transmission. Ideally,
you want to have a good balance of GOP size of the
video to maintain quality while also increasing com-
pression.

SfM is a pipeline which provides 3D reconstruc-
tion of a scene starting with a collection of images
(Bianco et al., 2018). The collection of steps for a
SfM pipeline typically involves feature detection, fea-
ture matching, correspondence tracking, image reg-
istration, triangulation, bundle adjustment, and point
cloud generation. Collectively each has their own
methods and algorithms which contribute to the ac-
curacy, efficiency and completeness of the final 3D
reconstruction. While many SfM pipelines can han-
dle large collection of images, video provides a new
challenge for SfM reconstruction.

SfM reconstruction using video is a growing re-
search area, with varying degrees of success and
methods when applied to unstructured scenes. Bros-
tow et al. (2008) derived 3D point clouds using
ego-motion, although the processing is done offline.
Scene detection using H.264 motion estimation has
been used for foreground and background detection.
Laumer et al. (2016) used the macroblocks between
frames as masks to determine depth of the frame,
and Vacavant et al. (2011) used the size of the mac-
roblock to create background models of the scene.
Yoon and Kim (2015) proposed a prediction struc-
tures of a scene using a hierarchical search strategy
derived from video compression motion vectors. Fur-
thermore, Shum et al. (1999) used virtual keyframes

Figure 2: Motion vector pipeline for SfM reconstruction.

Figure 3: Visual motion vectors over one scene in the ex-
perimental data set.

for multi-frame SfM reconstruction. Our method fo-
cuses on the use of live video streams with their mo-
tion vector distances providing forward predicted fea-
tures across a given scene. Our experimental results
show a SfM reconstruction that is accurate, robust and
highly efficient across varying environments.

3 MOTION VECTOR PIPELINE

Our approach for 3D reconstruction of a video scene
was to build a highly capable pipeline within the
OpenMVG framework, as shown by the flowchart in
Figure 2. OpenMVG is the ideal library for this ef-
fort as it makes available a number of easy to use
SfM tools and pipelines with an active community
base (Moulon et al., 2016). We modified the exist-
ing incremental pipeline within OpenMVG to pro-
vide video decoding using the FFMPEG application,
robust feature extraction and motion vector distance
algorithm for two types of video frames—keyframes
and P-frames, feature matching across keyframes and
P-frames, and a dynamic correspondence tracker.

3.1 Motion Vector Encoding

Motion vectors are used to represent the macroblocks
in a video frame and are computed based on the posi-
tion of a macroblock in the current frame, sometimes
called the target frame, to its reference frame (Bakas
et al., 2021). Motion vectors can be visually repre-
sented, where the length and direction of the vector

SIGMAP 2022 - 19th International Conference on Signal Processing and Multimedia Applications

14



Figure 4: MVD matrix used for forward motion prediction
of detected features.

drawn is determined by the MVD from the reference
to target frame, as shown by the image in Figure 3.
For each inter-frame, a collection of motion vectors
are computed using a motion prediction algorithm
within the video encoder. For our research we in-
vestigated a number of motion prediction algorithms
available for H.264 including brute force, bounding
box, and hex searching. The search radius is con-
figured by a pixel boundary, where the center of the
reference macroblock is the start and the range of the
motion estimation matching is clamped to a specific
limit within the target frame. We have found using a
complex multi-hexagon search pattern with a search
radius of 32 pixels to be optimal for our purposes.
B-frames, or bi-directional inter-frames, are not sup-
ported within the motion vector pipeline, therefore B-
frames were not included in the transcoding of images
from the video data set.

3.2 Motion Vector Difference (MVD)
Matrix

To find the MVD between the reference frame and the
target frame we extract the motion vector side data
during frame decoding. Decoded motion vector side
data is an array structure containing the difference for
each macroblock for a given video frame. Given the
motion vector target (MVt)) and reference (MVr)) x
and y values, the corresponding difference is defined
as

Dx = MVtx−MVrx, and (1)
Dy = MVty−MVry. (2)

The difference (Dx,Dy) is calculated as the centroid
of the macroblock. For every frame a MVD matrix
is created, with equal width and height as the frame.
The calculated difference value is stored in the MVD
matrix with a given area equal to the macroblock size,
as shown by the MVD matrix in Figure 4. The mac-
roblock highlighted is a 4×4 block size with a pre-
vious frame pixel difference of 2.0 pixels along the x
axis and -3.2 pixels along the y axis.

