
Startable: Multidimensional Modelling for Column-Oriented NoSQL

Leandro Mendes Ferreira1 a, Solange Nice Alves-Souza1 b and Luciana Maria da Silva2,3 c
1Departamento de Engenharia de Computação e Sistemas Digitais (PCS), Universidade de São Paulo (USP), Brazil

2Department of Mathematical Sciences, Durham University, U.K.
3Centro de Estudos de Petróleo (CEPETRO), University of Campinas (Unicamp), Brazil

Keywords: NoSQL, Multidimensional Modelling, Data Modelling, Database Query Processing and Optimisation
(Theory).

Abstract: NoSQL Database Management Systems (DBMS) can be an alternative for analytical systems and have been
used in this regard. As analytical systems often use multidimensional data modelling, which was created for
relational databases, a new logical data modelling is necessary for NoSQL Column-Oriented Databases. We
developed logical modelling (Startable) and applied NoSQL oriented to the family of columns. Furthermore,
a logical model for the application of Startable modelling is presented in this research and a benchmark where
the performance of the proposed modelling is demonstrated compared to traditional approaches to
multidimensional modelling.

1 INTRODUCTION

Decision-making systems are fundamental to many
organisations in the most diverse businesses. These
systems are considered key parts of organisations'
business development, and for many years, they were
seen as a competitive differential. In the 1990s, these
decision-making systems were defined as Business
Intelligence (BI) and comprised modelling tools and
technologies to analysis tools (Duan and Xu, 2012).

Data Warehouse (DW), a database dedicated to
the decision-making context, is one of the main
components in BI environments (Yessad and Labiod,
2016). According to Lins and Ferreira (2016), the
multidimensional model is the most adopted.

The big data systems with Hadoop and NoSQL
have significant differences concerning the
Relational Database Management Systems (RDBMS)
in several characteristics. NoSQL uses non-relational
data structures, does not have an SQL query language
(present in the vast majority of RDBMSs), does not
meet ACID characteristics (an acronym for
Atomicity, Consistency, Isolation, and Durability),
and has the persistence of distributed data
(Moniruzzaman and Hossain, 2013). Thus, data

a https://orcid.org/0000-0003-0680-1100
b https://orcid.org/0000-0002-6112-3536
c https://orcid.org/0000-0001-9544-9748

modelling with the ER and Multidimensional
Modelling are not applied to these new technologies
since they are designed to assist RDBMS.

This research has the main focus on analytical
systems. We developed the modelling of logical data
called Startable, which needs the Column-Oriented
NoSQL physical model. This modelling pretends to
be simple, based on the business rules of the users and
widely known concepts of modelling. Finally, we
propose that the modelling improves the efficiency of
the return of queries.

This paper is structured as follows: Session 2
presents Column-Oriented NoSQL; Session 3
presents related research and with subsidies for the
development of this article; Session 4 offers an
explanation of the importance of partitioning
mechanisms for NoSQL; Session 5 shows the
building of Startable modelling; Session 6 presents
the Star Schema Benchmark (SSB), the benchmark
applied for testing of modelling performance; Session
7 presents the modelling performance results over the
benchmark in a controlled laboratory; Session 8
presents the conclusion and proposals for future
work.

Ferreira, L., Alves-Souza, S. and Maria da Silva, L.
Startable: Multidimensional Modelling for Column-Oriented NoSQL.
DOI: 10.5220/0011142100003269
In Proceedings of the 11th International Conference on Data Science, Technology and Applications (DATA 2022), pages 21-30
ISBN: 978-989-758-583-8; ISSN: 2184-285X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

21

2 COLUMN-ORIENTED NoSQL

NoSQL is a term that groups non-relational DBMS,
which serve large volumes of data with high
performance and high availability. According to
Moniruzzaman and Hossain (2013), NoSQL has the
following characteristics:

 Absence of the standard SQL-ANSI query
language

 Horizontal scalability
 Schemaless or Schema Free
 Sharding and Replication

NoSQL DBMSs are highly relevant for
applications that need a technology which supports
large volumes of data management and scalability
efficiently and straightforwardly (Lóscio et al., 2011).

Currently, NoSQL DBMSs are classified into four
basic types of architectures: Key-Value, Document
Oriented, Column Family and Graph Oriented
(Moniruzzaman and Hossain, 2013). This research
focuses on Oriented Column (Family Column)
NoSQL, as shown in Figure 1.

