
Efficient Verification of CPA Lyapunov Functions

Sigurdur Freyr Hafstein
Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavı́k, Iceland

Keywords: Lyapunov Function, CPA Verification, Efficient Algorithms.

Abstract: Lyapunov functions can be used to characterize the stability and basins of attraction for dynamical systems,
whose dynamics are defined by ordinary differential equations. Since the analytic generation of Lyapunov
functions for nonlinear systems is a formidable task, one often resorts to numerical methods. In this paper
we study the efficient verification of the conditions for a Lyapunov function using affine interpolation over
a triangulation; the values of the Lyapunov function candidate at the vertices of the triangulation can be
generated using various different formulas from converse theorems in the Lyapunov stability theory. Further,
we give an implementation in C++ and demonstrate its efficiency and applicability.

1 INTRODUCTION

In applications of dynamical systems in science and
engineering the stability of equilibria and other in-
variant sets is often a necessary requirement. In par-
ticular, control theory is concerned with the design-
ing of controllers and observers, such that the re-
sulting closed-loop systems are stable, e.g. have ex-
ponentially stable equilibria. The Lyapunov stabil-
ity theory is a much used tool in this regard and has
been intensively studied since its introduction by Lya-
punov in 1892 (Lyapunov, 1992); see e.g. the text-
books (Zubov, 1964; Yoshizawa, 1966; Hahn, 1967;
Sastry, 1999; Vidyasagar, 2002; Khalil, 2002). For a
physical system the obvious candidate for a Lyapunov
function is the system’s (free) energy and a dissipa-
tive physical system approaches a local minimum of
the energy.

The analytical generation of a Lyapunov func-
tion for a system is in general a formidable problem.
Therefore numerous numerical methods have been
developed, e.g. parameterizing rational (Vannelli and
Vidyasagar, 1985; Valmorbida and Anderson, 2017)
or polynomial (Parrilo, 2000; Chesi, 2011; Ander-
son and Papachristodoulou, 2015; Ratschan and She,
2010; Kamyar and Peet, 2015) Lyapunov functions;
for an overview of numerical methods see (Giesl and
Hafstein, 2015b).

In (Julian, 1999; Julian et al., 1999; Marinósson,
2002a) linear programming was used to parameter-
ize continuous and piecewise affine (CPA) Lyapunov
functions. In this approach, a subset of the state space

is first triangulated, i.e. subdivided into simplices, and
then a number of constraints are derived for a given
nonlinear system, such that a feasible solution to the
resulting linear programming problem allows for the
parametrization of a CPA Lyapunov function for the
system. We refer to this method as the CPA algorithm
and the constraints of the linear programming prob-
lem as the CPA constraints.

In (Hafstein, 2004; Giesl and Hafstein, 2014) it
was proved that the CPA algorithm is always able
to compute a Lyapunov function for systems with an
exponentially stable equilibrium. Another approach
uses the CPA constraints, but instead of solving the
linear programming problem, a faster method to com-
pute values for the variables of the problem that likely
constitute a solution is used. Thus, the CPA con-
straints of the slow but rigorous CPA method are
combined with a faster but less rigorous method to
compute Lyapunov functions to deliver a fast and
rigorous method. The fast method has been based
on an integration- or sum formula for a Lyapunov
function from a converse theorem, see e.g. (Hafstein
et al., 2014a; Hafstein et al., 2014b; Björnsson et al.,
2014; Li et al., 2015; Hafstein et al., 2015; Björnsson
et al., 2015; Doban and Lazar, 2016; Doban, 2016;
Björnsson and Hafstein, 2017; Hafstein and Valfells,
2017; Hafstein and Valfells, 2019; Gudmundsson and
Hafstein, 2015; Hafstein, 2019), or on collocation us-
ing radial basis functions, see (Giesl and Hafstein,
2015a).

