
An Adaptive Web Application Firewall

Miguel Calvo and Marta Beltrán
Department of Computing, ETSII, Universidad Rey Juan Carlos, Madrid, Spain

Keywords: Adaptive Controls, Risk-based Security, Web Application Firewall.

Abstract: Web Application Firewalls (WAFs) are security products responsible for protecting web applications with
minimal cost and effort; by filtering, monitoring, and blocking HTTP traffic. Traditional WAFs work with
a rule-based approach, applying predetermined rules when the signatures of known attack patterns or traffic
anomalies are identified. This kind of design has suffered significant limitations in specific contexts since it is
impossible to configure the WAF the first time and rely on that configuration over time. This paper proposes
an adaptive WAF capable of context-aware risk-based adaptation, changing its configuration to every specific
scenario, depending on the current value of risk indicators and on the level of risk tolerated at any given time.
The proposed solution is implemented, validated and evaluated in a real use case.

1 INTRODUCTION

Traditional Web Application Firewalls or WAFs work
the same way as traditional network firewalls: they
are rule-based security solutions, relying on a prede-
fined set of rules that enable proper response when
the signature of a known attack pattern is detected, or
a traffic anomaly is observed.

There are no one-rule-fits-all scenarios in current
web applications security; no static configuration is
general enough to cope with risk within all possible
situations. The variety and complexity of novel at-
tack patterns and threat agents lead organisations to
develop significant efforts, therefore incurring high
labour costs, maintaining the WAFs rule-sets, and up-
dating attack signatures or legitimate traffic patterns
(normal behaviour).

This paper proposes an intelligent and automated
approach to WAF adaptation, an adaptive WAF. With
a risk-based solution, security mitigations are ad-
justed to the asset’s environment and state and the risk
quantified or predicted at a given moment. The goal
is to change, autonomously, the behaviour of secu-
rity countermeasures by monitoring them (the WAF,
in our case), the protected asset (a web application)
and their operation context, quantifying the risk and
keeping it at the desired level.

The contributions of this paper are 1) The archi-
tecture of an Adaptation Tool based on a MAPE-K
feedback loop (Monitor-Analyze-Plan-Execute over a
shared Knowledge) capable of deciding if an adapta-

tion of the WAF is required and performing this adap-
tation when required. 2) The semantics of the policies
and rules that allows security managers and adminis-
trators to automate adaptation. 3) A prototype of this
Adaptation Tool that enables its validation and evalu-
ation within a real use case.

The rest of this paper is organised as follows. Sec-
tion 2 provides an overview of the background on un-
derlying concepts and the related work. Section 3
discusses the primary motivations for this work, with
some research challenges and opportunities. Section
4 describes the proposed architecture to add auto-
mated risk-based adaptation to Web Application Fire-
walls. Section 5 details the proposed solution im-
plementation, validation and evaluation. And finally,
Section 6 summarises our main conclusions and the
most interesting lines for future work.

2 BACKGROUND AND RELATED
WORK

2.1 On Web Application Firewalls

Security tools such as WAFs have been proposed to
protect websites, web applications, and web services.
These defensive solutions, like traditional firewalls,
offer an extra layer of protection by inspecting traffic.
WAFs typically operate at the application layer of the
OSI (Open Systems Interconnection) model, inspect-

96
Calvo, M. and Beltrán, M.
An Adaptive Web Application Firewall.
DOI: 10.5220/0011146900003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 96-107
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

ing, mainly, HTTP traffic. They are deployed between
the web server serving the website/application/service
and the Internet, acting as a shield and analysing re-
quests before responding to them and before traffic
enters or leaves the web server. In this way, when
a potential attack is detected, the WAF itself apply
some kind of rule, for example, to block the request
so that it does not impact the protected asset (Garn
et al., 2021), (IŞiker and SoĞukpinar, 2021).

There are mainly three types of WAF solutions:
signature-based WAFs, anomaly-based WAFs, and
Machine Learning-based WAFs. Signature-based
WAFs, the most common currently, require that the
attacks have previously occurred since they check the
traffic searching for signatures associated with known
attack patterns. Therefore, they require a continuous
update of the signatures. And they are not capable
of identifying zero-day attacks. On the other hand,
anomaly-based WAFs require prior knowledge about
”normal” or ”legitimate” traffic to/from the protected
web server. In this case, rules are applied, not when
the signature of a known attack is found but when an
anomaly is detected. Again, a continuous update of
normal or legitimate patterns is essential since the In-
ternet and its users’ behaviour evolve fast these days.
But if it is performed correctly, this kind of WAFs
are able to handle zero-day attacks. Finally, Machine
Learning-based WAFs use Machine Learning (ML) to
rely on models trained to overcome the limitations of
the rest of WAFs. A Machine Learning approach al-
lows a WAF to classify a request as malicious with-
out applying signature-matching or anomaly detec-
tion techniques. The goal is to decrease false pos-
itive and false negative rates while making it diffi-
cult for adversaries to cheat the WAF and reducing
the burden related to the WAF updates (signatures or
regular traffic). But a Machine Learning model must
be trained and retrained (Applebaum et al., 2021),
(Babiker et al., 2018).