Figure 1: Example of Oriented Column Data Model -
(Manoj V, 2014)

Column-family or column-oriented NoSQL has
extensible record storage and large columnar stores.
This type of NoSQL was initially inspired by
Google's Bigtable, a distributed DBMS based on
structured data built to handle vast volumes of data.
Column-oriented NoSQL data stores are hybrid
row/column storage, with significant differences
from common relational databases. Despite having a
similar concept to column-by-column storage of
columnar databases and columnar extensions to row-
based databases, column-oriented NoSQL does not
persist data in tables. Instead, it stores the data in
massively distributed architectures. A key is
associated with one or more attributes (columns).
This type of columnar storage persists its data to be
optimally aggregated to lower I/O costs and offers
high scalability in data storage. Data stored in the
database is based on column family sort order (Manoj
V, 2014). The most popular column-oriented NoSQL

on the market are Apache HBase, Apache Cassandra
and Google Big Table.

3 RELATED WORKS

Different researchers developed papers regarding the
problem of modelling for analytical systems focusing
on the use of a NoSQL database and adaptation of
multidimensional modelling for new non-relational
database types. We highlight the three significant
modelling concentrations proposals:

1º: The purpose of the classic Star Schema model
in NoSQL, for example, Carniel et al. (2012)
proposed applying a multidimensional normalised
model, or the classic "star schema" modelling over
columns-oriented NoSQL.

2º: Several authors among them (Carniel et al.,
2012; Chevalier et al., 2015a; Ferreira, 2015;
Murazza and Nurwidyantoro, 2016) proposed the
Fully Non-Normalised Multidimensional Modelling
(FNMM), which is a joining of a fact table with its
dimensions of Star Schema model in a single table.

The physical implementation of FNMM in
column-oriented NoSQL facts and their dimensions
are gathered in the same table, using a single column
family as seen in Dehdouh et al. (2014). Also,
Scabora et al. (2016a) call a similar approach
SameCF. Another option for a physical model for
column-oriented NoSQL is proposed in Chevalier et
al. (2015b), outlined in Figure 2. Facts and
dimensions belong to the same table; however, facts
and each dimension are represented in separated
column families. Scabora et al. (2016a) also
proposed this same option, called CNSSB; Bouaziz et
al. (2019) suggest the same. This approach for
physical implementation is similar to non-nested
document-oriented NoSQL.

It is worth highlighting that each specific NoSQL
from the same type of family has different
implementations. For example, HBase and Cassandra
belong to the same NoSQL family, but each has its
implementation. Thus, the physical model of non-
normalised data for column-family-oriented NoSQL
is adapted according to a specific NoSQL.

Using FNMM for complex hierarchies in
document-oriented NoSQL, Bonnet et al. (2011a),
Chevalier et al. (2015a), and Tournier (2017a) suggest
the use of arrays to construct the hierarchies. For
column-family-oriented NoSQL, Chevalier et al.
(2015b) show that dimension hierarchy should be
mapped as a column for each dimension, i.e., physical
columns in column families representing each
dimension.

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

22

Figure 2: Physical model Implementation in Column-
Oriented NoSQL - (Max Chevalier et al., 2015).

3º: The FNMM variations adding the
materialisation of aggregations are pre-computation
of fields are used for aggregates to persist along to
this model physically. More details can be seen in
(Carniel et al., 2012; Zhao and Ye, 2014; Chavalier et
al., 2016), among other works. It is worth mentioning
that some researchers suggest tools to improve the
indexing way of data (Vasilakis et al., 2017), or tools
for a better choice of partitioning models, automating
this partitioning in an automated way through
Machine Learning algorithms (statistical models)
(Boussahoua et al., 2017; Cugnasco et al., 2016).
These models use techniques such as clustering using
K-Means, Linear Regression, or Hash algorithms.
They automatically discover the best indexing or
partitioning, not considering the users' business rules,
query needs, or even data recovery.

Another note is that many works use tools or
frameworks in conjunction with NoSQL to aid
queries, generally using a traditional query language
like SQL ANSI. The authors used the structures of the
following frames Apache Hive (Cugnasco et al.,
2016), Apache Phoenix (Dehdouh et al., 2014), as
well as the built by their researchers for this task
(Zhao and Ye, 2014). Regarding the Apache Hive, it
is used with NoSQL to assist in the exposure of
metadata and queries on NoSQL.

Nevertheless, the modelling developed by
(Amirthalingam and Rais, 2018) is also an adaptation
of the FNMM, but the authors do not encourage the
total merging of dimensions and facts. The authors
used a set of rules for joining some dimension tables
and tables with pre-computed aggregations, adding
structures of partitions and buckets of Hive. This use

depends exclusively on the cardinality of the data,
having no relation to business rules.