In this paper we present a fast verification of the
conditions of the linear programming problem from
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Listing 1: Simple thread-parallelization in C++.

using bint = long long; // bint = big integer

void ParallelFor(bint _beg , bint _end , function <void(bint)> func , bint NrThreads){
for (bint i = _beg; i < _end; i += NrThreads) {

vector <thread > threads(NrThreads);
for (bint j = i; j < i + NrThreads && j < _end; j++) {

threads[j % NrThreads] = thread(func , j);
}
for (bint j = i; j < i + NrThreads && j < _end; j++) {

threads[j % NrThreads].join();
}

}
}

void ParallelFor(bint _end , function <void(bint)> func , bint NrThreads) {
ParallelFor(0, _end , func , NrThreads);

}

(Marinósson, 2002a) and its implementation in C++
using the Armadillo linear algebra library (Sanderson,
2010; Sanderson and Curtin, 2016). The implemen-
tation does not actually construct the linear program-
ming problem, but verifies the constraints on the fly,
and the procedure is very fast and memory efficient.

The paper is organized as follows. After present-
ing the necessary notation and prerequisites we dis-
cuss and develop CPA constraints that are particularly
well suited for an efficient verification in Section 2.
Then we discuss the implementation of the verifica-
tion in C++ in Section 3 and conclude the paper in
Section 4.

1.1 Notation and Prerequisites

We denote the set {1,2, . . . ,} by N and set N0 :=
N ∪ {0}. For a vector x ∈ Rn and p ≥ 1 we de-
fine the norms ∥x∥p = (∑n

i=1 |xi|p)1/p and ∥x∥∞ =
maxi∈{1,...,n} |xi|.

We utilize a bold-face font for (column) vectors,
e.g. x ∈ Rn×1 = Rn, and we denote by e1,e2, . . . ,en
the standard orthonormal basis of Rn. For a vector x
we write xi for its ith component (Ui for the ith com-
ponent of U) and for a matrix A ∈ Rn×n we write ai j
for its (i, j)th element. Their transposes are denoted
xT and AT. The zero vector in Rn is written 0 and 1 :=
(1,1, . . . ,1)T ∈ Rn. For two vectors x,y ∈ Rn the in-
equality x≤ y is understood component-wise, i.e. xi ≤
yi for i = 1,2, . . . ,n. B = diag(a1,a2, . . . ,an) defines a
matrix B ∈Rn×n with b11 = a1,b22 = a2, . . . ,bnn = an
and bi j = 0 for i ̸= j, i.e. B is a diagonal matrix.

Our C++ implementation makes heavy use of the
STL library and the Armadillo linear algebra library,
that is very well documented on its webpage http://

arma.sourceforge.net. Just a few comments: the STL
library delivers a routine to iterate through permuta-
tions called next_permutation; if one starts with the
identity permutation int v[i]=i one iterates through
all permutations. In Armadillo the most important
types, at least here, are vec for a column vector of
double and ivec for a column vector of integers; mat
and imat are the matrix versions. Since C++11 mul-
tithreading has been made very easy in C++, we use
the simple code in Listing 1 for multithreading.

2 CPA CONSTRAINTS

We consider systems, whose dynamics are given by
an ODE of the form

ẋ = f(x), f ∈C2(Rn;Rn). (1)

Typically one assumes that the system in question has
an equilibrium w.l.o.g. at the origin, but that is not
necessary for our discussion. We assume there is a
Lyapunov function candidate V : D → R given, to-
gether with a triangulation of its domain D ⊂Rn. Our
intention is to verify where the continuous and affine
interpolation of the function V over the simplices of
the triangulation has a negative orbital derivative. Re-
call that a negative orbital derivative implies that the
function is decreasing along solution trajectories of
the system (1). For concretizing our ideas a few defi-
nitions are necessary.

Let C = {x0,x1, . . . ,xn} ⊂ Rn be a set of affinely
independent vectors, i.e. the augmented vectors
(x0,1),(x1,1), . . . ,(xn,1) ∈ Rn+1 are linearly inde-
pendent. The convex hull of the vectors in C, i.e. the
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set

coC :=

{
n

∑
k=0

λkxk : xk ∈C, λk ∈ [0,1],
n

∑
k=0

λk = 1

}
,

is called a proper n-simplex and the vectors in C are
said to be its vertices.