In addition to the MVD matrix, every frame has
a calculated macroblock coverage area. Given the

width wi and height hi for each macroblock, the cal-
culated coverage area (C) for any frame is defined as

C =

k−1
∑

i=0
wihi

FwFh
(3)

where k is the current macroblock for a given frame,
F is the frame. The equation defines the coverage
area C as the ratio of the total coverage area to the
total frame area. Coverage area is used during fea-
ture detection to determine if the macroblocks for a
given frame is below a certain defined threshold and
therefore should have their features detected using a
macroblock binary mask.

3.3 Feature Detection

For every keyframe, a feature detection algorithm is
used to identity as many potential correspondences
for further matching. Although the pipeline can be ran
with different feature detection algorithms, we have
found the best possible results using the Accelerated-
KAZE algorithm (Alcantarilla et al., 2013) at the
highest describe preset. For every feature detected, a
unique feature identifier is created and stored within a
feature mapping, where the map identifier is a unique
feature id and the value is a list of matching views. A
view consists of a unique identifier, image frame, fea-
tures and descriptors, MVD matrix, macroblocks, and
the macroblock total coverage area. The feature map
is used to determine correspondence tracking across
views.

For P-frames, the previous view feature locations
are updated using the current view MVD matrix. Pre-
vious views can be either keyframes or P-frames. Any
features displaced out of the view area are removed
from the current view list of features. We are able to
achieve feature tracking across the views by adjust-
ing the previous view features with the current view
MVD matrix, as shown by the two images in Figure 5.
Frame 1 has detected the pole connector to the build-
ing. After 250 frames and an x axis distance of over
350 pixels, the feature was tracked accurately. Fea-
ture map entries for all features of the current view
are updated with the current view identifier, thereby
matching previous view features to current view fea-
tures.

The ability to apply feature motion vectors be-
tween views is dependent on the H.264 encoding al-
gorithms ability to determine the matching of mac-
roblocks between frames. When encoding H.264 with
non-deterministic GOP length, the expectation of a
keyframe cannot be predicted. In our experimental
data set at 30 frames per second (FPS), we find GOP

Using Video Motion Vectors for Structure from Motion 3D Reconstruction

15



Figure 5: Feature detection and correspondence between
250 frames.

Figure 6: Frame and macroblock coverage area of a frame
with less than 70% coverage for their macroblocks.

lengths averaging 240 frames between keyframes.
Hence, we need to account for any reduction in mac-
roblock coverage when a keyframe is not available.

The ability of the encoding algorithm to determine
previous macroblocks for a P-frame is impacted by
many factors such as changes in the camera pose, oc-
clusion from a new object within the scene, and lu-
minance changes to name a few. For these reasons,
we use the total coverage area of the view to deter-
mine if a predetermined coverage threshold has been
met. We have found a threshold of 70% coverage to
be optimal for the experimental data set. A low cov-
erage area will eventually result in further filtering of
subsequent features until a new keyframe is received.
To account for this reduction, any P-frame below the
threshold will have feature detection performed with
a calculated mask. The mask is a binary image of
the null space which shouldn’t be used for feature de-
tection, thereby reducing significantly the processing
time required. The mask is calculated from the cur-
rent view macroblock areas, as shown by the image
and binary mask in Figure 6. The frame on the left
introduced a new occluding object, the tree located
at the bottom right of the frame, whereas the frame
on the right shows the macroblock coverage in black.
The resulting total macroblock coverage area is be-
low the threshold, thereby requiring feature detection
on the new occluding object.

3.4 Feature Matching

Feature matching is performed in two stages, global
and local, as shown by flowchart in Figure 7. Global
feature matching is predominately performed with the
use of the feature map in feature detection. At the

Figure 7: Local and global feature matching at 30 FPS for
3 Sec. video.