Concerning the FNMM, Chebotko et al. (2015)
proposed that this modelling can be firmly based on
the business rules, and the applications will carry out
queries. Another predominant factor in the modelling
developed by the authors is the primary keys model,
which involves hard work in the concepts of and the
idea of partitions. Although the model developed by
the authors is efficient in meeting the business
requirements of several methods, they designed it for
transactional systems. Also, this modelling is linked
intrinsically to the NoSQL Cassandra and its physical
model of persisting data.

4 PARTITIONING AND
CLUSTERING OF DATA ON
NoSQL

Data partitioning and primary keys modelling are the
main mechanisms used by NoSQL databases for a
balanced distribution of data in the cluster. These
concepts have fundamental importance in the
performance of these technologies. Figure 3 presents
the effect of data partitioning on a Cassandra cluster.

Figure 3: Partitioning on Clustering Cassandra.

As shown in Figure 3, the Cassandra cluster is
represented as a ring. The fields belonging to the
cluster key are responsible for distributing data in the
cluster (Hewitt and Carpenter, 2020).

Besides, Cassandra and other NoSQL and
distributed data systems utilise indexing algorithms
and hashing based on partitions and buckets to aid in
insertion and data query. The incorrect choice of
fields in the keys and partitions of each NoSQL and
Hive can cause data to unbalance in the cluster. It can
have partitions with excess data on a single node or

Startable: Multidimensional Modelling for Column-Oriented NoSQL

23

with little or no data on the nodes. So, the correct use
of the designated fields as partitions or buckets can
increase the efficiency of the queries. Besides, it is
possible to avoid the Full Scan. It also potentiated the
indexing and hashing algorithms to aid the systems in
retrieving data to answer the queries. See more details
in (Hewitt and Carpenter, 2020; Chodorow and
Bradshaw, 2018; Du, 2018).

5 STARTABLE – LOGICAL
MULTIDIMENSIONAL
MODELLING FOR NoSQL

As a basis for the development of Startable, we use
the Star Schema multidimensional modelling
proposed by (Inmon, 2002; Kimball and Ross 2002)
and the principles of modelling presented by
(Chebotko, Kashlev and Lu 2015). We modified and
adapted the modelling to meet the physical data
model present on columns-oriented NoSQL. Beyond
the Startable modelling, we proposed a set of
principles and a flow of processes that guide the
application of the logical model of the data. We tested
the modelling and flow (Figure 4) in a controlled
environment to verify their applicability and
efficiency.

Figure 4: Logical Flow of Startable Modelling.

We highlighted and discussed, Figure 4, the four
main stages for creating the Startable modelling and
the tasks involved in each of these stages:

1. Star Schema Modelling:
 Develop the standard process of

multidimensional modelling seen in (Kimball
and Ross, 2002; Inmon, 2002);
 Perform complete denormalisation by

transforming the Star Schema model into a
single table composed of facts and all
dimensions, as proposed in (Chevalier et al.,
2015a; Ferreira, 2015; Dehdouh et al., 2014).

2. Partition Selection:
 Identify the dimensions that are most used as

filters in queries, for example, Dates,
Geolocalization (country, states, cities),

Organizational Data (company name, branch
name);
 Identify the mandatory filters applied in

proportion to Pareto. According to the
theoretical concept of Pareto, in most cases, we
asked 80% of the examples to use 20% of the
dimensions as filters (Zhu and Xiang, 2016;
Vandewalle et al., 2007);
 Identify the dimensions that have a distribution

more uniform of data in the cluster; for example,
a more granular data dimension is probably
more evenly distributed. Therefore, among the
aspects that identify geolocation data, for
example, the City dimension should probably
have a better distribution characteristic between
the cluster than the Country or State dimensions;
 Minimise the number of fields for partitions (1

to 5 partition fields generally) (Chebotko et al.,
2015);
 Do not use partition fields that are not used as

filters in queries. Not using this task can
generate a Full Scan in the database.

3. Buckets Selection:
 Identify the frequency of use of filters not

required;
 Identify the frequency of ordering data usage

(order by);
 Identify the frequency of data usage in the

grouping (group by) and drill-down;
 Identify the order of the granularity of the

dimensions and insert them in a reverse way
(less granular to the more granular). For
example, we can have the following hierarchy:
Year, Month, Day. The Year field is the least
granular of this aspect. If we need the three
fields in the buckets, we must first insert the year
field, followed by month and day, as this
facilitates the sorting and grouping the data and
drill-downs.