Let {Sν}ν∈T = T , T an index set, be a set of
proper n-simplices in Rn, such that different simplices
Sν,Sµ ∈ T intersect in a common face or not at all
and such that the interior of the set DT =

⋃
ν∈T Sν is a

simply connected set. The set T is said to be a shape-
regular triangulation in Rn. We refer to the set

VT := {xi : xi is a vertex of a simplex Sν ∈ T }

as the vertex set of the triangulation T .
Let a shape-regular triangulation T = {Sν}ν∈T in

Rn be given, together with the system (1) and the Lya-
punov functions candidate V : D → R with D = DT .
The following estimates are of essential importance
for the CPA algorithm, because they allow us to check
certain inequalities at the vertices VT of the simplices
in T to obtain estimates on the entire domain DT .

For a proper n-simplex Sν = co{x0,x1, . . . ,xn} in
T and the C2 vector field f = ( f1, f2, . . . , fn)

T define a
constant Bν

r,s such that

Bν
r,s ≥ max

x∈Sν
m=1,2,...,n

∣∣∣∣ ∂2 fm

∂xr∂xs
(x)

∣∣∣∣ . (2)

Further, for each (vertex) y of Sν define

Cν
y,s := max

j=0,1,...,n
|es • (x j −y)|,

where • denotes the scalar-product, and set

Ey
ν,xi :=

1
2

n

∑
r,s=1

Bν
r,s|er • (xi −y)|(Cν

y,s + |es • (xi −y)|)

(3)

for i= 0,1, . . . ,n. The constants Ey
ν,xi are defined such

that for a fixed vector v ∈ Rn we have that

v • f(xi)+Ey
ν,xi∥v∥1 ≤ 0 (4)

for i = 0,1, . . . ,n implies v • f(x)≤ 0 for all x ∈ coC.
This follows by the estimate (proved in

(Marinósson, 2002b, Lemma 4.16))∥∥∥∥∥f(x)−
n

∑
i=0

λif(xi)

∥∥∥∥∥
∞

≤
n

∑
i=0

λiE
y
ν,xi (5)

for all convex combinations x =
n

∑
i=0

λixi ∈ Sν and

Hölder’s inequality:

v • f(x) =
n

∑
i=0

λiv • f(xi)+v •

[
f(x)−

n

∑
i=0

λif(xi)

]

≤
n

∑
i=0

λiv • f(xi)+∥v∥1

∥∥∥∥∥f(x)−
n

∑
i=0

λif(xi)

∥∥∥∥∥
∞

≤
n

∑
i=0

λiv • f(xi)+∥v∥1 ·
n

∑
i=0

λiE
y
ν,xi

=
n

∑
i=0

λi
(
v • f(xi)+∥v∥1Ey

ν,xi

)
≤ 0.

Note that in the condition (4) the Bν
r,s are just upper

bounds and that the vertex y of Sν for Ey
ν,xi is arbitrary

but fixed for i = 0,1, . . . ,n.
Given a triangulation T , a continuous and piece-

wise affine function, a so-called CPA function, can be
defined by fixing its values at VT .
Definition 2.1 (CPA function). For a shape-regular
triangulation T in Rn we denote by CPA[T ] the set of
all continuous functions

V : DT → R

that are affine on each simplex Sν ∈ T . Hence, for
each Sν ∈ T there exists a vector vν ∈Rn and a num-
ber aν ∈ R such that

V (x) = vν
• x+aν

for all x ∈ Sν.