In recent years, research on WAF tools and their
improvement for the protection of web assets has
been focused mainly on applying Machine Learning
or Deep Learning to these solutions. In this sense,
to mention just some significant examples, (Valenza
et al., 2020) proposes a mechanism that replaces poli-
cies with Machine Learning. (Domingues Junior and
Ebecken, 2021), on the other hand, proposes the eval-
uation of headers and URIs at a high level using
Machine Learning and classifiers applied to rule en-
gines such as ModSecurity; (Betarte et al., 2018),
and (Moradi Vartouni et al., 2015) proposals focus on
applying Machine Learning techniques based on ex-
pected n-gram frequencies to exploit WAFs, (Gogoi
et al., 2021) focuses on the detection of XSS attacks

through a WAF that uses Machine Learning. There
are also approaches, such as (Tekerek and Bay, 2019),
based on learning too but using Artificial Neural Net-
works. Another exciting research is shown in (Ito and
Iyatomi, 2018), which focuses on a WAF system to
identify malicious HTTP requests using a character-
level Convolutional Neural Network. The framework
proposed in (Shahid et al., 2022) combines a classi-
fier based on Deep Learning and a cookie analysis
engine; (Tan and Hoai, 2021) proposes an original
mechanism, applicable to WAFs, in which HTTP re-
quests are transformed into anomalous univariate data
points.

2.2 On Risk-based Security

The rise of sophisticated web attacks and the wide
variety of new technologies and paradigms in recent
years (such as Industry 4.0, Cloud Computing or the
Internet of Things) have made conventional security
mechanisms insufficient. It is necessary to explore
more intelligent and adaptive ones that protect differ-
ent types of assets in current infrastructures (Nafea
and Amin Almaiah, 2021), (Ande et al., 2020). It
is common to find the term dynamic security among
these new solutions. This paradigm opens the door to
technologies capable of automatically reconfiguring
and adapting when changes are detected in the envi-
ronment in which they operate, when specific threats
are detected, when the risk tolerated by the organisa-
tion changes, etc.

Two main categories can be found in previous
works in this research area. First, adaptive secu-
rity, which, depending on the environment or state,
is capable of modifying the architecture or behaviour
(Elkhodary and Whittle, 2007), (Djoudi et al., 2014),
(Boudko and Abie, 2019) of security controls and mit-
igations. Second, risk-based security, which focuses
on the analysis of the different risks that an organ-
isation’s assets may suffer and prioritising different
factors (such as the cost of mitigation, functionality,
quality of experience, etc.), can make the pertinent
changes to reduce that risk to an acceptable level.

In this way, risk-based security requires adequate
and constant monitoring and evaluation of risks and
the existence of prior planning. It is necessary to iden-
tify the assets and the threats that may arise to apply
this approach. It is also required to find the existing
vulnerabilities and create the different risk profiles of
each asset or group, assigning them a score. Also, it
is necessary to decide how this risk will be handled
when it arises. The most significant difficulty in these
tasks is usually quantifying the risk and translating the
score obtained into a balanced decision. In dynamic

An Adaptive Web Application Firewall

97

risk-based security solutions, decision-making is fre-
quently based on different metrics and indicators such
as IoCs (Indicators of Compromise), IoAs (Indicators
of Attack) or KRIs (Key Risk Indicator).

Focusing on current research on risk-based secu-
rity, we can see many proposals focused on identity
and access management for emerging technologies
and environments; for example, (Chen et al., 2016)
for Cloud, (Steinegger et al., 2016), for Web Applica-
tions, and (Martinelli et al., 2018) for IoT.

3 MOTIVATION, CHALLENGES
AND OPPORTUNITIES

As introduced in the previous section, Machine
Learning offers good results when applied to tradi-
tional WAFs, detecting zero-day attacks and avoiding
the requirement of continuous updates of signatures
and traffic patterns. However, these solutions also
pose new challenges and difficulties, in many cases
hard to solve or requiring a high investment of human
and financial resources and knowledge.

Among these difficulties, we can highlight the
large-scale optimisation problem. This setback is
largely observed when training some mathematical
models used in Machine Learning. In this sense,
training data poisoning is one of the biggest concerns
in the WAF detection line. It is tough to identify if the
data or information we use to train ML algorithms has
been manipulated. Poisoned or unreliable data may
cause both false positives and false negatives (Gam-
bella et al., 2021), (Sun et al., 2020).

Another significant difficulty with ML applied to
WAFs is the need to retrain the models from time to
time and the computational cost required by many of
the techniques used for this task. In addition, it must
be taken into account that this retraining requires an
investment of time and human resources, as well as
the need to have datasets that meet the necessary ex-
pectations (Kumeno, 2019), (Schelter et al., 2018).

This research proposes an alternative approach,
an adaptive WAF capable of overcoming some lim-
itations observed in the traditional solutions without
adding ML and, therefore, avoiding all these difficul-
ties. Approaches such as MAPE-K (Lara et al., 2019)
or (Calvo and Beltrán, 2022) offer a new opportunity
that is able to substantially reduce the necessary re-
sources and costs, with effective results in terms of
dynamicity and adaptation capability. The rest of this
paper proposes the architecture of a new category of
WAF, the adaptive WAF or risk-based WAF.

Figure 1: Proposed architecture for the risk-based WAF.

4 PROPOSED ARCHITECTURE

4.1 Overview

The proposed approach to design a risk-based WAF
is to add the capability of adaptation from outside
the WAF, with a separation of concerns design strat-
egy. The WAF is still a WAF; the Adaptation Tool
is designed explicitly to perform adaptation. In this
way, the adaptation capabilities are generic and can
be added to any WAF-type product with which inte-
gration is possible. In addition, it avoids redesigning
existing WAFs by adding complexity and cost.

As it can be seen in figure 1, the proposed solution
works as follows:
1. The WAF administrator defines the different Mea-

surements that will enable the risk-based adapta-
tion of the WAF. These measurements (basic or
extended metrics and indicators or events) will be
sent from different sources (internal or external)
to the Decision element. These sources may be:

(a) The Environment. For example, external
sources such as social networks, third-party
threat intelligence, the status of other services
or servers outside the infrastructure, etc.