Figure 8: Feature map strcuture to track each view for a
given feature. Used during feature detection and matching.

conclusion of feature detection, association between
the views and the features is complete, as shown by
the feature mapping in Figure 8. With the possibili-
ties of thousands of views for further incremental pro-
cessing, a reduction of the views is needed. For this
we use the video FPS as the skip factor for the views.
At 30 FPS for a 60 second video, we filter 1800 views
down to a minimum of 60 views for incremental pro-
cessing. Localized feature matching will increase the
final view count. Only the features matching between
the selected views will be carried forward as tracks.
Thus, the features which have short lifespans will be
eliminated. A higher FPS will result in a higher confi-
dence level for the selection of tracks found between
the selected views, thereby stabilizing the final 3D re-
construction.

Inherently there is a feature matching gap be-
tween the last P-frame of a GOP and the following
keyframe. Global feature matching will only build
the tracks within each GOP, as the process of fea-
ture detection and matching is restarted after every
keyframe. For this reason we perform a local one-
to-one feature match between the last P-frame of the
GOP and the following keyframe. Localized fea-
ture matching between the two views is done using
a cascade hashing matching algorithm (Cheng et al.,
2014). The P-frame and keyframe with their matched
features are added to the final views and tracks for
incremental processing. Lastly, a geometric feature
filtering using direct linear transform (DLT) is per-
formed on all selected views and their matched fea-
tures (Hartley and Zisserman, 2004). This last step
will remove any remaining outliers outside of the ro-
bust model estimate.

The use of multi-threading libraries such as
OpenMP (Dagum and Menon, 1998) for feature
matching results in significant performance increases

SIGMAP 2022 - 19th International Conference on Signal Processing and Multimedia Applications

16



Figure 9: Example frame subset 36:00 to 36:30 from the
experimental data set.

(Pang et al., 2020). For our feature matching, the fea-
ture map data is refined to a set of correspondences for
each view, whereby the correspondences are paired
with matching views to form tracks. The process of
generating the pairing is performed using OpenMP,
thereby significantly decreasing the feature matching
execution time. The resulting tracks is sent to the in-
cremental pipeline for further SfM reconstruction.

4 EXPERIMENTAL EVALUATION

We compare the execution time and accuracy of fea-
ture detection and matching using our approach and
two methods using only keyframes—deterministic
GOP with one keyframe per second and non-
deterministic GOP where the keyframe is determined
by the compression algorithm. We have identi-
fied these three methods as Motion Vector Track-
ing (MVT), Deterministic GOP (DGOP), and Non-
Deterministic GOP (N-DGOP) respectively.

DGOP is the most common technique used today
in extracting frames for feature extraction (Nixon and
Aguado, 2012). Keyframe selection is determined by
either the length of the video as a keyframe selection
percentage selection or using the Frames Per Second
(FPS) as a deterministic selection. For example, an
FPS of 30 would determine the keyframe selection as
one frame every 30 frames, irregardless of scene con-
tent. N-GOP relies on the video coding compression
algorithm to determine the placement of keyframes.
Scenes with minimal movement results in a longer
GOP length, while a dynamic scene would result in
a shorter GOP length. N-DGOP is rarely used today
due to the irregular GOP length and the necessity to
capture scene changes that would otherwise not pro-
duce a keyframe.

Our method is the best of both DGOP and N-
DGOP. We take advantage of the video encoding al-
gorithms ability to adjust GOP length dependent on
scene changes as seen in N-GOP. The downsides of

N-DGOP such as of longer GOP lengths is signifi-
cantly reduced in our algorithm by using MVD for
feature matching and tracking along with the mac-
roblock coverage area calculations to detect smaller
scene changes. The final selection of tracks in our
algorithm takes advantage of the DGOP method, by
filtering the tracking window to a fixed FPS.

The experimental data was taken from (Majdik
et al., 2017), where the 81,000 images at a resolu-
tion of 1920×1080, were pre-processed using FFM-
PEG into 30 second subsets. Prior to pre-processing,
the intrinsic parameters were calculated using the ref-
erence calibration images found in the experimental
data. Furthermore, any image distortions were re-
moved using Matlab.

