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Abstract: Generalized Lyapunov equations are often encountered in systems theory, analysis and design of control sys-
tems, and in many applications, including balanced realization algorithms, procedures for reduced order mod-
els, or Newton methods for generalized algebraic Riccati equations. An important application is the computa-
tion of the Hankel singular values of a generalized dynamical system, whose behavior is defined by a regular
matrix pencil. This application uses the controllability and observability Gramians of the system, given as the
solutions of a pair of generalized Lyapunov equations. The left hand side of each of these equations follows
from the other one by applying the (conjugate) transposition operator. If the system is stable, the solutions
of both equations are non-negative definite, hence they can be obtained in a factorized form. But these theo-
retical results may not hold in numerical computations if the symmetry and non-negative definiteness are not
preserved by a solver. The paper summarizes new related numerical algorithms for complex continuous- and
discrete-time generalized systems. Such solvers are not yet available in the SLICOT Library or MATLAB.
The developed solvers address the essential practical issues of reliability, accuracy, and efficiency.

1 INTRODUCTION

Stable generalized complex Lyapunov equations with
unknown X = XH can be written as

o(A)HX o(E) + o(E)HX o(A) =−o(B)H o(B) , (1)
o(A)HX o(A) − o(E)HX o(E) =−o(B)H o(B) , (2)

in the continuous- and discrete-time case, respec-
tively, where A, E ∈ Cn×n, o(B) ∈ Cm×n, the oper-
ator o(M) is either M or MH for any matrix M, and
the superscript H denotes the conjugate transpose. (In
the real case, H is replaced by T , denoting transposi-
tion.) A necessary condition for the nonsingularity of
the associated linear algebraic systems is that both A
and E, for (1), or either A or E, for (2), are nonsin-
gular. Since A and E have a symmetric role in (2),
it may be assumed, without loss of generality, that E
is nonsingular. The stability assumption means that
Λ(E−1A) ∈ C−, where C− is the open left half, or
open unit disk of the complex plane for (1), or (2), re-
spectively, and Λ(M) is the spectrum of the matrix M.
(See, e.g., (Sima, 2019) and the references therein.)
Equivalently, the matrix pencil A−λE has only stable
eigenvalues in the continuous- or discrete-time sense.
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These stable equations have a unique positive-
semidefinite solution X , X ≥ 0, since o(B)H o(B) ≥ 0.
Then, X can be written in a factorized form, X =
o(U)H o(U) , where U is the Cholesky factor of X , if
X > 0. Note that any matrix expressed as o(B)H o(B)
has real non-negative diagonal elements, given by
bH

j b j = ‖b j‖2, where b j is the j-th column of o(B) ,
and ‖x‖ is the Euclidean norm of x. For an iden-
tity matrix E, E = In, and o(M) = M, the standard
stable Lyapunov equations are obtained, dealt with
in (Hammarling, 1982). Algorithms for solving real
generalized Lyapunov equations have been proposed
in (Penzl, 1998), and extensions for singular matrix
E are dealt with in (Stykel, 2002; Stykel, 2004).
These algorithms belong to the class of transforma-
tion methods (Bartels and Stewart, 1972). Solvers
implementing some of these algorithms are available,
e.g., in the SLICOT Library (Benner et al., 1999;
Van Huffel et al., 2004) (https://github.com/SLICOT/
SLICOT-Reference) and in MATLAB Control Sys-
tem Toolbox (MathWorks®, 2015).

Standard and generalized Lyapunov equations of-
ten appear in systems theory, stability investigation,
analysis and design of control systems, signal pro-
cessing, statistics, and other domains. Few textbooks
can be cited in this short paper, e.g., (Bini et al.,
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2012; Lancaster and Rodman, 1995; Mehrmann,
1991; Varga, 2017), but they include many refer-
ences. Many algorithmic and computational details
for Sylvester and standard Lyapunov equations are
given, e.g., in (Sima, 1996). General linear matrix
equations are dealt with in (Simoncini, 2016).

This paper extends the results in (Penzl, 1998) to
complex equations. New algorithms and associated
implementations, based on transformation method,
are investigated. The computational details are care-
fully considered to obtain accurate and reliable so-
lutions. Important issues in this endeavour are pre-
sented. Numerical results for a large set of difficult
examples illustrate the performance of the new solver.