(b) The Asset (or assets) to protect. In this case,
the web server and the rest of the servers are
running the protected application or service.

(c) The Control. The WAF and any other addi-
tional layers added to the WAF to increase or
decrease performance or security. For example,
a load balancer or an anti-Distributed Denial of
Service solution (anti-DDoS).

2. When these measurements are received, they are
analysed to decide if a policy or rule should be
triggered.

3. If this is the case, these policies and rules de-
termine the adaptation that must be carried out;

SECRYPT 2022 - 19th International Conference on Security and Cryptography

98

therefore, the pertinent changes or modifications
to the “Control” (the WAF and/or the tools that
complement it) that must be performed. For ex-
ample, changing the WAF configuration to start
working through allow-lists, adding a new secu-
rity layer such as anti-DDoS (anti-Distributed De-
nial of Service), etc. Integration with the adapted
WAF is required to perform these changes auto-
matically (via scripting, plugins, etc.).

4.2 Measurement

The adaptive WAF needs to quantify the risk to make
the right adaptation decisions at the right time. Com-
paring the risk taken or expected to be taken in the
future with the risk tolerance of the protected appli-
cation allows security measures to be relaxed or rein-
forced at any point in time. Several questions must
be asked: what we should measure, when should we
make the measurement, and which data sources are
available. It has to be considered that without a good
measurement strategy, the proposed solution loses ef-
fectiveness and could even become counterproductive
(false positives, false negatives, unnecessary adapta-
tions consuming resources, temporary blocks of ar-
chitecture, etc.).

These measurements, as already mentioned, can
be done in the assets to be protected (the application
and servers), in the control itself (in the WAF or any
other additional security layer) or in the environment.
In this way, and just to mention a few examples for
the collection and extraction of measurements, com-
mon data sources for the adaptive WAF will be logs
(at the application, servers, the WAF), traffic analy-
sers, IDPS (Intrusion Detection and Prevention Sys-
tem) or SIEM (Security Information and Event Man-
agement), anti-malware solutions and endpoint pro-
tection systems, open sources (social networks, gov-
ernment data, press, information shared by other or-
ganisations) or threat hunting and intelligence prod-
ucts.

The specific measures to be performed by the
adaptive WAF will depend on each organisation’s spe-
cific objectives in securing the application or web ser-
vice with the WAF and its strategies for managing
risk. But some specific measures can be mentioned
in the context of WAFs:

• The number of HTTP requests received per pe-
riod.

• The number of HTTP errors (404, 500, etc.) per
period.

• The number of requests to malformed URIs
and/or unexpected URIs that are requested in a pe-
riod.

• Requests from IP addresses in a block-list and/or
from addresses that are not in the allow-list.

• Number of database queries per period.

• Number of UPDATE and/or DELETE functions
on the database per period.

• Number of simultaneously connected database
users.

• Volume of Tweets or other social network interac-
tions that mention a specific topic at a given time.

• Terrorist alert level of a country at a given time.

• Number of Distributed Denial of Service (DDoS)
attacks in a recent period.

How to quantify risk from these measures with
risk scores is beyond the scope of this paper, as are the
methods for deciding whether that risk is acceptable
or has changed sufficiently to justify an adaptation of
the WAF.

4.3 Decision

When risk-related metrics are received in the Deci-
sion element, they are analysed to know if their val-
ues must trigger any action. Therefore, although the
measurements may be frequent, the execution of poli-
cies and rules, i.e., verifying whether it is necessary to
carry out a WAF adaptation, is not performed with the
same assiduity. In this way, excessive consumption of
resources (CPU, memory) is avoided.

To understand decision-making, first, it is neces-
sary to know the structure of the policies and the rules
defined for the proposed solution.

• In the case of policies they state, mainly, the
“Adaptation conditions”. These break down into
different predicates (as many as required) com-
posed of one or more observable triggers and
states (as many as required with AND-OR oper-
ators) and one or more rules. A Trigger occurs
when a risk score or RS exceeds a certain thresh-
old or changes a certain degree, a State corre-
sponds with a situation, condition, the situation of
the configuration of the asset or the control. For
example, you can see in table 1 a policy contain-
ing adaptation conditions from 1 to N, each one
expressed as a predicate. Predicate 1 states that
the observation of the Trigger1 (RiskScore1 > X)
leads to the execution of the adaptation rule A. In
the same way, the Predicate 2 states that the ob-
servation of the Trigger2 (RiskScore2 < Y) leads
to the execution of the adaptation rule B and
the Predicate N states that the observation of the
StateN for the control leads to the execution of the
adaptation rule N

An Adaptive Web Application Firewall

99

Table 1: Policy definition.

Adaptation conditions:
Predicate 1: observed(Trigger1 when RS1
greaterThan X) → Rule A.
Predicate 2: observed(Trigger2 when RS2 small-
erThan Y) → Rule B.
Predicate N: observed(StateN) → Rule N.

• On the other hand, the rules (see table 2) mainly
contain timing and certain controls.

– Timing. Rules can be periodic, event-driven or
on-demand. Periodic rules activate with a timer
(periodically); event-driven activate only when
a specific event is observed; and, on-demand,
leave the rule on standby until an administrator
activates the control manually.

– Controls. They specify the action that is per-
formed to apply the adaptation. In addition,
they determine the artefact or mechanism that
can be used to connect the Adaptation Tool to
the WAF. For example, connection via SSH to a
control panel, connection via HTTP to the ser-
vice that increases security by adding an extra
layer, etc.