4. Priority - Partition and Buckets:
 Select, like partitions and buckets, fields that

appear in most queries answering the business
questions;
 If there is a possibility of performance testing of

queries, then we must select partitions and
buckets which we can use in the consultations
with the most impact on the workload of the
analytical system;
 When more than one field is partitioned, first

use the minor granularity field, followed by the
more granular area. For example, for the
dimension Date, we must first use the Year field,
then the Month field and so forth;

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

24

 In the case of hierarchies of dimensions, use the
most specific field as a bucket, for example, for
the hierarchy of Date (YYYYMMDD). But, if
there is not or need to use more than one
hierarchy field, first use the areas with less
granularity, for example, (Year, Month, Day);
 All fields used as a partition should be filtered

in the queries to avoid a Full Scan.

Another essential point in Figure 4 is the "views,"
which permeate each stage. "Views," Figure 4,
focused on data and the business model concerning
the steps of the transition. We highlighted five views
in Figure 4:

 View over Traditional Model - Develop
the Star Schema traditional model on
existing data;

 View over Filters - Establish the primary
filters used in the business for most of the
questions that the data in the model will
answer;

 View over Groups - Establish the main
groupings used by the business;

 View over Order - Establish the order and
priorities that the queries will present;

 View over Data Distribution - Focus on the
data distribution in the cluster. We need to
ponder the model, improving the data
distributed through the clusters. We can
improve its efficiency in processing the
queries.

6 BENCHMARK – DATA
MODELLING

We applied an analytical benchmark to the distributed
and controlled environment before of test the
performance of the logical model proposed in this
research (Startable). The chosen Benchmark model
was the Star Schema Benchmark (SSB), proposed by
O'Neil et al. (2009). In the scientific community, this
benchmark stands out for its simplicity of application
and for being a specific reference for
multidimensional modelling. Also, it is a
simplification of the TPH-C benchmark model. TPH-
C follows the Snowflake modelling based on Star
Schema but with high normalisation of dimensions.
SSB transforms the Snowflake model on the Star
Schema multidimensional model.

SSB has a data generator and a set of 13 ready
queries, by which one can measure the query
performance on several aspects such as filters,

equalities, inequalities, groupings, and ordering. SSB
data model consists of a fact table and four
dimensions modelled in Star Schema format, as
shown in Figure 5.

Figure 5: SSB Data Model.

We applied the SSB data model, the FNMM, and
the Startable modelling. We pass by the four steps of
the Startable modelling flow proposed in item 4.
Firstly, we transform the SSB data model into the
FNMM data model, in the following, in the Startable
model. So, we replicated the Startable modelling over
a Cassandra NoSQL database cluster (oriented to the
column-family. Also, we measured the performance
of the Startable model concerning the Star Schema
traditional model and a version of the Star Schema
modelling unifying facts and dimensions in a single
table. Several authors proposed the last modelling
(Carniel et al., 2012; Chevalier et al., 2015a; Ferreira,
2015; Dehdouh et al., 2014; Dehdouh, 2016a).

We cannot interfere in the SSB business model,
for example, defining a mandatory field as a filter in
all queries. Then, we studied the data and tables
involved in understanding the business model
implicit in the SSB. After applying the four steps of
the Startable model, we kept the views of each of
these. We obtained the Startable final model. We
counted the fields with 13 queries, facilitating queries
and SSB fundamental business models. Table 1
shows how the counting of fields is accomplished in
queries of the SSB model.

Startable: Multidimensional Modelling for Column-Oriented NoSQL

25

Table 1: Count of Queries Arguments on SSB Model.

Line Labels
Field
Count

Where
Sum

Group
by

Sum

Order
by

Sum
c_city 3 0 3 0

c_nation 3 1 2 1

c_region 4 4 0 0

d_year 12 7 10 10

d_yearmonth 1 1 0 0

d_yearmonthnum 2 2 0 0

lo_discount 3 3 0 0

lo_quantity 3 3 0 0

p_brand1 4 2 4 4

p_category 3 2 1 1

p_mfgr 2 2 0 0

s_city 4 1 4 1

s_nation 3 1 2 1

s_region 7 7 0 0

General Total 54 36 26 18

In Table 1, the d_year field is often used as an
argument in the queries, especially "where." Also, the
d_year field appears as an argument in 12 of the 13
queries for the SSB. With this information described
and interpreting the data of the SSB model, we
applied and analysed the Startable modelling based
on the four main steps presented in Figure 5.

Step 1 – Star Schema Model:
 No action was required to perform Star

Schema modelling since the SSB data
model was already in this modelling.

 We only perform the joining of the facts
and dimensions by changing the Star
Schema model to an FNMM by
suppressing the primary key columns of
the dimension tables.