It is not difficult to see that V in the definition
above is completely determined by its values at the
vertices VT and with Sν = co{x0,x1, . . . ,xn},

wν :=


V (x1)−V (x0)
V (x2)−V (x0)

...
V (xn)−V (x0)

 ∈ Rn,

and

Xν :=


(x1 −x0)

T

(x2 −x0)
T

...
(xn −x0)

T

 ∈ Rn×n,

the formula for vν is

vν = X−1
ν wν. (6)

The system (1) together with the Bν
r,s is imple-

mented as in Listing 2, where we show it for the con-
crete example of the time reversed van der Pol system

ẋ = f(x) with f(x,y) =
(

−y
x+(x2 −1)y

)
. (7)
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Listing 2: Implementation of system (7).

extern const unsigned int n = 2;

struct System {
virtual vec f(const vec &x) = 0; // the vector -field f in x'=f(x)
// B(r,s,xl,xu) >= max_{i=1,..,n} sup_{xl <= x <=xu} |D_{rs}f_i(x)|
virtual double B(int r, int s, const vec &xl, const vec &xu) = 0;

};

struct IVDP : public System {
vec f(const vec &x) override {

vec fx(n);
fx(0) = -x(1);
fx(1) = x(0) + (pow(x(0),2) - 1.0) * x(1);
return fx;

}
double B(int r, int s, const vec &xl, const vec &xu) override {

if(r == 0 && s == 0){
return 2.0*max(abs(xl(1)),abs(xu(1)));

}
else if(r==0 && s==1 || r==1 && s==0){

return 2.0*max(abs(xl(0)), abs(xu(0)));
}
else{

return 0.0;
}

}
};

A concrete system inherits the virtual class System
and delivers implementations for the member func-
tions System.f and System.B. The latter gives an up-
per bound as in (2), however not for x ∈ Sν but for x
in the cube {x ∈Rn : xl≤ x ≤ xu} . Note that r,s = 0
corresponds to the variable x(0)= x and r,s = 1 to the
variable x(1) = y and that the only non-zero second-
order derivatives of the components of f = ( f1, f2)

T in
(7) are

∂2 f2

∂x2 (x,y) = 2y and
∂2 f2

∂x∂y
(x,y) = 2x.

For an efficient implementation of the verification
it is advantageous to use particularly simple and reg-
ular triangulations, both in terms of speed but more
importantly in terms of size. We will use a stair case
triangulation, which is the so-called standard triangu-
lation Tstd, see e.g. (Albertsson et al., 2020) and for
extensions (Giesl and Hafstein, 2021b; Giesl and Haf-
stein, 2021a), but restricted to {x ∈ Rn : 0 ≤ x ≤ U}
for a vector U ∈ Nn. This triangulation is then scaled
along the axes and translated to the area of interest.
Definition 2.2 (Stair case Triangulation). The stair
case triangulation T U

sc for a vector U ∈ Nn is a tri-
angulation T U

sc = {S̃ν}ν∈T with indices ν = (z,σ),
for all z ∈ N0 fulfilling 0 ≤ z ≤ U− 1 and all per-

mutations σ of {1,2, . . . ,n}. The vertices of each
S̃ν = (x̃ν

0, x̃
ν
1, . . . , x̃

ν
n) are given by

x̃ν

k = z+
k

∑
j=1

eσ( j) = z+uσ

k (8)

where

uσ

k =
k

∑
j=1

eσ( j).

Given a star case triangulation T U
sc and vectors

ℓℓℓ,u ∈ Rn, ℓℓℓ < u, we define Pi := (ui − ℓi)/Ui for i =
1,2, . . . ,n and the matrix P := diag(P1,P2, . . . ,Pn) ∈
Rn×n. The triangulation T U

sc,ℓℓℓ,u = {Sν}ν∈T is now de-

fined by mapping the simplices S̃ν of T U
sc with the

mapping x 7→ Px + ℓℓℓ, i.e. Sν in T U
sc,ℓℓℓ,u is the image

of the simplex S̃ν. The vertices of the simplex Sν are
given by

xν

k := Px̃ν

k + ℓℓℓ

for k = 0,1, . . . ,n.