This section is ended by presenting an important
application: computation of the Hankel singular val-
ues of a dynamical system, which are essential input-
output invariants. This application needs both forms
of o(·) . Specifically, consider a generalized system,

Eλ(x(t)) = Ax(t)+Bu(t), y(t) =Cx(t), (3)

where x(t) ∈ Cn, B ∈ Cn×m, C ∈ Cp×n, and λ(x(t)) is
the differential operator, dx(t)/dt, or the advance dif-
ference operator, λ(x(t)) = x(t + 1), for continuous-
and discrete-time case, respectively. The Hankel sin-
gular values of (3) are the non-negative square roots
of the eigenvalues of the matrix product QP, where P
and Q are the controllability and observability Grami-
ans, respectively, of (3), i.e., the solutions of the two
closely related generalized Lyapunov equations,

APEH +EPAH =−BBH ,
AHQE +EHQA =−CHC,

}
(4)

APAH −EPEH =−BBH ,
AHQA−EHQE =−CHC,

}
(5)

for continuous- and discrete-time systems, respec-
tively. For a stable system, the product QP has the-
oretically only non-negative eigenvalues. But numer-
ical computations performed without taking into ac-
count the symmetry and semidefiniteness of the so-
lutions, might result in nonsymmetric or indefinite
Gramians, due to accumulated rounding errors. Con-
sequently, some computed Hankel singular values
might appear as negative or even complex numbers.
This proves how important is to ensure the reliability
and accuracy of the computations. For this applica-
tion, it is preferable to use the algorithms described
below, which deliver the Choleky factors Rc and Ro
of the Gramians, P = RcRH

c , Q = RH
o Ro, with Rc and

Ro upper triangular. Moreover, the matrix products
BBH and CHC are not evaluated, but B and C are di-
rectly used. Then, the Hankel singular values of the
system are the singular values of the product RoRc,
numerically guaranteed to be real non-negative.

Solving Lyapunov equations and finding Hankel
singular values are essential ingredients for model or-
der reduction, which is a topic of intense research
(Benner and Werner, 2020; Cao et al., 2020; Yang
et al., 2020).

2 COMPUTATIONAL STEPS

Reduction to Generalized Schur Form. For gen-
eral, unstructured matrices A and E, the first step in
solving (1) or (2) is the computation of the (complex)
generalized Schur form (GSF) of the matrix pencil
A− λE, using the QZ algorithm (Anderson et al.,
1999; Golub and Van Loan, 2013). In the complex
case, the QZ algorithm returns the reduced matri-
ces, Ã and Ẽ, and the unitary matrices, Q,Z ∈ Cn×n,
QHQ = QQH = In, ZHZ = ZZH = In, so that

Ã = QHAZ, Ẽ = QHEZ, (6)

where Ã and Ẽ are upper triangular, and the diagonal
elements of Ẽ are real non-negative. The eigenvalues
of the pencil Ã−λẼ are given by λi = ãii/ẽii.

Transformation of the Right Hand Side. Since Q
and Z are unitary, then premultiplying (1) and (2)
by ZH and postmultiplying them by Z, the following
equations are obtained if o(M) = M:

o(Ã)H X̃ o(Ẽ) + o(Ẽ)H X̃ o(Ã) =−o(B̂)H o(B̂), (7)

o(Ã)H X̃ o(Ã) − o(Ẽ)H X̃ o(Ẽ) =−o(B̂)H o(B̂), (8)

where X̃ :=QHXQ and B̂ :=BZ. Similarly, if o(M) =
MH , premultiplying (1) and (2) by QH and postmulti-
plying by Q, the equations (7) and (8) are obtained
again, with X̃ := ZHXZ and B̂ := BHQ. The ma-
trix B̂ is not used directly, but after a transformation
into a standardized form. Specifically, B̂ is triangular-
ized using QR or RQ factorizations if o(M) = M or
o(M) = MH , respectively,

Q̄BB̃ =

[
B̂
0

]
, if m < n,

QB

[
B̃
0

]
= B̂, if m≥ n,

 (9)