In this way, when a trigger is activated, it starts
the execution of the associated policies and checks the
rules linked to it. Once located, they are analysed:

• If a timer exists (periodic rule), the rule will con-
tinue its flow when its period finishes.

• If the rule is event-driven, the rule will wait until
the event occurs. This event can be the trigger
that executed the policy in the first place, but it
can also be a different one.

• If the rule is on-demand, the rule will wait un-
til the WAF administrator (who will be notified
by email, SMS or the decided way) intervenes to
continue with the flow and carry out the actions
manually.

Regardless of the rule timing, when the rule is exe-
cuted, the specific actions to be carried out and the re-
quired artefacts will be extracted from the “Controls”
section. The actions summarise the required adapta-
tion and the script, configuration, tool, etc., that must
be modified. The artefacts will be used to connect to
the WAF and perform the actions.

4.4 Adaptation

The adaptation of the WAF is achieved by perform-
ing different actions through components, plugins,
scripts, or pieces of code that will be executed in the
different elements of the WAF from the Adaptation

Table 2: Rule definition.

Timing:
Event: observed(TriggerM); or
On Demand: true/false; or
Timer: Adaptation period value (in seconds).

Controls:
Action: Script that will apply the adaptation.
Artefact: Mechanism used to connect to the

control.

Tool. These elements enable the proper modifications
of the adapted control, adding or removing security
layers, modifying the configuration, etc. They de-
pend on the control to be adapted, i.e., on the specific
type/model of WAF.

Some examples of adaptations can be the activa-
tion or deactivation of the WAF, the addition or re-
moval of rules, the selection of allow-lists or block-
lists, the migration of a local WAF to a WAF as a Ser-
vice solution (or vice versa), the addition of an anti-
DDOS layer to the WAF, etc.

As mentioned before, WAF adaptations, once de-
cided, are performed through artefacts. These arte-
facts are responsible for communicating the Adapta-
tion Tool to the different elements of the WAF and
facilitating reuse. They are connectors or generic con-
nection mechanisms such as SSH connections, HTTP
connections, specific APIs, etc.

5 PROTOTYPE, VALIDATION
AND EVALUATION

A prototype of the proposed adaptive WAF has been
implemented to protect a web asset. The protected
website consists of an affiliate store of products sold
by other stores. Administrators register different
products (with their associated information: title,
description, price, characteristics, photographs, etc.)
and a personal evaluation of the product (highlighting
its qualities and drawbacks). In addition, users who
visit the web can buy the product through an affiliate
link, which redirects them to the stores that sell the
product. This redirection, generated with a particular
link, reports a small benefit for each sale.

The web application is developed using Vue.js,
NodeJS and MySQL technologies. It is deployed on
two different servers (each with Ubuntu Server 20.04
operating system, 2 vCores, 2 GB of RAM and 80 GB
of hard drive). The first (with a Nginx web server in-
stalled) is responsible for hosting both the frontend
and the backend of the application and, therefore,
is the user’s gateway to the application; the second
(with MySQL Community Server installed) contains

SECRYPT 2022 - 19th International Conference on Security and Cryptography

100

the database server where, among other things, all the
information associated with the different products dis-
played in the affiliate store is stored.

The store is made up of three main pages:

• A list of all the existing products
in the database (accessible through
https://example.com/products; includes pagi-
nation, to avoid returning all the products at
once).

• The one that shows the information
of each product (accessible through
https://example.com/product/ID, where each
of the product identifiers replaces ID).

• A last one to facilitate the search for
users who use the web (accessible through
https://example.com/search; the different search
parameters are sent by a POST method).

The WAF protecting this site is ModSecurity (Spi-
derLabs, 2022), an open source web application fire-
wall. The choice has been supported by a large
amount of existing documentation and the ease of use,
the flexibility offered by this WAF and, of course, the
possibility of integrating it with the application to be
protected and the web server that serves it (the v3 is
used to have the standalone engine built from scratch
in C++ easily integrated into Nginx). This solution
provides real-time monitoring, logging, and filtering
of HTTP requests based on user-defined rules written
in a rule configuration language named SecRules.

The WAF is installed and configured on the same
server that hosts the backend and frontend of the ap-
plication, relying on signature-based detection. The
limitations of this WAF in the considered scenario are
that with a relaxed configuration of the rules, few at-
tacks are blocked while with a restrictive configura-
tion, this blocking rate increases at the cost of block-
ing many of the legitimate requests made by users.

Finally, the proposed Adaptation Tool prototype is
hosted on a separate server with Ubuntu Server 20.04
Operating System, 2 vCores, 2 GB of RAM, and
80 GB of hard drive. This server is on the same in-
ternal network as the web server and database server.

5.1 Implementation

The prototype implementation is illustrated in figure
2. First, it is worth highlighting the measurements
selected to decide about the WAF adaptation. These
measurements come from three different data sources
(regarding the asset and the environment), specifi-
cally:

• On the one hand, HTTP requests of type 400
(internal measurement). This information is ex-

Figure 2: Prototype implementation.

tracted from the Nginx server logs and sent to the
decision element every minute. The metric con-
sists of a numerical value corresponding to the
number of new HTTP requests of type 400 per
minute. A small Python script has been developed
that reads the information from the Nginx log in
real-time and sends it via HTTP to the server host-
ing the Adaptation Tool.

• Another required measurement is the resource
consumption (CPU and RAM memory) at the web
server. The information is extracted from the
server itself and consists of two numerical values
corresponding to the percentage of CPU and the
percentage of RAM memory that has been con-
sumed, on average, in the last hour. To extract
these metrics, a Python script is executed at the
web server, making periodic measurements and
sending the information via HTTP to the server
hosting the Adaptation Tool.

