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Abstract: NoSQL Database Management Systems (DBMS) can be an alternative for analytical systems and have been 
used in this regard. As analytical systems often use multidimensional data modelling, which was created for 
relational databases, a new logical data modelling is necessary for NoSQL Column-Oriented Databases. We 
developed logical modelling (Startable) and applied NoSQL oriented to the family of columns. Furthermore, 
a logical model for the application of Startable modelling is presented in this research and a benchmark where 
the performance of the proposed modelling is demonstrated compared to traditional approaches to 
multidimensional modelling. 

1 INTRODUCTION 

Decision-making systems are fundamental to many 
organisations in the most diverse businesses. These 
systems are considered key parts of organisations' 
business development, and for many years, they were 
seen as a competitive differential. In the 1990s, these 
decision-making systems were defined as Business 
Intelligence (BI) and comprised modelling tools and 
technologies to analysis tools (Duan and Xu, 2012). 

Data Warehouse (DW), a database dedicated to 
the decision-making context, is one of the main 
components in BI environments (Yessad and Labiod, 
2016). According to Lins and Ferreira (2016), the 
multidimensional model is the most adopted. 

The big data systems with Hadoop and NoSQL 
have significant differences concerning the 
Relational Database Management Systems (RDBMS) 
in several characteristics. NoSQL uses non-relational 
data structures, does not have an SQL query language 
(present in the vast majority of RDBMSs), does not 
meet ACID characteristics (an acronym for 
Atomicity, Consistency, Isolation, and Durability), 
and has the persistence of distributed data 
(Moniruzzaman and Hossain, 2013). Thus, data 
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modelling with the ER and Multidimensional 
Modelling are not applied to these new technologies 
since they are designed to assist RDBMS. 

This research has the main focus on analytical 
systems. We developed the modelling of logical data 
called Startable, which needs the Column-Oriented 
NoSQL physical model. This modelling pretends to 
be simple, based on the business rules of the users and 
widely known concepts of modelling. Finally, we 
propose that the modelling improves the efficiency of 
the return of queries. 

This paper is structured as follows: Session 2 
presents Column-Oriented NoSQL; Session 3 
presents related research and with subsidies for the 
development of this article; Session 4 offers an 
explanation of the importance of partitioning 
mechanisms for NoSQL; Session 5 shows the 
building of Startable modelling; Session 6 presents 
the Star Schema Benchmark (SSB), the benchmark 
applied for testing of modelling performance; Session 
7 presents the modelling performance results over the 
benchmark in a controlled laboratory; Session 8 
presents the conclusion and proposals for future 
work. 
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2 COLUMN-ORIENTED NoSQL 

NoSQL is a term that groups non-relational DBMS, 
which serve large volumes of data with high 
performance and high availability. According to 
Moniruzzaman and Hossain (2013), NoSQL has the 
following characteristics: 

 Absence of the standard SQL-ANSI query 
language 

 Horizontal scalability 
 Schemaless or Schema Free 
 Sharding and Replication 

NoSQL DBMSs are highly relevant for 
applications that need a technology which supports 
large volumes of data management and scalability 
efficiently and straightforwardly (Lóscio et al., 2011).  

Currently, NoSQL DBMSs are classified into four 
basic types of architectures: Key-Value, Document 
Oriented, Column Family and Graph Oriented 
(Moniruzzaman and Hossain, 2013). This research 
focuses on Oriented Column (Family Column) 
NoSQL, as shown in Figure 1. 

 
Figure 1: Example of Oriented Column Data Model - 
(Manoj V, 2014) 

Column-family or column-oriented NoSQL has 
extensible record storage and large columnar stores. 
This type of NoSQL was initially inspired by 
Google's Bigtable, a distributed DBMS based on 
structured data built to handle vast volumes of data. 
Column-oriented NoSQL data stores are hybrid 
row/column storage, with significant differences 
from common relational databases. Despite having a 
similar concept to column-by-column storage of 
columnar databases and columnar extensions to row-
based databases, column-oriented NoSQL does not 
persist data in tables. Instead, it stores the data in 
massively distributed architectures. A key is 
associated with one or more attributes (columns). 
This type of columnar storage persists its data to be 
optimally aggregated to lower I/O costs and offers 
high scalability in data storage. Data stored in the 
database is based on column family sort order (Manoj 
V, 2014). The most popular column-oriented NoSQL 

on the market are Apache HBase, Apache Cassandra 
and Google Big Table. 

3 RELATED WORKS 

Different researchers developed papers regarding the 
problem of modelling for analytical systems focusing 
on the use of a NoSQL database and adaptation of 
multidimensional modelling for new non-relational 
database types. We highlight the three significant 
modelling concentrations proposals: 

1º: The purpose of the classic Star Schema model 
in NoSQL, for example, Carniel et al. (2012) 
proposed applying a multidimensional normalised 
model, or the classic "star schema" modelling over 
columns-oriented NoSQL. 

2º: Several authors among them (Carniel et al., 
2012; Chevalier et al., 2015a; Ferreira, 2015; 
Murazza and Nurwidyantoro, 2016) proposed the 
Fully Non-Normalised Multidimensional Modelling 
(FNMM), which is a joining of a fact table with its 
dimensions of Star Schema model in a single table.  