[
B̃ 0

]
Q̄B =

[
B̂ 0

]
, if m < n,[

B̃ 0
]

QB = B̂, if m≥ n,

}
(10)

Q̄B :=
[

QB 0
0 In−m

]
,

where QB is a unitary matrix expressed as a prod-
uct of Householder transformations, but the product
should not be computed. These computations make
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the diagonal elements of B̃ real numbers. Further scal-
ing by −1 of the rows (if o(M) = M) or columns (if
o(M) = MH ) having negative diagonal elements, de-
livers the standardized form of B̃. The final reduced
equations are then the following

o(Ã)H X̃ o(Ẽ) + o(Ẽ)H X̃ o(Ã) =−o(B̃)H o(B̃), (11)

o(Ã)H X̃ o(Ã) − o(Ẽ)H X̃ o(Ẽ) =−o(B̃)H o(B̃). (12)

Solution of the Reduced Equation. The solution
of the reduced equations (11) and (12) is discussed
in the next two sections. The result is obtained in a
factorized form, X̃ = o(Ũ)H o(Ũ) , where Ũ is upper
triangular with real non-negative diagonal elements.

Solution of the Original Equation. Having the
“Cholesky” factor, Ũ , the corresponding factor, U , of
the solution X of the original equation with o(M) =
M or o(M) = MH is obtained using the QR or RQ
factorization, respectively, as follows,

QUU = ŨQH , if o(M) = M,

UQU = ZŨ , if o(M) = MH , (13)

where QU is unitary and U is upper triangular with
real diagonal elements. If uii < 0, the i-th row or col-
umn, respectively, is scaled by −1.

3 SOLVING REDUCED
CONTINUOUS-TIME
EQUATIONS

The solution of the reduced equations (11) is pre-
sented in this section. For convenience, the tilde signs
are omitted. Note that all involved matrices, A, E, B,
and the solution factor, U , are upper triangular and E,
B, and U have real non-negative diagonal elements.

The Case o(M) = M. Consider first the case
o(M) = M and the following matrix partition

A=

[
a11 a12
0 A22

]
, E =

[
e11 e12
0 E22

]
,

B=

[
b11 b12
0 B22

]
, U =

[
u11 u12
0 U22

]
, (14)

where a11 ∈ C, e11 > 0, u11,b11 ≥ 0, a12, e12,
u12, b12 ∈ C1×(n−1), and A22, E22, U22, B22 ∈
C(n−1)×(n−1). If the matrices in (14) are used in (11),
its solution can be found recursively. Specifically,
evaluating the (1,1), (2,1), and (2,2) block elements of

the resulting left and right hand side expressions, (11)
can be decomposed as

(ā11 +a11)e11u2
11 =−b2

11 , (15)

u11(e11AH
22 +a11EH

22)u
H
12 =

−b11bH
12−u2

11(e11aH
12 +a11eH

12) , (16)

AH
22UH

22U22E22 +EH
22UH

22U22A22 =

−bH
12b12−aeH − eaH −BH

22B22 , (17)

where x̄ denotes the conjugate of x, and

a := u11aH
12 +AH

22uH
12, e := u11eH

12 +EH
22uH

12 . (18)

These equations can be solved successively for u11,
uH

12, and U22, as shown below. Indeed, (15), (16), and
(17) can be rewritten as

2ℜ(a11)e11u2
11 =−b2

11 , (19)

(AH
22 +m1EH

22)u
H
12 =−m2bH

12−u11(aH
12 +m1eH

12) ,
(20)

AH
22UH

22U22E22 +EH
22UH

22U22A22 =−BH
22B22− yyH ,

(21)
respectively, where ℜ(α) denotes the real part of a
complex number α, and

m1 :=a11/e11 , m2 := b11/e11/u11 , (22)
y :=bH

12−m2e . (23)

From (19), it follows that

u11 = b11/
√
−2ℜ(a11)e11 . (24)

Note that u11 ∈ R, since b11 ≥ 0, e11 > 0, and, by the
stability assumption, a11 ∈ C−. Moreover, u11 > 0,
if b11 > 0, and u11 = 0, if b11 = 0. Equation (20)
follows by dividing (16) by u11e11, if u11 6= 0, and
using (22). By a continuity argument, (20) holds also
for u11 = 0; moreover, note that m2 can be rewritten
as m2 =

√
−2ℜ(a11)e11/e11, which is defined also

for u11 = 0. Hence,

m2
2 =−2ℜ(a11)/e11 =−(m1 + m̄1). (25)

The solution uH
12 is then obtained by solving a linear

triangular system of equations (initially, of order n−
1) using forward substitution, see, e.g., (Golub and
Van Loan, 2013), with care to avoid overflow.