For the MVT dataset, the framerate is set at 30
FPS with only keyframes and P-frames, generating
on average 900 frames per subset. For the N-DGOP
dataset, the frame rate is set at 30 FPS with keyframes,
P-frames and B-frames, generating on average 900
frames per subset. Lastly, the frame rate of DGOP
dataset is set at 1 FPS with only keyframes, generating
30 frames per subset. All experiments are performed
on a Dell Precision 7550 Laptop running Ubuntu
20.04 with 32GB of main memory, 1TB NVMe drive
and an i7-1087 processor.

4.1 Feature Detection and Matching

We compare the execution time for feature detection
and matching using MVT, DGOP and N-DGOP. All
experiments utilize the A-KAZE feature extractor al-
gorithm with the highest describer preset available
in OpenMVG. Feature detection is a major operation
within any SfM pipeline, resulting in significant ex-
ecution penalties for each image processed (Kalms
et al., 2017). MVT and N-DGOP perform feature
detection on each keyframe, typically 3-4 frames for
each 30 second subset. NGOP incurs the highest
penalty in execution time as the number of keyframes
are fixed at 1 frame per second, or 30 frame for each
30 second subset. On average our approach of MVT
is 2.8 times faster than DGOP and slightly slower
than N-DGOP when performing feature detection, as
shown by the graph in Figure 10. Whereas N-DGOP
only performs feature detection on each keyframe
without inter-frame detection, MVT performs addi-
tional calculations on each P-frame to displace the
features across frames, thereby providing a robust fea-
ture matching for every frame with limited execution
penalty.

The significant differences in execution time be-
tween MVT and DGOP become evident during fea-
ture matching. Whereas our approach inherently per-

Using Video Motion Vectors for Structure from Motion 3D Reconstruction

17



Figure 10: Feature detection execution time for each minute where all three methods are captured over the entire 45 minute
data set.

Figure 11: Feature matching execution time for each minute where all three methods are captured over the entire 45 minute
data set. MVT outperforms DGOP by a significant factor.

forms the majority of feature matching during fea-
ture detection when creating the feature map, DGOP
needs to execute feature matching on an exhaustive
list of feature pairs, utilizing both putative and geo-
metric filtering. Our approach only needs to perform
feature matching with localized keyframes, inter-
frame matching is done through global feature map-
ping with the use of the feature map. Our approach
is on average 9.2 times faster in execution time than
DGOP, as shown by the graph in Figure 11. In to-
tal, the execution time of MVT is close to the FPS
execution time, thereby providing a near real-time ex-
ecution of feature detection and matching when pro-
cessing video.

4.2 SfM Reconstruction

As shown by the image in Figure 9, the landmarks
are predominately buildings and streets with an ex-
ceedingly high number of features within each scene.
It is obvious for the scene to accurately generate a
sparse point cloud, the pipeline will need a high num-
ber of tracks to account for the high number of fea-
tures across each subset.

In order to demonstrate the SfM reconstruc-
tion, all subsets are processed using an incremen-

tal pipeline at the conclusion of feature matching
and tracking. Identical threshold parameters for the
pipeline are used for MVT, DGOP anxd N-DGOP.
The subset SfM reconstruction results, which are pro-
cessed in 30 second increments, are collected and av-
eraged across 2.5 minute slices as seen in Table 1 and
Table 2. Table 1 shows the median, maximum and
mean error residual during non-linear bundle adjust-
ment for MVT, DGOP and N-DGOP. The lower the
error residual, the lower the reprojection difference
during image registration. Table 2 shows the regis-
tered poses, tracks and SfM points averaged across
each 2.5 minute slice.

During SfM triangulation and BA, scenes and
tracks are refined in order to minimize the residual
reprojection cost. BA refines the 3D reconstruction
to produce an optimal structure and pose estimate
(Triggs et al., 1999). By default, OpenMVG will
constrain the maximum pixel reprojection error to a
residual threshold, defaulting to 4.0 pixels as shown
in Table 1. On average, the residual mean for MVT
is twice as high to the residual mean for DGOP and
N-DGOP, as shown by the graph in Figure 13. This
is most likely a result of drift, resulting from mo-
tion vector distance accuracy of the features across
the frames. Reducing the search radius boundary of

SIGMAP 2022 - 19th International Conference on Signal Processing and Multimedia Applications

18



Figure 12: Sparse SfM reconstruction subsets for MVT, DGOP and N-DGOP.