• On the other hand, tweets that contain a shop URL
(external measurement). This information is ex-
tracted by a script that relies on the Twitter API. It
analyses the information, in real-time, in search of
Tweets that contain a URL belonging to the pro-
tected website. The metric submitted to the deci-
sion element consists, in this case, of a numerical
value that corresponds to the number of new ap-
pearances on Twitter per hour; it is sent via HTTP
to the server hosting the Adaptation Tool.

In this way, the Decision element receives the
number of HTTP requests of type 400 per minute,
the resources average consumption in the last hour
(CPU and RAM) and the number of tweets that con-
tain a shop URL per hour. This information is re-

An Adaptive Web Application Firewall

101

ceived through a web service (created in NodeJS) and
stored in a MySQL database (deployed on the server
where the Adaptation Tool is located).

The service itself, each time it receives a metric
obtained from new measurements, checks to see if
they are within the thresholds set by the WAF admin-
istrator and the security manager. A 400 “Bad Re-
quest” is an HTTP response status code that indicates
that the server is unable to process the request sent by
the client due to invalid syntax. If an adversary is try-
ing to perform an SQL injection attack or is trying to
scrape data from the store, all the IDs are likely gone
through, leading to numerous errors. Therefore, it is
considered in this use case as a risk indicator. The
number of URLs linked from Twitter may work, on
the other hand, as a risk indicator of a Distributed De-
nial of Service attack (DDoS), qualified by the con-
sumption of resources at the web server. Therefore:

• For HTTP requests of type 400, a trigger is
launched (and policies will be analysed) when 50
requests per minute are exceeded. The opposite
trigger is launched when this value ins below 50.
In this way, the WAF can be adapted to apply
more or less restrictive configurations depending
on this measurement (risk indicator).

• For Tweets with URLs, a trigger is launched when
the number of tweets per hour exceeds 100. But
the adaptation to a restricting configuration can be
relaxed if the resource consumption at the server
is not of concern.

In this prototype, two policies and four rules have
been defined:

• Policy 1. This policy is activated when: (1) It
is detected that HTTP requests of type 400 ex-
ceed the configured threshold and the WAF is not
working in “allow-list” mode; (2) It is detected
that the type 400 HTTP requests fall below the
established threshold for more than 30 measure-
ment periods (over 30 minutes) and, in addition,
the WAF is working in the allow-list mode. As
a result of the first activation, rule 1 applies, and
because of the second, rule 2 applies. Table 3
shows this policy with the format proposed in ta-
ble 1, where Trigger1 (HIGH-HTTP 400 Cod) is
observed each time HTTP requests of type 400 per
minute > 50, State1 (OFF-WAF-ALLOWLIST)
is observed when the WAF is not in the “allow-
list” mode, Trigger2 (LOW-HTTP 400 Cod) is
observed each time HTTP requests of type 400 per
minute < 50 during 30 minutes and State2 (ON-
WAF-ALLOWLIST) is observed when the WAF
is in the “allow-list” mode.

– Rule 1. The first rule associated with policy

1 is executed, following the timing configured
by the administrator (“Timing” section of the
rule), when the same event that triggered the re-
lated policy occurs (exceeding the threshold for
HTTP requests type 400). Therefore, it is done
as soon as it is analysed. Applying this rule runs
the script “waf-allowlist.py” on the WAF, using
the artefact “ssh-connection.py” to connect to
the ModSecurity WAF.

– Rule 2. In this case, the rule, when triggered,
waits until the o’clock hours. Once that time
arrives, the “waf-normal.py” script is executed
using the “ssh-connection.py” artefact to con-
nect to the WAF.

• Policy 2). The activation of this policy occurs
when: (1) It is detected that the number of Tweets
with URLs of the store exceeds the established
threshold and the WAF is not working with ac-
cess restrictions by country; (2) It is detected
that the resource consumption at the web server
is below the configured threshold and, in addi-
tion, the WAF is working with access restrictions
by country. As a result of the first activation,
rule 3 applies and, by the second, rule 4. Table
4 shows this policy with the format proposed in
table 1, where Trigger3 (HIGH-URL on Tweets)
is observed each time tweets per hour > 100,
State3 (OFF-WAF-COUNTRY) is observed when
the WAF is not working with access restrictions
by country, Trigger4 (LOW-WS Consumption) is
observed each time CPU consumption < 70% &
RAM consumption < 80% during 60 minutes and
State4 (ON-WAF-COUNTRY) is observed when
the WAF is working with access restrictions by
country.

– Rule 3. The first rule associated with pol-
icy 2 is executed when the event that triggered
the related policy occurs (exceeding the thresh-
old number of Tweets containing URLs to the
store), therefore, it is analysed automatically.
This rule runs the “waf-restricted.py” script us-
ing the “ssh-connection.py” artefact.

– Rule 4. The fourth and last rule, also associ-
ated with policy 2, is executed when the web
server has kept average CPU and RAM con-
sumption below 55%. When this condition is
met, it is the “waf-not-restricted.py” script us-
ing the “ssh-connection.py” artefact that is re-
sponsible for applying the adaptation.

Table 5 shows these two policies in JSON
(JavaScript Object Notation). This standard file for-
mat has been selected to implement the prototype of
the adaptive WAF because it enables data objects in-

SECRYPT 2022 - 19th International Conference on Security and Cryptography

102

Table 3: Policy 1 for the prototype.