Equation (21) is obtained from (17), noting that,
with (23),

yyH =
[

bH
12−m2e

][
b12−m2eH ]

=bH
12b12−m2bH

12eH −m2eb12 +m2
2eeH . (26)

But from (20), it follows that

a =−m2bH
12−m1e, (27)
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so that,

aeH =−m2bH
12eH −m1eeH . (28)

Adding the conjugate transpose of (28), and us-
ing (17) and (26), it follows that (21) holds. If B̃22
is the square triangular factor of the QR factorization

Q̃
[

B̃22
0

]
=

[
B22
yH

]
, (29)

then the right hand side from (21) becomes −B̃H
22B̃22.

Consequently, the corresponding equation has the
same structure as the original equation (11), but its
order is initially n− 1. Therefore, the same solu-
tion technique can be used recursively. The factor-
ization in (29) is computed using n− 1 Givens rota-
tions (Golub and Van Loan, 2013).

The Case o(M) = MH . Solving (11) with o(M) =
MH uses a different partition, namely,

A =

[
A22 a12
0 a11

]
, E =

[
E22 e12
0 e11

]
, (30)

and similarly for B and U , where a11 ∈ C, e11 > 0,
u11,b11 ≥ 0, a12, e12, u12, b12 ∈ C(n−1)×1, and A22,
E22, U22, B22 ∈ C(n−1)×(n−1).

With (30), the formulas for the o(M) = MH case
can essentially be obtained by taking the conjugate
transpose of the matrices and vectors used for the
o(M) = M case. The equation for u11 is the same,
and the other two equations are

(A22 + m̄1E22)u12 =−m2b12−u11(a12 + m̄1e12) ,
(31)

A22U22UH
22EH

22 +E22U22UH
22AH

22 =−B22BH
22− yyH ,

(32)
with y := b12 −m2(u11e12 + E22u12). Using an RQ
factorization of the matrix[

B̃22 0
]

Q̃ =
[

B22 y
]
, (33)

the right hand side of (32) becomes −B̃22B̃H
22.

4 SOLVING REDUCED
DISCRETE-TIME EQUATIONS

The Case o(M) = M. In a similar manner to the
continuous-time case, the basic equations for the
discrete-time case (12) with o(M) = M are as follows

(|a11|2− e2
11)u

2
11 =−b2

11 , (34)

(m1AH
22−EH

22)u
H
12 =

−m2bH
12 +u11(eH

12−m1aH
12) , (35)

AH
22UH

22U22A22−EH
22UH

22U22E22 =

−bH
12b12−aaH + eeH −BH

22B22 , (36)
where m1 and m2 are defined in (22) and a and e are
defined in (18). The solution of (34) is

u11 = b11/
√

e2
11−|a11|2 , (37)

which is a real non-negative number, since the stabil-
ity assumption implies |a11|/e11 < 1. In this case, m1
and m2 satisfy the following relation

m2
2 + |m1|2 = (e2

11−|a11|2)/e2
11 + |a11|2/e2

11 = 1.
(38)

Define also a 2×2 matrix

M := I2−
[

m2
m1

][
m2
m1

]H

=[
|m1|2 −m2m̄1
−m1m2 m2

2

]
=: FFH , (39)

where (38) was used and FFH is a factorization of M.
Note that M = MH , hence M is a Hermitian matrix
and, therefore, its eigenvalues, λ j, j = 1,2, are real.
But using (38) and (39),

λ1 +λ2= |m1|2 +m2
2 = 1,

λ1λ2= |m1|2m2
2−|m1|2m2

2 = 0. (40)
Consequently, Λ(M) = {1,0}, and considering the
spectral decomposition of M, M = V Λ(M)V H , it fol-
lows that M = V1V H

1 , where V1 is the first column of
V . Hence, the factor F of the rank-1 matrix M in (39)
can be taken as the eigenvector of M corresponding to
the unit eigenvalue. Defining now

y :=
[

bH
12 u11aH

12 +AH
22uH

12
]

F , (41)
it is easy to show that (36) is equivalent to

AH
22UH

22U22A22−EH
22UH

22U22E22 =−BH
22B22− yyH .