Table 1: Summary of SfM residual results across all subsets. Average taken every 2.5 minutes.

Subsets MVT Residuals DGOP Residuals N-DGOP Residuals
Median Max Mean Median Max Mean Median Max Mean

0 - 2.5 0.87 3.99 1.05 0.30 3.98 0.54 0.32 3.87 0.49
2.5 - 5 0.75 3.98 0.95 0.33 3.99 0.51 0.08 3.73 0.22
5 - 7.5 0.74 3.98 0.96 0.31 3.99 0.52 0.10 3.96 0.40

7.5 - 10 0.84 3.99 1.02 0.34 3.98 0.55 0.18 3.93 0.42
10 - 12.5 0.85 3.99 0.97 0.31 3.98 0.52 0.23 3.99 0.42
12.5 - 15 0.86 3.99 1.04 0.32 3.99 0.52 0.17 3.97 0.42
15 - 17.5 0.82 3.99 1.01 0.26 3.99 0.45 0.19 3.99 0.41
17.5 - 20 0.87 3.99 0.98 0.34 3.99 0.56 0.19 3.99 0.42
20 - 22.5 0.95 3.99 1.10 0.41 3.99 0.68 0.28 3.87 0.41
22.5 - 25 0.90 3.99 1.09 0.29 3.98 0.49 0.18 3.83 0.44
25 - 27.5 0.93 3.99 1.11 0.33 3.98 0.54 0.20 3.98 0.45
27.5 - 30 0.86 3.99 1.04 0.26 3.99 0.42 0.19 3.99 0.41
30 - 32.5 0.89 3.99 1.07 0.26 3.99 0.46 0.28 3.99 0.40
32.5 - 35 0.83 3.98 1.02 0.28 3.98 0.46 0.21 3.99 0.43
35 - 37.5 0.86 3.99 1.05 0.32 3.98 0.50 0.30 3.97 0.45
37.5 - 40 0.80 3.99 1.00 0.40 3.98 0.55 0.29 3.99 0.44
40 - 42.5 0.87 3.99 0.98 0.42 3.99 0.56 0.21 3.99 0.40
42.5 - 45 0.78 3.99 0.97 0.39 3.99 0.50 0.21 3.99 0.40

Avg 0.85 3.99 1.02 0.33 3.99 0.52 0.21 3.95 0.41

the motion prediction may result in a lower residual
threshold. From manual observation of the generated
sparse point cloud, we have found the resulting re-
construction for MVT to be within an acceptable ac-
curacy.

The 3D reconstructed sparse point cloud is con-
structed from the poses of each view along with the
3D tracks across the scene. MVT reconstruction of
the sparse point cloud follows the same pattern of re-

constructed points as DGOP, generating comparable
and sometimes exceeding the reconstructed points,
as shown by the graph in Figure 14. On average,
36 poses are used for MVT reconstruction while 30
poses are used for DGOP, as seen in Table 2. The rea-
son for the increase in poses for MVT is due to the
local feature matching of the last GOP frame to the
subsequent keyframe.

An example SfM reconstruction of a sparse point

Using Video Motion Vectors for Structure from Motion 3D Reconstruction

19



Figure 13: Reconstructed residuals across all subsets. Average taken every 2.5 minutes.

Table 2: Summary of SfM sparse point cloud results across all subsets. Average taken every 2.5 minutes.

Subsets MVT DGOP N-DGOP
Poses Tracks SfM Points Poses Tracks SfM Points Poses Tracks SfM Points

0 to 2.5 36 172550 48970 30 79149 21009 4 9313 8296
2.5 - 5 35 173580 85902 30 105869 83099 3 8126 6452
5 - 7.5 35 160546 73189 30 123035 87439 4 5172 4951
7.5 - 10 35 176733 68361 30 90142 61874 4 3961 3391