Adaptation conditions:
Predicate 1: observed(Trigger1 and State1) →
Rule 1.
Predicate 2: observed(Trigger2 and State2) →
Rule 2.

terchange (attribute–value pairs and arrays, or other
serializable values) using human-readable text. It is a
language-independent data format that can be gener-
ated and parsed by humans, applications and servers.

Different code snippets enable the execution of the
Adaptation, running the actions expressed in the four
defined rules:

• ssh-connection.py. It is responsible for establish-
ing the connection, via SSH, between the server
that hosts the Adaptation Tool and the web server
(where the WAF is running).

• waf-allowlist.py. This second piece of code, asso-
ciated with rule number 1, connects to the server
with the WAF (taking advantage of the functions
contained in “ssh-connection.py”) and (1) Queries
the database to extract all existing product identi-
fiers (IDs); (2) Modifies the WAF configuration
file, activating an allow-list and including in it all
the URLs to products previously extracted from
the database; (3) Restarts the WAF for the changes
to take effect.

• waf-normal.py. It is associated with rule 2, and
after making the connection with the WAF (using
“ssh-connection.py”): (1) Modifies the WAF con-
figuration file, deactivating the allow-list for prod-
ucts; (2) Restart the WAF service for the changes
to take effect.

• waf-COUNT-restricted.py. Associated with rule
3, connects via SSH with the WAF and: (1) Modi-
fies the WAF configuration file to restrict access to
the web application only from some specific coun-
tries; (2) Restarts the WAF service for the changes
to take effect.

• waf-not-restricted.py. It is associated with rule
4. After making the SSH connection with the
WAF: (1) Modifies the WAF configuration file,
deactivating the access restriction by country; (2)
Restarts the WAF service for the changes to take
effect.

Table 6 shows the four proposed rules, again writ-
ten in JSON. Each rule requires a name, the specifi-
cation of a timing and the controls. In this prototype,
rules 1, 3 and 4 are event-driven, therefore, governed
by a trigger. Rule 2 is periodic, therefore, governed by
a cron expressed with five digits: minute, hour, day,

Table 4: Policy 2 for the prototype.

Adaptation conditions:
Predicate 1: observed(Trigger3 and State3) →
Rule 3.
Predicate 2: observed(Trigger4 and State4) →
Rule 4.

month, day of week (the ∗ represents any value, the 0
is to perform the adaptation only at the o’clock hours).
The four rules use as an “Artefact” the code allowing
the connection via SSH, each one of them performs
a different “Action” thanks to the already introduced
code snippets.

Table 5: Policies 1 and 2 for the prototype written in JSON.

[{
"name": "Policy1",
"conditions": [{

"antecedent": [
"HIGH-HTTP_400_Cod",
"OFF-WAF-ALLOWLIST"

],
"consequent": ["Rule1"]

},{
"antecedent": [

"LOW-HTTP_400_Cod",
"ON-WAF-ALLOWLIST"

],
"consequent": ["Rule2"]

}]
},{

"name": "Policy2",
"conditions": [{

"antecedent": [
"HIGH-URL_on_Tweets",
"OFF-WAF-COUNTRY"

],
"consequent": ["Rule3"]

},{
"antecedent": [

"LOW-WS_Consumption",
"ON-WAF-COUNTRY"

],
"consequent": ["Rule4"]

}]
}]

5.2 Experimental Results

Different experiments have been performed to vali-
date and evaluate the proposed approach (see table 7).
The performed experiments have covered the entire

An Adaptive Web Application Firewall

103

Table 6: Rules 1 to 4 for the prototype written in JSON.

[{
"name": "Rule1",
"timing": {

"period": null,
"on-demand": false,
"trigger": "HIGH-HTTP_400_Cod",

},
"controls": [{

"action": "waf-allowlist.py",
"artefact": "ssh-connection.py",

}],
}, {

"name": "Rule2",
"timing": {

"period": "0 * * * *",
"on-demand": false,
"trigger": null

},
"controls": [{

"action": "waf-normal.py",
"artefact": "ssh-connection.py",

}],
}, {

"name": "Rule3",
"timing": {

"period": null,
"on-demand": false,
"trigger": "HIGH-URL_on_Tweets"

},
"controls": [{

"action": "waf-COUNT-restricted.py",
"artefact": "ssh-connection.py",

}],
}, {

"name": "Rule4",
"timing": {

"period": null,
"on-demand": false,
"trigger": "LOW-WS_Consumption"

},
"controls": [{

"action": "waf-not-restricted.py",
"artefact": "ssh-connection.py",

}],
}]

application for one week, although, in this section,
we focus on the results obtained when protecting the
“https://example.com/product/ID” page. As a base-
line for performance, two ModSecurity deployments
have been considered with two different levels of
paranoia: one with a “relaxed” configuration working
with a block-list and allowing requests from different
countries, and one with a “restricting” one working
with an allow-list and accepting only requests from
IPs at selected countries. The Adaptive ModSecurity
is our prototype, implemented as described in the pre-

vious section.
During this week, 50 legitimate users of the appli-

cation (sending 400 legitimate requests per day each
to the protected application) and 400 potential attacks
per day have been simulated, including SQL injec-
tion and DDoS attacks, because the rules and poli-
cies included in the evaluated prototype are intended
to block this type of attack. These attacks are carried
out with the OWASP ZAP and Burp Suite tools and
different known payloads.

Table 7 shows the average CPU and RAM con-
sumption due to the WAF on the web server, the aver-
age CPU and RAM consumption due to the execution
of additional tools on a different server (the server to
execute the Adaptation Tool in the case of our proto-
type), the number of blocked and successful attacks
during the week, the number of blocked legitimate re-
quests and the type of task that needs to be performed
by the WAF administrator prior to this week of exper-
iments in order to achieve the obtained results.