(42)
Indeed, from (35) and (18), it follows that

e = m2bH
12 +m1a, (43)

and therefore, with (41) and (39)

yyH =
[

bH
12 a

][ |m1|2 −m2m̄1
−m1m2 m2

2

][
b12
aH

]
= |m1|2bH

12b12− m̄1m2bH
12aH −m1m2ab12

+ m2
2aaH . (44)

The equivalence of (36) to (42) follows, since (43),
(44), and (38) imply

eeH −bH
12b12−aaH = m2

2bH
12b12 + m̄1m2bH

12aH

+ m1m2ab12 + |m1|2aaH −bH
12b12−aaH

= m̄1m2bH
12aH +m1m2ab12−m2

2aaH

−|m1|2bH
12b12 =−yyH . (45)

Replacing the triangular factor B̃22 of the QR factor-
ization (29) in (42), a reduced Lyapunov equation of
order n−1 in U22 is obtained, and the procedure con-
tinues recursively in the same way.
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The Case o(M) = MH . Solving (12) with o(M) =
MH is similar. With a partition as in (30), the equation
for u11 is the same, and the other two equations are

(m̄1A22−E22)u12 =−m2b12 +u11(e12− m̄1a12) ,
(46)

A22U22UH
22AH

22−E22U22UH
22EH

22 =−B22BH
22− yyH ,

(47)
with

y :=
[

b12 u11a12 +A22u12
]

F . (48)

5 NUMERICAL ISSUES

If the Lyapunov equation has general matrices A and
E, the solver starts by using the QZ algorithm. If
A = Ã, E = Ẽ, this step is optionally skipped, but the
solver can accept the matrices Q and Z on input and
apply them to B and to the solution of the reduced
equation, X̃ , for obtaining X . Other solver options
specify the o(M) operator or the type of equation
as continuous- or discrete-time. Using these options
is useful, for instance, to compute the controllability
and observability Gramians of a linear dynamical sys-
tem (3). Indeed, the first call of the solver could re-
duce the matrix pencil A−λE to GSF and return the
matrices Ã, Ẽ, Q, Z, as well as the solution of one of
the equations in (4) (or (5)); the second call can use Ã,
Ẽ, Q, and Z, and compute the solution of the second
equation. In this way the most time consuming com-
putational step, the reduction to GSF, is skipped for
the second equation. The stability condition is easily
checked out using the diagonal elements (or 2×2 real
diagonal blocks) of the GSF, and an error indicator is
returned if that condition fails.

For maximum efficiency, the computation of B̂
in (7) and (8) is performed with BLAS 3 gemm op-
erations, using as large blocks of columns or rows
as possible, depending on the available workspace
size. An optimal workspace size can be returned us-
ing a special call of the solver with the size set to −1.
Then, another call with the obtained value will com-
pute the solution. The computation of the right hand
sides in (13) involves a product of an upper triangular
matrix and another (unitary) matrix (or in the reverse
order, for o(M) = MH ). While BLAS Library (Don-
garra et al., 1990) includes a subroutine for such prod-
ucts (ZTRMM), the result is overwritten on the gen-
eral matrix. This is unsuitable for solving Lyapunov
equations, since Q or Z in (13) should be returned by
the solver. For this reason, a new routine has been
developed which overwrites Ũ , possibly without ad-
ditional workspace, using block-row or block-column
operations.