Note that since T U
sc is a triangulation of {x ∈

Rn : 0 ≤ x ≤ U} we have that T U
sc,ℓℓℓ,u is a triangulation

of {x ∈ Rn : ℓℓℓ≤ x ≤ u}.
Using the triangulation T U

sc,ℓℓℓ,u the constraints (4)
for ν = (z,σ), Sν = co{xν

0,x
ν
1, . . . ,x

ν
n} and with vν :=
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v and Eν
i := E

xν
0

ν,xi can be written in the form

0 ≥
n

∑
j=1

V (xν
j )−V (xν

j−1)

eσ( j) • (xν
j −xν

j−1)
fσ( j)(xν

i ) (9)

+Eν
i

n

∑
j=1

∣∣∣∣∣V (xν
j )−V (xν

j−1)

eσ( j) • (xν
j −xν

j−1)

∣∣∣∣∣ ,
for i = 0,1, . . . ,n, where

Eν
i =

1
2

n

∑
r,s=1

Bν
r,sA

σ
r,i(A

σ
s,i +Aσ

s,n) (10)

and
Aσ

k,i := |ek • (xν
i −xν

0)|
for k = 1,2, . . . ,n and i = 0,1, . . . ,n.

Note that Aσ

k,i = Pk if k ∈ {σ(1),σ(2), . . . ,σ(i)}
and Aσ

k,i = 0 otherwise and that Aσ
s,n = Cν

xν
0 ,s

for all
ν = (z,σ). Further,

eσ( j) • (xν
j −xν

j−1) = eσ( j) • Peσ( j) = Pσ( j),

which simplifies the formulas even further, and the
Aσ

k,i only depend on σ in ν = (z,σ). Hence, the
Aσ

k,i, for all permutations σ of {1,2, . . . ,n}, all k =
1,2, . . . ,n and all i= 0,1, . . . ,n, can be computed once
and for all before the verification of (9) for all the sim-
plices Sν ∈ T U

sc,ℓℓℓ,u.

3 EFFICIENT CPA
CONSTRAINTS VERIFICATION

For the implementation of the simplicial complexes
we use two grids. The first one is of type
struct ZGrid and models the vertices of T U

sc and the
second is of type struct xGrid and models the ver-
tices of T U

sc,ℓℓℓ,u. Their declarations and the defini-
tion of xGrid are given in Listing 3. The imple-
mentation of ZGrid was discussed in (Hafstein, 2013)
(as class Grid). Its main purpose here is to en-
able linear indexing of the grid points, i.e. G.V2I(i)
for i=0,1, . . . ,G.NrPoints()-1 iterates through all the
grid points of G. The implementation of xGrid is es-
sentially trivial, just note that / and % are component-
wise division and multiplication of vectors in Ar-
madillo, respectively; similar to ./ and .* in Mat-
lab. The correspondence between the variables and
the mathematical symbols is xL = ℓℓℓ, xU = u, iU = U
and hv= (P1,P2, . . . ,Pn).

The verification is then implemented in the func-
tion VerifyLya, see Listing 4. The arguments of the
function are System *psys, a pointer to a concrete sys-
tem that implements psys->f and psys->B, see Listing

2. The argument const vec &V is a vector containing
the values of the function V at the vertices of the trian-
gulation T U

sc,ℓℓℓ,u modelled by the argument xGrid xG.
More exactly, V(i) is the value of V at the vertex
xG.I2vec(i) (index to vector). If V fails the condi-
tion (9) for some permutation σ in ν = (z,σ), then the
index of the vertex x = Pz+ ℓℓℓ is written to the vec-
tor vector<bint> &Failed, that is also an argument to
the function. We do not keep track of the permutation
σ, and thus the exact simplices, where the condition
fails. This is faster and requires less memory and usu-
ally the information about the cube P(z+ [0.1]n)+ ℓℓℓ
containing a simplex where the Lyapunov function
candidate V fails to have a negative orbital derivative
is detailed enough. The vector Failed is sorted before
the function returns.