As demonstrated by the obtained results, the re-
laxed WAF configuration consumes few resources on
the web server but allows a higher number of attacks
to succeed than the restrictive configuration. In return,
this restrictive configuration consumes much more re-
sources (CPU and RAM). The adaptive approach pro-
posed in this work manages to block almost the same
number of attacks as the restrictive configuration. The
figures are slightly worse because the adaptation that
takes the WAF from the relaxed to the restrictive con-
figuration is not performed until it is observed that the
risk is above the established threshold. But there is
hardly any difference with the more restrictive static
configuration. Other adaptive policies or rules could
be explored to bring the results of the adaptive WAF
even closer to those of the static WAF with the re-
stricting configuration in terms of rate of blocked at-
tacks (from the current 79% to 85%).

And yet, it consumes fewer resources than if it
were applied, statically, all the time. An additional
advantage shown in the table is not related to the re-
duction in resource consumption, but the improved
accessibility of the application. When the restrictive
configuration is continually applied, legitimate users
in certain countries, for example, may be blocked by
the WAF. However, with the adaptive WAF, restrictive
settings are only applied when strictly necessary (us-
ing rule 3), so the rest of the time, these users will be
able to use the application without restrictions.

In addition, the average time it takes for the WAF
to change its configuration has been measured when
this change is automatic (rules 1, 3 and 4 in our proto-
type, in rule 2 the change is periodic). In other words,
once a specific policy is evaluated, and it is decided

SECRYPT 2022 - 19th International Conference on Security and Cryptography

104

Table 7: Experimental results.

WAF relaxed WAF restricting Adaptive WAF
CPU consumption web server (%) 16.48 17.01 16.73
RAM consumption web server (%) 40.51 49.98 46.3
CPU consumption additional server
(%)

- - 8.21

RAM consumption additional
server (%)

- - 24.18

Number of blocked attacks 1792 2381 2214
Rate of blocked attacks – true posi-
tives (%)

64 85 79

Number of successful attacks 1008 419 586
Number of blocked legitimate re-
quests

134 1567 359

Rate of blocked legitimate requests
– false positives (%)

4.8 56 12.8

Workload for WAF admin. WAF static configu-
ration and signatures
update

WAF static configu-
ration and signatures
update

Rules, policies, and
signatures update

that the WAF needs to be adapted, the time it takes to
evaluate the corresponding rule and to make the adap-
tation is measured, and therefore, to make the changes
that the administrator wishes to make to the WAF. An
average time of 16.1 s with a standard deviation of
8.4 s has been measured. It has to be pointed that no
HTTP request suffers this latency, this time is required
to decide about the WAF adaptation and to perform
it (to change the WAF configuration). The runtime
performance of the Adaptive ModSecurity is exactly
the same as the performance of ModSecurity, each re-
ceived request is analysed in 1 to 15 ms.

There is no version of ModSecurity that uses Ma-
chine Learning to be included in the table compari-
son. But we can deduce that the CPU and RAM con-
sumption on the web server would be high (due to
the complexity of the models used), that an additional
server would be needed to train and retrain these mod-
els offline (the adaptive WAF requires this additional
server to execute the Adaptation Tool instead, but re-
source consumption is limited), that the burden for the
WAF administrator (or the data science specialist sup-
porting him/her) would be related to building the suit-
able dataset and training and retraining the models.
The latency added to each request would be higher
than a few ms due to the complexity to the models ap-
plied to classify them as legitimate or malicious. And
the unknown, in this case, is how much it would im-
prove the WAF’s ability to block attacks (especially
zero-day attacks that signatures cannot block) and to
avoid blocking legitimate requests. All the observed
improvements should be in these two last respects.

6 CONCLUSIONS

Web Application Firewalls (WAFs) are used to protect
websites, applications and services. They may offer
in-depth security as long as they are frequently config-
ured correctly and updated (signatures, standard traf-
fic patterns).

Machine Learning can be used to avoid this work-
load because WAF solutions can learn by themselves,
relying on these techniques. But they require the
availability of the appropriate datasets and a new kind
of workload related to the training and retraining of
the learning models.

This paper proposes a new approach, adaptive
WAFs, based on adding an external Adaptation Tool
to WAFs, capable of performing measurement, apply-
ing policies and adaptation rules defined by adminis-
trators and managers, and adjusting the way the WAF
works to the risk that is being taken (and that one
wishes to take) at any given moment. A prototype
of the proposed approach has been implemented to
protect a web application, allowing us to validate the
Adaptation Tool and evaluate it with the ModSecurity
WAF.

The proposed adaptive WAF has shown signifi-
cant improvements in resource consumption, blocked
attacks, ease of configuration, and flexibility in risk
management compared to traditional WAFs. All this
without requiring large datasets and complex mod-
elling processes (training and retraining) as in the case
of emerging ML approaches.

An Adaptive Web Application Firewall

105

ACKNOWLEDGMENT

This research has been partially supported by the
Madrid region (EdgeData, Grant Ref. P2018/TCS-
4499). Miguel Calvo is supported by grants from the
Rey Juan Carlos University (ref. C-PREDOC21-007).

REFERENCES

Ande, R., Adebisi, B., Hammoudeh, M., and Saleem, J.
(2020). Internet of things: Evolution and technolo-
gies from a security perspective. Sustainable Cities
and Society, 54:101728.

Applebaum, S., Gaber, T., and Ahmed, A. (2021).
Signature-based and machine-learning-based web ap-
plication firewalls: A short survey. Procedia Com-
puter Science, 189:359–367. AI in Computational
Linguistics.