The computation of uH
12 or u12 in (20), (35), or

in (31), (46), requires the solution of a triangular lin-
ear system of equations with coefficient matrix AH

22 +
m1EH

22, m1AH
22 − EH

22, A22 + m̄1E22, or m̄1A22 − E22,
respectively. These matrices must be evaluated, but
submatrices of A22 and E22 are needed in the subse-
quent computations. It is possible to overwrite, e.g.,
AH

22 by AH
22+m1EH

22 (or similarly, for the other expres-
sions), and restore A22 after finding the solution uH

12,
using AH

22 :=AH
22−m1EH

22. But the chosen technique is
more efficient. Specifically, the strictly lower triangu-
lar part of E is overwritten by the conjugate transpose
of the strictly upper part, before starting the recursion
for solving a reduced equation. Moreover, the diago-
nal elements of A are saved in the workspace. Then,
at each iteration of the recursion, the lower triangu-
lar part of the current A22 is similarly overwritten by
the conjugate transpose of its upper triangular part,
and then it is updated to account for the contribution
of EH

22 and m1. This updated lower triangular part is
used for finding the current uH

12. Then, the diagonal el-
ements of the current A22 are restored. Note that this
technique preserves the upper triangles of A22 and E22
and needs no additional computations.

Scaling is used to avoid overflows when solving
the linear algebraic systems in (20), (35), (31), or
(46). Specifically, a system Mx = σb is solved in-
stead of Mx = b, where σ ∈ [0,1] is chosen so that
the elements of the computed x are representable in a
computer. Such a solver is available in the LAPACK
package (Anderson et al., 1999); it scales x and σ to
avoid overflow or divide-by-zero. Usually, σ = 1. If
M is singular, then σ = 0, and a non-trivial solution
of Mx = 0 is obtained. The current value of σ is used
by the Lyapunov solver to update the current results,
and the final σ value is returned. Actually, the solver
computes the solution of an equation (1) or (2) with
the right hand side replaced by−σo(B)H o(B) , where
σ 6= 1 only if it is necessary.

To obtain the factor F of the matrix M in (39),
a LAPACK routine, ZSTEIN, is called. This routine
can use selected eigenvalues of a tridiagonal symmet-
ric matrix to compute the associated eigenvectors by
inverse iteration. The eigenvector corresponding to
the unit eigenvalue of M is needed for a discrete-time
equation (2). The Hermitian matrix M is transformed
to a similar real tridiagonal symmetric matrix, by set-
ting the off-diagonal elements to the modulus of m21
(or m12) and preserving the diagonal elements. In this
way, the sum and product of the eigenvalues for the
two matrices are the same.

Some Lyapunov equations may have one or all
matrices A, E, and B with elements of very large or
very small magnitude. This may cause numerical dif-
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ficulties, including inaccurate results or even over-
flows. Besides the scaling mentioned above, possibly
activated when computing uH

12 or u12, other two spe-
cial scaling strategies have been included in the main
solver. One strategy scales A, E, and B if the maxi-
mum absolute values of their elements are outside a
range [s,b ], where s = (sm)1/2/ε, b = 1/s, sm is the
safe minimum, and ε is the machine accuracy. The
second strategy scales A, E, and B if the maximum
absolute values of the elements of A, E, and B dif-
fer too much, or their global minimum (maximum) is
too large (small, respectively); specifically, this scal-
ing is performed if m<Ms, or M < s, or m> b, where
m and M are the minimum and maximum, respec-
tively, of the maximum absolute values in A, E, and B.
Both strategies are effective and ensure the same ac-
curacy of the results, but the second strategy reduces
the number of instances when the output scaling fac-
tor, σ, is strictly smaller than 1. The implementation
first checks out the conditions for the second scaling
strategy. Moreover, the scaling factors of E may be
set equal to those for A, to preserve stability in the
discrete-time case. If used, the special scaling is un-
done at the end of the computations and the scaling
factor σ is updated, if necessary. Often, the value σ

returned by the solver is 1, even if the matrices A,
E, and/or B have values with magnitude close to the
largest representable number. This does not happen
for other solvers.

6 NUMERICAL RESULTS

An extensive testing has been performed to evalu-
ate the new solver. The computations have been
done in double precision on an Intel Core i7-3820QM
portable computer (2.7 GHz, 16 GB RAM). An exe-
cutable MEX-file has been built using the new solver,
SLICOT routines and MATLAB-provided optimized
LAPACK and BLAS routines. Tests with randomly
generated matrices (from a uniform distribution) have
been run, and the normalized residuals have been an-
alyzed.