Step 2 – Partition Selection:
 We identified that the d_year field was

more used as a filter, following a
proportion of Pareto (Zhu and Xiang,
2016; Vandewalle et al., 2007). This field
also had a uniform data distribution, which
qualified him as a candidate for partition.

 The s_region field could also be used as a
partition because we often used it as a
filter, and it could distribute the partitions
into the smallest segments. However, this
could also expressively fragment the
partitions, so we only used the d_year field
as a partition.

Step 3 – Buckets Selection:
 We identified the fields s_region 7 (seven)

times and c_region 4 (four) times as filters.

 We identified the p_mfgr, p_category, and
p_brand1 fields at least 2 (two) times, each
one in clauses "order by" and "group by."

 Another vital piece of information to note
is that we organised the hierarchical fields
in the "part" dimension, where the
"p_mfgr" is the less granular and the
"p_brand1" the most granular.

Step 4 – Priority - Partition and Buckets:
 We applied the d_year field only for

partition due to filter clauses' queries and
the homogeneous distribution of data.

 We chose the s_region and c_region fields
as the primary bucket due to the frequency
in the queries of filter clauses. We used
"s_region" and " c_region " in 7 queries as
filters and did not apply them for grouping
or ordination any single time. The
"s_region" field has a smaller distribution,
so we chose it as the primary bucket,
followed by "c_region".

 By frequency of use in grouping and
sorting clauses, we used the p_mfgr,
p_category, and p_brand1 fields as a
bucket following the dimension's
hierarchy for this use.

The final modelling of partitions and buckets was
defined, as shown in Table 2. We presented the order
of the fields will be the order for the physical ordering
of the data in the partitions. For NoSQL Apache
Cassandra, we have the following structure of
Clusters (in the Startable model refers to partitions)
and partitions (in the Startable model refers to
buckets):

"PRIMARY KEY ((D_YEAR), S_REGION,
C_REGION, P_MFGR, P_CATEGORY,
P_BRAND1))"

Table 2: Partitions and Buckets model applied to the SSB.

Startable

Field Partitions Buckets

d_year X -

s_region - X

c_region - X

p_mfgr - X

p_category - X

p_brand1 - X

For Apache Cassandra, the most internal
parentheses refer to the fields defined as the clusters,
and the most external refers to the fields defined as a
partition.

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

26

We accomplished two tests with loads of different
order data from the model developed. The first load
had about 1GB of data, and the second load had 10GB
of data. We tested two different data models and
compared the results (as shown in section 7). Thus,
the models tested were the traditional Star Schema,
the FNMM, and the modelling proposed in this work:
Startable.

To perform the benchmark, we used a distributed
cluster. We built the cluster with four machines and
used the Google Cloud Platform (as Platform as a
Service (PaaS)). The machines used had the
following configurations: 200 GB Hard Disk (not
SSD), 8 CPUs (Intel Skylake), 48 GB Memory, and
Operating System CentOS 7. The version of
Cassandra was Cassandra 3.11.4, and we also used
PrestoDB 0.214 as an auxiliary framework to perform
the queries. The Cassandra Cluster was composed of
4 (four) nodes ring with identical configurations for
each node. Cassandra clusters do not have a
master/slave architecture, requiring only the
processing nodes.

7 PERFORMANCE RESULTS OF
THE STARTABLE
MODELLING APPLICATION

We present the results concerning the methodology
described above. To analyse the Startable model, we
carried out two tests with data loads of different
orders, about 1GB of data and 10GB of data. Also, we
tested for each load of data the three data models:
Traditional Star Schema, FNMM, and Startable
modelling. Besides, we tested each modelling with
the two data volumes on Apache Cassandra.

We can observe in Table 3 the total volume of data
and the number of records generated for each
modelling. Also, we can see in Table 3 that the
volume of data is not much of a difference in storage
for each model, as the most significant volume of data
is in the line order fact table. There is no high volume
increase when we perform the join for the FNMM
model. The volume of data in the FNMM and
Startable model is identical since, structurally, the
data model is different only in partition and bucket
selection.

The tests were based on the response time of each
SSB query performed on each of the persistence
systems. Remember that we performed all the queries
to the PrestoDB applied on Apache Cassandra. We
triggered the queries to the PrestoDB through a
Python script that calculated the time spent for each

Table 3: Benchmark Data Volumetry.

Modelling Volume Storage Quantity

customer
1GB 5.5M 60000

10GB 47M 510000

supplier
1GB 328K 4000

10GB 2.8M 34000

dim_date
1GB 228K 2556

10GB 228K 2556

part
1GB 33M 400000

10GB 83M 1000000

lineorder
1GB 1.2G 11998051

10GB 9.9G 101987916

FNMM
1GB 1.2G 11998051

10GB 10G 101987916

Startable
1GB 1.2G 11998051

10GB 10G 101987916

of them. After the tests, we compiled the data and
showed the results from Figures 6 and 7. We
compared the response times of queries in seconds for
the three models, Star Schema, FNMM, and Startable.