A few comments on the implementation:

• The code is more optimized for size than for
speed. The reason is that the computation of the
values in V typically takes much more time than
the verification anyways. Storing the values of
psys->f at all vertices of T U

sc,ℓℓℓ,u would speed up
the verification, but the storing needs n times the
memory needed to store the values in V, where n is
the dimension of the system, and would introduce
a new limiting factor.

• It is important when verifying the condition (9)
to not use orbder + errbound > 0.0 to check
if the condition fails on a simplex, but to
instead use !(orbder + errbound <= 0.0). If
orbder+errbound is not NaN (not a number) then
both are equivalent. However, since the methods
used to compute the values in V, i.e. the values of
V at the vertices, sometimes produce NaN, there
is an important difference. A comparison with
NaN always produces false, even NaN == NaN is
false, but we want orbder + errbound > 0.0 to
deliver true if orbder+errbound is NaN and this is
achieved with !(orbder + errbound <= 0.0).

• We use the infamous goto to break out of nested
loops when we have identified a cube

P(z+[0.1]n)+ ℓℓℓ⊃ Sν

containing a simplex Sν where the condition (9)
fails; the alternatives are simply more messy.

• Finally, it might seem at first glance that the
indices of the vertices where the condition (9)
fails are already sorted, and thus an extra sorting
at the end of the function is unnecessary. A closer
inspection, however, reveals that they are already
sorted with respect to the order of the vertices in
ZGrid ROG(xG.G.L, xG.G.U - ones<ivec>(n)),
over which the algorithm iterates to obtain the zs
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Listing 3: Code for the grids.

// for L,U in Zˆn all z in Zˆn fulfilling L <= z <= U component -wise
struct ZGrid {

ivec L,U;
bint EndIndex;
ZGrid(const ivec &_L, const ivec &_U);
bint V2I(ivec) const; // ivec to index
ivec I2V(bint) const; // index to ivec
bint NrPoints(void);

};

struct xGrid {
ZGrid G;
vec xL, xU, hv;
vec I2vec(bint Index) const{ // index to vec

return xL + conv_to <vec >::from(G.I2V(Index)) % hv;
}
xGrid(const vec &_xL, const vec &_xU, const ivec &iU)

: xL(_xL), xU(_xU), G(zeros <ivec >(n), iU){
hv = (xU-xL) / conv_to <vec >::from(iU);

}
};

in ν = (z,σ), but not with respect to the order of
the vertices in xG modeling T U

sc,ℓℓℓ,u.

To give an idea of the performance of the al-
gorithm we computed on a Threadripper 3990X a
Lyapunov function candidate using the RBF method
(Giesl, 2007). We used 12,480 collocation points
and the computation of the parameters for the func-
tion took 3.5 sec, i.e. writing and solving a system
of 12,480 linear equations in 12,480 unknowns. The
values of V are then computed at 1,002,001 vertices
in 4.9 sec. Finally, the negativity of the orbital deriva-
tive in 2,000,000 simplices was verified in 0.026 sec;
see Figure 1 for the results.

Figure 1: Lyapunov function candidate for system (7) and
the area of its domain where the function is not decreasing
along solution trajectories (red).

4 CONCLUSIONS

We presented an algorithm to verify the negativity
of the orbital derivative of CPA Lyapunov function
candidates interpolated over shape-regular triangula-
tions. By carefully choosing a regular triangulation
the algorithm is very fast and memory efficient. Sub-
level sets of Lyapunov functions are positively invari-
ant sets and this can be efficiently computed for CPA
Lyapunov functions (Giesl et al., 2020). We gave an
implementation in C++ of the algorithm and demon-
strated its applicability and effectiveness for an exam-
ple.
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Listing 4: Code for the verification.