For a performance investigation, examples from
the COMPleib collection (Leibfritz and Lipinski,
2003) have been used. The collection contains 124
standard continuous-time systems, but with varia-
tions, a total of 168 systems can be defined. Note
that 33 COMPleib examples were derived from sys-
tems with general, but nonsingular matrix E, by mul-
tiplying the matrices in the state equation in (3) by
E−1 from the left. Among these, 8 examples (HF2Di,
with i = 1, 2, . . . , 8) have orders greater than or equal
to 2025. Only one example, TL, which describes a
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Figure 1: Significant Hankel singular values of the example
TL from the COMPleib collection.

transmission line, has a large condition number for
E, namely, 7.7579 · 106. The Hankel singular values
for this difficult example, computed using the singular
values of the matrix RoRc, as described in Section 1,
are represented in the bar graph of Fig. 1, using a log-
arithmic scale for the ordinate. Only the significant
singular values of RoRc are retained, that is, the largest
rank(RoRc) ones are displayed.

The other 32 COMPleib examples with given
matrix E belong to the group of two-dimensional
(2D) heat flow models, which arise in the design of
static output feedback control laws. The models had
been obtained using a discretization algorithm which
often produced large scale finite dimensional approx-
imations of the original infinite dimensional problems
(examples HF2D1 – HF2D8, with variations). Other
examples (HF2D10 – HF2D17) are their corresponding
highly reduced order approximations computed using
the proper orthogonal decomposition approach.

Five of the investigated examples, TL, HF2D3,
HF2D4, HF2D12, and HF2D13, are stable. Each of
the other 28 examples has a single unstable eigen-
value, which should be made stable. For instance,
consider the example HF2D1 M541, that has n = 541,
m = 2, and p = 3. There is an unstable eigenvalue,
λ47 = 0.45992 (to five significant digits). To obtain a
stable system, it is possible to use the generalized real
Schur form (RSF) of the matrix pencil A−λE,

Ã = QT AZ, Ẽ = QT EZ, (49)

with Ẽ upper triangular with positive diagonal ele-
ments. Hence, the system can be made stable by
changing the sign of ã47,47. With this modification the
system will remain real. The transformation in (49) is
obtained, e.g., using the MATLAB QZ algorithm, qz,
with the option ’real’ specified as an input argument
of the command. (The same idea can be used to gen-
erate stable complex systems by calling qz without
that option.) Figure 2 displays the significant Han-
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Table 1: The largest two Hankel singular values for modified COMPleib examples of generalized systems. The number j is
the index for which λ j is originally unstable; r is the number of significant Hankel singular values, that is, rank(RoRc). A
hyphen is used when there are no unstable eigenvalues.