Figure 6: SSB Query Benchmark for Startable over 1GB
Charge – Cassandra.

Figure 7: SSB Query Benchmark for Startable over 10GB
Charge – Cassandra.

When we analysed the results from 1 GB and 10
GB of data for Startable modelling compared to other
modellings, we observed a substantial performance
gain in the return of the queries in both volumes.
Concerning the charge of 10GB data, the Startable
modelling with column-oriented NoSQL (Apache

Startable: Multidimensional Modelling for Column-Oriented NoSQL

27

Cassandra) was dozens of times faster than the Star
Schema traditional model. We can verify a
performance increase in the application of Startable
modelling in large data volumes.

The turnaround time of queries on Startable
modelling remained practically the same in 1GB and
10GB volumes; however, in traditional Star Schema
and FNMM modelling, there was an increase
proportional to the data volume.

We saw that the correct application of the
Startable modelling could be 100 to 150 times more
efficient than the Star Schema and FNMM modelling
on queries in large volumes of data.

Through the tests carried out, we were able to
verify that our central hypothesis regarding the
Startable modelling proposition showed up to be
coherent. Correctly defining the partitioning and
buckets according to the needs of the business rules,
rules that were expressed in SQL queries, can
significantly reduce the query time in analytical
environments based on column-oriented NoSQL.

The results of the performance of queries in
FNMM modelling compared to traditional Star
Schema modelling were surprisingly negative. It is
common in the literature to verify that joining into a
single table of facts and dimensions brings
performance gains in queries (Dehdouh, 2016b;
Scabora et al., 2016b; Chevalier et al., 2017; Bouaziz
et al., 2017; Bonnet et al., 2011b; Tournier, 2017b).
However, in our tests, there was an inverse result.
Joining the fact and dimensions into a single table
made the performance of queries worse. We believe
that the better performance of traditional Star Schema
than FMNN is due to optimisations of the PrestoDB
processing framework, which applies advanced
optimisations in its execution plan to improve
performance in federated queries. PrestoDB may
have used the primary keys of each of the tables in the
Star Schema physical model to improve the
performance of the queries, especially in the joining
of tables and data selection. On the other hand, tables
in the FNMM model have only a single partition
primary key, which may have made PrestoDB's
optimisations unfeasible. In later works, these
suspicions need to be validated by scientific tests in
controlled environments.

Finally, we can observe that the increase in
performance in the queries on the Startable modelling
occurred in all the proposed queries and the two-
volume scenarios, maintaining a similar time for the
return of the query regardless of the volume, which
indicates substantial gains even with the addition of
10 times the volume of data. Other data quantities
must be tested in later works to verify the continuity

of the performance gain of the Startable modelling
even over vast volumes of data.

8 CONCLUSIONS AND FUTURE
WORKS

We proposed in this work logical modelling for
analytical systems with persistence in Column-
oriented NoSQL, Startable modelling. Our modelling
was able to unify two different concepts of
multidimensional modelling, the Star Schema and
fully non-normalised. Besides, it consolidated facts
and dimensions in a single table and focused on
modelling partitioning, bucket, and data ordering.

Startable modelling met the initial requirements
for independent simplicity applicability of the
business domain. It is modelling that bases its
development on the business rules of each case,
mainly to answer business questions more efficiently.

The proposed methodology for developing the
model based on logical flow met the requirements of
data queries and the better distribution of the data on
the persistence system. We proposed and followed all
steps of the workflow. Each of these steps must have
a specific view of the process development,
facilitating the replicability of the model in any data
domain. Concerning the applicability, the results
were successful since we obtained them from
benchmark tests defined in the academic community
and used for performance testing on a logical,
analytical data model. We can highlight another
reason for success in the analysis and results of
modelling. We suggested and followed the steps in
the Logical Flow of Development of the Startable
modelling.

The performed tests showed significant gains in
the performance of the organised data according to
the Startable modelling about the classic Star Schema
and the FNMM modelling. Several queries had
substantial performance gains when running on
Startable-organized data, especially on large data
volumes (10GB of data) in data persistence on
NoSQL Apache Cassandra.