Babiker, M., Karaarslan, E., and Hoscan, Y. (2018). Web
application attack detection and forensics: A sur-
vey. In 2018 6th International Symposium on Digital
Forensic and Security (ISDFS), pages 1–6.

Betarte, G., Gimenez, E., Martinez, R., and Pardo, A.
(2018). Improving web application firewalls through
anomaly detection. In 2018 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 779–784.

Boudko, S. and Abie, H. (2019). Adaptive cybersecurity
framework for healthcare internet of things. In 2019
13th International Symposium on Medical Informa-
tion and Communication Technology (ISMICT), pages
1–6.

Calvo, M. and Beltrán, M. (2022). A model for risk-based
adaptive security controls. Computers & Security,
115:102612.

Chen, A., Xing, H., She, K., and Duan, G. (2016). A dy-
namic risk-based access control model for cloud com-
puting. In 2016 IEEE International Conferences on
Big Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustain-
able Computing and Communications (SustainCom)
(BDCloud-SocialCom-SustainCom), pages 579–584.

Djoudi, B., Bouanaka, C., and Zeghib, N. (2014). Model
checking pervasive context-aware systems. In 2014
IEEE 23rd International WETICE Conference, pages
92–97.

Domingues Junior, M. and Ebecken, N. F. (2021). A new
waf architecture with machine learning for resource-
efficient use. Computers & Security, 106:102290.

Elkhodary, A. and Whittle, J. (2007). A survey of ap-
proaches to adaptive application security. In Interna-
tional Workshop on Software Engineering for Adap-
tive and Self-Managing Systems (SEAMS ’07), pages
16–16.

Gambella, C., Ghaddar, B., and Naoum-Sawaya, J. (2021).
Optimization problems for machine learning: A sur-
vey. European Journal of Operational Research,
290(3):807–828.

Garn, B., Sebastian Lang, D., Leithner, M., Richard Kuhn,
D., Kacker, R., and Simos, D. E. (2021). Combinato-
rially xssing web application firewalls. In 2021 IEEE
International Conference on Software Testing, Verifi-
cation and Validation Workshops (ICSTW), pages 85–
94.

Gogoi, B., Ahmed, T., and Saikia, H. K. (2021). Detection
of xss attacks in web applications: A machine learn-
ing approach. International Journal of Innovative Re-
search in Computer Science & Technology (IJIRCST),
9(issue-1):2347–5552.

IŞiker, B. and SoĞukpinar, I. (2021). Machine learning
based web application firewall. In 2021 2nd Interna-
tional Informatics and Software Engineering Confer-
ence (IISEC), pages 1–6.

Ito, M. and Iyatomi, H. (2018). Web application firewall
using character-level convolutional neural network. In
2018 IEEE 14th International Colloquium on Signal
Processing Its Applications (CSPA), pages 103–106.

Kumeno, F. (2019). Sofware engneering challenges for ma-
chine learning applications: A literature review. Intel-
ligent Decision Technologies, 13:463–476. 4.

Lara, E., Aguilar, L., Sanchez, M. A., and Garcı́a, J. A.
(2019). Adaptive Security Based on MAPE-K: A Sur-
vey, pages 157–183. Springer International Publish-
ing, Cham.

Martinelli, F., Michailidou, C., Mori, P., and Saracino, A.
(2018). Too long, did not enforce: A qualitative hier-
archical risk-aware data usage control model for com-
plex policies in distributed environments. In Proceed-
ings of the 4th ACM Workshop on Cyber-Physical Sys-
tem Security, CPSS ’18, page 27–37, New York, NY,
USA. Association for Computing Machinery.

Moradi Vartouni, A., Shokri, M., and Teshnehlab, M.
(2015). Auto-threshold deep svdd for anomaly-based
web application firewall.

Nafea, R. A. and Amin Almaiah, M. (2021). Cyber security
threats in cloud: Literature review. In 2021 Interna-
tional Conference on Information Technology (ICIT),
pages 779–786.

Schelter, S., Biessmann, F., Januschowski, T., Salinas, D.,
Seufert, S., and Szarvas, G. (2018). On challenges
in machine learning model management. IEEE Data
Eng. Bull., 41:5–15.

Shahid, W. B., Aslam, B., Abbas, H., Khalid, S. B., and
Afzal, H. (2022). An enhanced deep learning based
framework for web attacks detection, mitigation and
attacker profiling. Journal of Network and Computer
Applications, 198:103270.

SpiderLabs (2022). Modsecurity waf.
Steinegger, R. H., Deckers, D., Giessler, P., and Abeck, S.

(2016). Risk-based authenticator for web applications.
In Proceedings of the 21st European Conference on
Pattern Languages of Programs, EuroPlop ’16, New
York, NY, USA. Association for Computing Machin-
ery.

Sun, S., Cao, Z., Zhu, H., and Zhao, J. (2020). A sur-
vey of optimization methods from a machine learn-
ing perspective. IEEE Transactions on Cybernetics,
50(8):3668–3681.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

106

Tan, H. H. and Hoai, T. V. (2021). Web application anomaly
detection based on converting http request parameters
to numeric. In 2021 15th International Conference
on Advanced Computing and Applications (ACOMP),
pages 93–97.

Tekerek, A. and Bay, O. (2019). Design and implementation
of an artificial intelligence-based web application fire-
wall model. Neural Network World, 29(4):189–206.

Valenza, A., Demetrio, L., Costa, G., and Lagorio, G.
(2020). Waf-a-mole: An adversarial tool for assess-
ing ml-based wafs. SoftwareX, 11:100367.

An Adaptive Web Application Firewall

107