Example n m p σ1,2 j r
TL 256 2 2 1.018e+18 6.630e+17 - 41
HF2D1 3796 2 3 6.4334e-1 2.7337e-1 328 46
HF2D1 M316 316 2 3 3.5506e+0 6.2466e-1 29 40
HF2D1 M541 541 2 3 1.7852e+0 4.6071e-1 47 44
HF2D2 3796 2 3 2.3534e-1 8.5433e-2 328 47
HF2D2 M316 316 2 3 5.5555e-1 1.6910e-1 30 40
HF2D2 M541 541 2 3 5.6463e-1 1.5720e-1 47 42
HF2D3 4489 2 4 6.2163e-1 2.8049e-1 - 50
HF2D4 2025 2 4 1.7699e+1 3.1309e+0 - 44
HF2D5 4489 2 4 2.9820e+1 1.8711e+1 1 53
HF2D5 M289 289 2 4 3.0656e+0 2.1297e+0 4 41
HF2D5 M529 529 2 4 6.3719e+0 4.2424e+0 4 43
HF2D6 2025 2 4 8.0719e+0 5.3872e+0 9 46
HF2D6 M289 289 2 4 1.3787e+0 7.6935e-1 1 37
HF2D6 M529 529 2 4 4.1366e+0 2.6703e+0 1 41
HF2D7 4489 2 4 4.2784e+1 1.7350e+1 2 51
HF2D8 2025 2 4 8.9382e+0 3.6434e+0 9 46
HF2D10 5 2 3 1.9855e+0 3.8523e-1 3 5
HF2D11 5 2 3 1.1360e+0 1.4687e-1 3 5
HF2D12 5 2 4 6.3154e-1 2.4018e-1 - 5
HF2D13 5 2 4 1.7742e+1 3.3692e+0 - 5
HF2D14 5 2 4 2.8355e+1 1.0403e+1 2 5
HF2D15 5 2 4 7.9188e+0 3.4392e+0 2 5
HF2D16 5 2 4 4.3374e+1 1.5587e+1 2 5
HF2D17 5 2 4 8.9934e+0 3.9228e+0 2 5
HF2D IS1 4489 2 4 3.8087e+0 1.2708e+0 4 51
HF2D IS1 M361 361 2 4 2.9901e+0 1.3285e+0 1 41
HF2D IS1 M529 529 2 4 1.0183e+0 8.3036e-1 4 43
HF2D IS2 4489 2 4 3.4372e-1 2.2463e-1 9 49
HF2D IS2 M361 361 2 4 5.3589e-1 3.4371e-1 1 39
HF2D IS2 M529 529 2 4 4.6915e-1 3.0184e-1 1 42
HF2D IS5 5 2 4 1.6869e+0 3.3007e-1 2 5
HF2D IS6 5 2 4 3.2556e-1 6.2128e-2 2 5
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Figure 2: Significant Hankel singular values of the modified
example HF2D1 from the COMPleib collection.

kel singular values for the larger system HF2D1, of or-
der 3796, modified similarly.

Table 1 shows the first two Hankel singular values
σ1,2 for all 33 (modified) COMPleib real examples.
The number j is the index for which λ j is originally

unstable; r is the number of significant Hankel singu-
lar values, that is, rank(RoRc). A hyphen is used when
there are no unstable eigenvalues; this happened for
the five examples mentioned above.

The maximum total CPU execution time was of
46.46 minutes, for example HF2D5, with n = 4489,
m = 2, and p = 4. The most time consuming step is
the reduction to the RSF using the QZ algorithm. The
ratios between the timing values needed by this algo-
rithm and the solution of the two reduced equations
vary in the range (1.05, 3.35) and the mean value of
these ratios is 2.34. The ratios are larger for higher or-
der examples. Similarly, the ratios between the timing
values needed by QZ and the computation of the sin-
gular values vary in the range (14, 72) and the mean
value is 34.19. The total CPU time for each system of
order at most 541 was less than 3.16 seconds. Sim-
ilarly, each system of order 2025 needed less than
224 seconds. Other solvers would need by about 1.7
times more CPU time for each example, since the
computation of GSF should be done twice.
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All 33 examples have also been modified to obtain
and solve complex Lyapunov equations. However, 18
COMPleib examples have real eigenvalues only. For
these systems, the qz function returns real matrices Ã
and Ẽ. To get a complex dynamic system, the ma-
trix Ã has been modified by adding ı|λ j|/ε1/2 to ã j j,
where j is the index of the real eigenvalue with the
minimum modulus, and ε ≈ 2.22 · 10−16. The first
two largest singular values were the same as in Ta-
ble 1, except for HF2D1, HF2D2, HF2D12, and HF2D13,
for which they were somewhat larger.

7 CONCLUSIONS

New numerically attractive algorithms for solving sta-
ble generalized complex Lyapunov equations for both
continuous- and discrete-time systems is presented.
Two equations with the matrices A, E, and AH , EH ,
respectively, can be solved using a single computa-
tion of the generalized Schur form. This is useful,
for instance, when finding the Hankel singular val-
ues of linear generalized dynamical systems. New
computational formulas are derived, and related nu-
merical issues are highlighted. The numerical re-
sults for a big set of examples, some of large order,
based on the COMPleib collection, illustrate the per-
formance of the software implementation. The CPU
computing time for finding the Hankel singular values
can be with 70% smaller than for other approaches.
Moreover, new scaling strategies allow to solve badly
scaled problems for which other implementations
would fail. The proposed solver is currently incor-
porated in SLICOT Library and MATLAB.
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