We believe that Startable is flexible enough to
adapt to other families of NoSQL, such as document-
oriented ones. We also believe that its application can
be helpful in Big Data distributed file systems such as
HDFS S3, among others. Another exciting
implementation that can be performed on top of
Startartable is on distributed relational databases
specific to Data Warehouse, like Amazon Redshift,
Azure Synapse, Google Big Query, Snowflake, and

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

28

Apache Druid, among others, which can benefit from
the partitioning and buckets implementation model.
Thus, we suggest implementing Startable over other
data persistence models and NoSQL Document-
oriented, HDFS/S3 and Distributed Relational Data
Warehouse DBMS as future works.

REFERENCES

Amirthalingam, T, and HM Rais (2018). Automated Table
Partitioner (ATAP) in Apache Hive. At 2018 4th
International Conference on Computer and
Information Sciences (ICCOINS). IEEE.

Bonnet, L, A Laurent, M Sala, B Laurent, and N Sicard
(2011a). Reduce, you say: What NoSQL can do for data
aggregation and BI in large repositories.

Bonnet, L, A Laurent, M Sala, B Laurent, and N Sicard
(2011b). Reduce, you say: What NoSQL can do for data
aggregation and BI in large repositories.

Bouaziz, S, A Nabli, and F Gargouri (2017). From
Traditional Data Warehouse To Real Time Data
Warehouse. Vol. 557, nan.

Bouaziz, S, A Nabli, and F Gargouri (2019). Design a data
warehouse schema from document-oriented database.
vol. 159.

Boussahoua, M, O Boussaid, and F Bentayeb (2017).
Logical Schema for Data Warehouse on Column-
Oriented NoSQL Databases. In Database and Expert
Systems Applications, D. Benslimane, E. Damiani, W.I.
Grosky, A. Hameurlain, A. Sheth, R.R. Wagner (eds.).
vol. 10439, Springer International Publishing.

Carniel, AC, A de Aguiar Sa, VHP Brisighello, MX
Ribeiro, R Bueno, RR Ciferri, and CD de Aguiar Ciferri
(2012). Query processing over data warehouse using
relational databases and NoSQL. In 2012 XXXVIII
Conferencia Latinoamericana En Informatica (CLEI).
IEEE.

Chevalier, M, M El Malki, A Kopliku, O Teste, and R
Tournier (2016). Document-oriented data warehouses:
Models and extended cuboids, extended cuboids in
oriented document. The 2016 IEEE Tenth International
Conference on Research Challenges in Information
Science (RCIS). IEEE.

Chebotko, A, A Kashlev, and S Lu (2015). A Big Data
Modeling Methodology for Apache Cassandra. In 2015
IEEE International Congress on Big Data.

Chevalier, M, M El Malki, A Kopliku, O Teste, and R
Tournier (2015a). Implementation of Multidimensional
Databases with Document-Oriented NoSQL. In Big
Data Analytics and Knowledge Discovery, S. Madria,
T. Hara (eds.). vol. 9263, Springer International
Publishing.

Chevalier, M, M El Malki, A Kopliku, O Teste, and R
Tournier (2015b). Implementing multidimensional data
warehouses into NoSQL. H.S. Maciaszek L. Maciaszek
L.,. Teniente E. (ed.). vol. 1.

Chevalier, M, M El Malki, A Kopliku, O Teste, and R
Tournier (2017). Document-Oriented Data

Warehouses: Complex Hierarchies and
Summarizability. In Advances in Ubiquitous
Networking 2, R. El-Azouzi, D.S. Menasche, E. Sabir,
F. De Pellegrini, M. Benjillali (eds.). vol. 397, Springer
Singapore.

Chodorow, K, and S Bradshaw (2018). MongoDB: The
Definitive Guide. 3rd ed., 'O'Reilly Media.

Cugnasco, C, Y Becerra, J Torres, and E Ayguadé (2016).
D8-tree: a de-normalised approach for
multidimensional data analysis on key-value databases.
In Proceedings of the 17th International Conference on
Distributed Computing and Networking - ICDCN' '16.
ACM Press.

Dehdouh, K (2016a). Building OLAP Cubes from
Columnar NoSQL Data Warehouses. In Model and
Data Engineering, L. Bellatreche, Ó. Pastor, J.M.
Almendros Jiménez, Y. Aït-Ameur (eds.). vol. 9893,
Springer International Publishing.

Dehdouh, K (2016b). Building OLAP Cubes from
Columnar NoSQL Data Warehouses. In Model and
Data Engineering, L. Bellatreche, Ó. Pastor, J.M.
Almendros Jiménez, Y. Aït-Ameur (eds.). vol. 9893,
Springer International Publishing.

Dehdouh, K, F Bentayeb, O Boussaid, and N Kabachi
(2014). Columnar NoSQL CUBE: Agregation operator
for columnar NoSQL data warehouse. At 2014 IEEE
International Conference on Systems, Man, and
Cybernetics (SMC). IEEE.