10 - 12.5 36 186946 102120 30 92946 60010 4 3920 3644
12.5 - 15 36 176655 130502 30 122431 113731 4 6659 6404
15 - 17.5 36 164114 81464 30 126910 117156 3 2538 2202
17.5 - 20 36 110933 74948 30 76241 67235 4 4388 4148
20 - 22.5 36 168764 96690 30 74033 53990 4 4062 3119
22.5 - 25 36 170314 125541 30 135818 121075 4 2625 2539
25 - 27.5 36 182639 131164 30 133942 109486 4 3988 3420
27.5 - 30 36 193579 150827 30 152141 136585 4 4993 4489
30 - 32.5 36 192626 152862 30 134933 122653 4 3791 3562
32.5 - 35 35 186762 88008 30 98458 80316 4 2988 2691
35 - 37.5 36 180705 138438 30 115189 98574 4 4165 3998
37.5 - 40 36 163298 73395 30 86668 70094 4 2779 2109
40 - 42.5 36 187044 129193 30 104809 84331 4 3099 2691
42.5 - 45 36 179906 105934 30 95614 74091 4 2971 2509

Avg 36 173761 103195 30 108240 86819 4 4419 3923

cloud for all three methods can be found in Figure
12. As shown, the generated sparse point cloud for N-
DGOP is unrecognizable, which is evident with their
low average number of SfM points at 3,923. Even
though N-DGOP has a low execution time, the inabil-
ity to generate an accurate sparse point cloud removes
this method as a viable candidate. Using visual anal-
ysis, both MVT and DGOP are able to generate a rep-
resentation of the video scene. MVT generates on av-
erage 15% more SfM points than DGOP, although the
residuals of DGOP are half that of MVT. Given low
execution time of MVT compared to DGOP, and abil-
ity to generate a stable sparse point cloud, MVT is
ideal for live video scene SfM reconstruction.

5 DISCUSSION

Our method relies on a fixed skip factor using video
FPS for the matching of features across frames. Fea-
tures which exhibit strong correlation between frames
are lost if they don’t extend past the skip factor. As
future work it would be preferably to analyze the
strength of correlation between features as a means
for determining inclusion in the final track set. In ad-
dition, keyframe selection on a sliding window for lo-
cal BA could be implemented (Strasdat et al., 2012).
Moreover, our algorithm is executed using CPU and
system memory. Improvements in execution time can
be made if implemented using a low-grade GPU.

SIGMAP 2022 - 19th International Conference on Signal Processing and Multimedia Applications

20



Figure 14: Reconstructed points across all subsets. Average taken every 2.5 minutes.

In future work, the inclusion of B-frames should
be implemented to further take advantage of video
compression motion estimation for feature detection
and matching. Moreover, further research of our ap-
proach with additional SfM pipelines should be pur-
sued to include simultaneous localization and map-
ping (SLAM) techniques.

6 CONCLUSION

This paper introduces a near real-time feature detec-
tion and matching algorithm for SfM reconstruction
using the properties of motion estimation found in
H.264 video compression encoders. Utilizing the mo-
tion vectors of the compressed video frames, we can
accurately predict the matching of features between
frames over time. The design has been evaluated
against multiple extraction techniques using an identi-
cal incremental pipeline to generate a 3D sparse point
cloud. In comparison, we have found our approach to
have very low execution time while also balancing the
accuracy of the generated sparse point cloud.

REFERENCES

Alcantarilla, P. F., Nuevo, J., and Bartoli, A. (2013). Fast
explicit diffusion for accelerated features in nonlin-
ear scale spaces. In British Machine Vision Conf.
(BMVC).

Bakas, J., Naskar, R., and Bakshi, S. (2021). Detection and
localization of inter-frame forgeries in videos based
on macroblock variation and motion vector analysis.
Computers and Electrical Engineering, 89:106929.

Bianco, S., Ciocca, G., and Marelli, D. (2018). Evaluating
the performance of structure from motion pipelines.
Journal of Imaging, 4:98.

Brostow, G. J., Shotton, J., Fauqueur, J., and Cipolla, R.
(2008). Segmentation and recognition using struc-
ture from motion point clouds. In Forsyth, D.,
Torr, P., and Zisserman, A., editors, Computer Vi-
sion – ECCV 2008, pages 44–57, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Cheng, J., Leng, C., Wu, J., Cui, H., and Lu, H. (2014).
Fast and accurate image matching with cascade hash-
ing for 3d reconstruction. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1–8.