bint factorial(int k) { bint f=1; for (int i = 1; i <= k; i++) f*=i; return f; }

void VerifyLya(System *psys , const vec &V, xGrid xG, vector <bint > &Failed ,
int NrThreads) {

vector <int> iv(n);
for (int i = 0; i < n; i++) iv[i] = i;
vector <vector <int>> Sigma;
Sigma.reserve(factorial(n));
do {

Sigma.push_back(iv);
} while (next_permutation(&iv[0], &iv[n]));
vector <mat> A;
A.reserve(factorial(n));
for (auto psigma = Sigma.begin(); psigma != Sigma.end(); psigma++) {

mat rA(n, n + 1);
vec sx = zeros <vec >(n);
for (int r = 0; r < n; r++) {

rA(r, 0) = 0.0;
double valrA;
for (int i = 0; i < n; i++) {

if ((*psigma)[i] == r) valrA = xG.hv(r);
rA(r, i + 1) = valrA;

}
}
A.push_back(rA);

}

wall_clock clock; clock.tic();
ZGrid ROG(xG.G.L, xG.G.U - ones <ivec >(n));
cout << "Verifying " << ROG.NrPoints() * factorial(n) << " simplices" << endl;

vector <vector <int>> failedPart;
failedPart.resize(NrThreads);

function <void(bint)> parfor = [&](bint Th) {
bint lowB = (ROG.NrPoints() * Th) / NrThreads;
bint upB = (ROG.NrPoints() * (Th + 1)) / NrThreads;
ivec z, zx;
vec gradV(n);
vec fxi(n), fx0(n), x0(n), xi(n);
mat B(n, n);
double V0, Vold , Vnew;
int r, s, i, j, k;
bint I0, Inew;
double orbder , grbound , errbound;

for (bint pnr = lowB; pnr < upB; pnr++) { // z
z = ROG.I2V(pnr);
I0 = xG.G.V2I(z);
x0 = xG.I2vec(I0);
fx0 = psys ->f(x0);
V0 = V(I0);
for (r = 0; r < n; r++) {

for (s = 0; s < r; s++) {
B(s, r) = B(r, s) = psys ->B(r, s, x0, x0 + xG.hv);

}
B(r, r) = psys ->B(r, r, x0, x0 + xG.hv);

}
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Listing 4: Code for the verification (cont.).

for (k = 0; k < Sigma.size(); k++) { // sigma
vector <int> psigma = Sigma[k];
Vold = V0;
zx = z;
for (int j = 0; j < n; j++) { // nabla V

zx(psigma[j]) += 1;
Inew = xG.G.V2I(zx);
Vnew = V(Inew);
gradV(psigma[j]) = (Vnew - Vold) / xG.hv(psigma[j]);
Vold = Vnew;

}

// i=0
orbder = dot(gradV , fx0);
if (!(orbder <= 0.0)) { // errbound=0.0

goto CUBEFAILED;
}
grbound = norm(gradV , 1);
zx = z;
for (int i = 0; i < n; i++) {

zx(psigma[i]) += 1;
Inew = xG.G.V2I(zx);
xi = xG.I2vec(Inew);
fxi = psys ->f(xi);
orbder = dot(gradV , fxi);
errbound = 0.0;
for (r = 0; r < n; r++) {

for (s = 0; s < n; s++) {
errbound += B(r, s) * A[k](r, i + 1) *

(A[k](s, i + 1) + A[k](s, n));
}

}
errbound *= 0.5 * grbound;
if (!(orbder + errbound <= 0.0)) {

goto CUBEFAILED;
}

}
}
continue;

CUBEFAILED:
failedPart[Th].push_back(I0);

}
};

ParallelFor(NrThreads , parfor , NrThreads);
Failed.clear();
bint NrFailed = 0;
for (int i = 0; i < NrThreads; i++) {

NrFailed += failedPart[i].size();
}
Failed.reserve(NrFailed);
for (int i = 0; i < NrThreads; i++) {

Failed.insert(Failed.end(), failedPart[i].begin(), failedPart[i].end());
}
sort(Failed.begin(), Failed.end());

}
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