Du, D (2018). Apache Hive Essentials: Essential
Techniques to Help You Process, and Get Unique
Insights from, Big Data, 2nd Edition. 2nd ed., Packt
Publishing.

Duan, L, and LD Xu (2012). Business Intelligence for
Enterprise Systems: A Survey. IEEE Transactions on
Industrial Informatics, 8(3), 679–687.

Ferreira, LM (2015). Modelo de Processo para Criação de
BI em Banco de Dados NoSQL Orientado a Colunas. In
Conferencia Ibero Americana WWW/Internet - CIAWI.
vol. 1, IADIS.

Hewitt, E, and J Carpenter (2020). Cassandra: The
Definitive Guide. 3rd ed., 'O'Reilly Media, Inc.

Inmon, WH (2002). Building the Data Warehouse,3rd
Edition. 3rd ed., John Wiley & Sons, Inc.

Kimball, R, and M Ross (2002). The data warehouse
toolkit: the complete guide to dimensional modeling.
2nd ed, Wiley.

Lins, MTS, and LM Ferreira (2016). Estudo de Caso de
Processamento de ETL em Plataforma Big Data. In
Conferências Ibero-Americanas WWW/Internet e
Computação Aplicada 2016. vol. 1, IADIS.

Lóscio, BF, H de OLIVEIRA, and J de S PONTES (2011).
NoSQL no desenvolvimento de aplicações Web
colaborativas. VIII Simpósio Brasileiro de Sistemas
Colaborativos, 10(1), 11.

Moniruzzaman, ABM, and S Hossain (2013). NoSQL
Database: New Era of Databases for Big data Analytics
- Classification, Characteristics and Comparison. Int J
Database Theor Appl, 6.

Murazza, MuhR, and A Nurwidyantoro (2016). Cassandra
and SQL database comparison for near real-time

Startable: Multidimensional Modelling for Column-Oriented NoSQL

29

Twitter data warehouse. In the 2016 International
Seminar on Intelligent Technology and Its Applications
(ISITIA). IEEE.

O'neil, P, B O'neil, and X Chen (2009). The Star Schema
Benchmark (SSB).

O'Neil, P, E O'Neil, X Chen, and S Revilak (2009). The Star
Schema benchmark and augmented fact table indexing.
Springer.

Scabora, LC, JJ Brito, RR Ciferri, and CD de Aguiar Ciferri
(2016a). Physical Data Warehouse Design on NoSQL
Databases OLAP Query Processing over HBase. S.
Hammoudi, L. Maciaszek, M. Missikoff, O. Camp, J.
Cordeiro (eds.).

Scabora, LC, JJ Brito, RR Ciferri, and CD de Aguiar Ciferri
(2016b). Physical Data Warehouse Design on NoSQL
Databases OLAP Query Processing over HBase. S.
Hammoudi, L. Maciaszek, M. Missikoff, O. Camp, J.
Cordeiro (eds.).

Tournier, MCEMKT (2017a). Document-Oriented Data
Warehouses: Complex Hierarchies and
Summarizability. Springer Singapore.

Tournier, MCEMKT (2017b). Document-Oriented Data
Warehouses: Complex Hierarchies and
Summarizability. Springer Singapore.

V, Manoj (2014). Comparative Study of NoSQL
Document, Column Store Databases and Evaluation of
Cassandra. International Journal of Database
Management Systems, 6(4), 11–26.

Vandewalle, B, J Beirlant, A Christmann, and M Hubert
(2007). A robust estimator for the tail index of Pareto-
type distributions. Computational Statistics & Data
Analysis, 51(12), 6252–6268.

Vasilakis, N, Y Palkhiwala, and JM Smith (2017). Query-
efficient Partitions for Dynamic Data. In Proceedings
of the 8th Asia-Pacific Workshop on Systems. ACM.

Yessad, L, and A Labiod (2016). Comparative study of data
warehouses modeling approaches: Inmon, Kimball and
Data Vault. At 2016 International Conference on
System Reliability and Science (ICSRS). IEEE.

Zhao, H, and X Ye (2014). A Practice of TPC-DS
Multidimensional Implementation on NoSQL Database
Systems. In Performance Characterisation and
Benchmarking, R. Nambiar, M. Poess (eds.). vol. 8391,
Springer International Publishing.

Zhu, Q, and H Xiang (2016). Differences of Pareto
principle performance in e-resource download
distribution: An empirical study. The Electronic
Library, 34(5), 846–855.

DATA 2022 - 11th International Conference on Data Science, Technology and Applications

30