Dagum, L. and Menon, R. (1998). Openmp: an industry
standard api for shared-memory programming. IEEE
computational science and engineering, 5(1):46–55.

Edpalm, V., Martins, A., Maggio, M., and rzn, K.-E. (2018).
H.264 video frame size estimation. Technical report,
Department of Automatic Control, Lund Institute of
Technology, Lund University.

Hartley, R. and Zisserman, A. (2004). Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
2 edition.

Hwang, Y., Seo, J.-K., and Hong, H.-K. (2008). Key-frame
selection and an lmeds-based approach to structure
and motion recovery. IEICE Transactions, 91-D:114–
123.

Kalms, L., Mohamed, K., and Göhringer, D. (2017). Accel-
erated embedded akaze feature detection algorithm on
fpga. Proceedings of the 8th International Symposium
on Highly Efficient Accelerators and Reconfigurable
Technologies.

Laumer, M., Amon, P., Hutter, A., and Kaup, A. (2016).
Moving object detection in the h.264/avc compressed
domain. APSIPA Transactions on Signal and Informa-
tion Processing, 5:e18.

Majdik, A., Till, C., and Scaramuzza, D. (2017). The zurich
urban micro aerial vehicle dataset. The International
Journal of Robotics Research, 36:027836491770223.

Mancas, M., Beul, D. D., Riche, N., and Siebert, X. (2012).
Human attention modelization and data reduction. In
Punchihewa, A., editor, Video Compression, chap-
ter 6. IntechOpen, Rijeka.

Using Video Motion Vectors for Structure from Motion 3D Reconstruction

21



Moulon, P., Monasse, P., Perrot, R., and Marlet, R. (2016).
OpenMVG: Open multiple view geometry. In Interna-
tional Workshop on Reproducible Research in Pattern
Recognition, pages 60–74. Springer.

Nixon, M. and Aguado, A. S. (2012). Feature Extraction &
Image Processing for Computer Vision, Third Edition.
Academic Press, Inc., USA, 3rd edition.

Pang, Q., Gui, J., Jing, L., and Deng, B. (2020). Fast 3d re-
construction based on uav image. Journal of Physics:
Conference Series, 1693:012172.

Resch, B., Lensch, H. P. A., Wang, O., Pollefeys, M., and
Sorkine-Hornung, A. (2015). Scalable structure from
motion for densely sampled videos. In 2015 IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR), pages 3936–3944.

Richardson, I. E. (2010). The H.264 Advanced Video Com-
pression Standard. Wiley Publishing, 2nd edition.

Shum, H.-Y., Ke, Q., and Zhang, Z. (1999). Efficient bundle
adjustment with virtual key frames: a hierarchical ap-
proach to multi-frame structure from motion. In Pro-
ceedings. 1999 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (Cat. No
PR00149), volume 2, pages 538–543 Vol. 2.

Strasdat, H. M., Montiel, J. M. M., and Davison, A. J.
(2012). Visual slam: Why filter? Image Vis. Com-
put., 30:65–77.

Triggs, B., McLauchlan, P. F., Hartley, R. I., and Fitzgibbon,
A. W. (1999). Bundle adjustment - a modern synthe-
sis. In Proceedings of the International Workshop on
Vision Algorithms: Theory and Practice, ICCV ’99,
page 298372, Berlin, Heidelberg. Springer-Verlag.

Vacavant, A., Robinault, L., Miguet, S., Poppe, C., and
Van de Walle, R. (2011). Adaptive background sub-
traction in h. 264/avc bitstreams based on macroblock
sizes. In VISAPP, pages 51–58.

Whitehead, A. and Roth, G. (2001). Frame extraction for
structure from motion. National Research Council of
Canada.

Yoon, H. and Kim, M. (2015). Temporal prediction struc-
ture and motion estimation method based on the char-
acteristic of the motion vectors. Journal of Korea Mul-
timedia Society, 18:1205–1215.

SIGMAP 2022 - 19th International Conference on Signal Processing and Multimedia Applications

22