The physical implementation of FNMM in 
column-oriented NoSQL facts and their dimensions 
are gathered in the same table, using a single column 
family as seen in Dehdouh et al. (2014). Also, 
Scabora et al. (2016a) call a similar approach 
SameCF. Another option for a physical model for 
column-oriented NoSQL is proposed in Chevalier et 
al. (2015b), outlined in Figure 2. Facts and 
dimensions belong to the same table; however, facts 
and each dimension are represented in separated 
column families. Scabora et al.  (2016a) also 
proposed this same option, called CNSSB; Bouaziz et 
al. (2019) suggest the same. This approach for 
physical implementation is similar to non-nested 
document-oriented NoSQL.  

It is worth highlighting that each specific NoSQL 
from the same type of family has different 
implementations. For example, HBase and Cassandra 
belong to the same NoSQL family, but each has its 
implementation. Thus, the physical model of non-
normalised data for column-family-oriented NoSQL 
is adapted according to a specific NoSQL. 

Using FNMM for complex hierarchies in 
document-oriented NoSQL, Bonnet et al. (2011a), 
Chevalier et al. (2015a), and Tournier (2017a) suggest 
the use of arrays to construct the hierarchies. For 
column-family-oriented NoSQL, Chevalier et al. 
(2015b) show that dimension hierarchy should be 
mapped as a column for each dimension, i.e., physical 
columns in column families representing each 
dimension.  
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Figure 2: Physical model Implementation in Column- 
Oriented NoSQL - (Max Chevalier et al., 2015). 

3º: The FNMM variations adding the 
materialisation of aggregations are pre-computation 
of fields are used for aggregates to persist along to 
this model physically. More details can be seen in 
(Carniel et al., 2012; Zhao and Ye, 2014; Chavalier et 
al., 2016), among other works. It is worth mentioning 
that some researchers suggest tools to improve the 
indexing way of data (Vasilakis et al., 2017), or tools 
for a better choice of partitioning models, automating 
this partitioning in an automated way through 
Machine Learning algorithms (statistical models) 
(Boussahoua et al., 2017; Cugnasco et al., 2016). 
These models use techniques such as clustering using 
K-Means, Linear Regression, or Hash algorithms. 
They automatically discover the best indexing or 
partitioning, not considering the users' business rules, 
query needs, or even data recovery. 

Another note is that many works use tools or 
frameworks in conjunction with NoSQL to aid 
queries, generally using a traditional query language 
like SQL ANSI. The authors used the structures of the 
following frames Apache Hive (Cugnasco et al., 
2016), Apache Phoenix (Dehdouh et al., 2014), as 
well as the built by their researchers for this task 
(Zhao and Ye, 2014). Regarding the Apache Hive, it 
is used with NoSQL to assist in the exposure of 
metadata and queries on NoSQL. 

Nevertheless, the modelling developed by 
(Amirthalingam and Rais, 2018) is also an adaptation 
of the FNMM, but the authors do not encourage the 
total merging of dimensions and facts. The authors 
used a set of rules for joining some dimension tables 
and tables with pre-computed aggregations, adding 
structures of partitions and buckets of Hive. This use 

depends exclusively on the cardinality of the data, 
having no relation to business rules. 

Concerning the FNMM, Chebotko et al. (2015) 
proposed that this modelling can be firmly based on 
the business rules, and the applications will carry out 
queries. Another predominant factor in the modelling 
developed by the authors is the primary keys model, 
which involves hard work in the concepts of and the 
idea of partitions. Although the model developed by 
the authors is efficient in meeting the business 
requirements of several methods, they designed it for 
transactional systems. Also, this modelling is linked 
intrinsically to the NoSQL Cassandra and its physical 
model of persisting data. 

4 PARTITIONING AND 
CLUSTERING OF DATA ON 
NoSQL 

Data partitioning and primary keys modelling are the 
main mechanisms used by NoSQL databases for a 
balanced distribution of data in the cluster. These 
concepts have fundamental importance in the 
performance of these technologies. Figure 3 presents 
the effect of data partitioning on a Cassandra cluster. 

 

Figure 3: Partitioning on Clustering Cassandra. 

As shown in Figure 3, the Cassandra cluster is 
represented as a ring. The fields belonging to the 
cluster key are responsible for distributing data in the 
cluster (Hewitt and Carpenter, 2020). 

Besides, Cassandra and other NoSQL and 
distributed data systems utilise indexing algorithms 
and hashing based on partitions and buckets to aid in 
insertion and data query. The incorrect choice of 
fields in the keys and partitions of each NoSQL and 
Hive can cause data to unbalance in the cluster. It can 
have partitions with excess data on a single node or 
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with little or no data on the nodes. So, the correct use 
of the designated fields as partitions or buckets can 
increase the efficiency of the queries. Besides, it is 
possible to avoid the Full Scan. It also potentiated the 
indexing and hashing algorithms to aid the systems in 
retrieving data to answer the queries. See more details 
in (Hewitt and Carpenter, 2020; Chodorow and 
Bradshaw, 2018; Du, 2018). 

5 STARTABLE – LOGICAL 
MULTIDIMENSIONAL 
MODELLING FOR NoSQL 

As a basis for the development of Startable, we use 
the Star Schema multidimensional modelling 
proposed by (Inmon, 2002; Kimball and Ross 2002) 
and the principles of modelling presented by 
(Chebotko, Kashlev and Lu 2015). We modified and 
adapted the modelling to meet the physical data 
model present on columns-oriented NoSQL. Beyond 
the Startable modelling, we proposed a set of 
principles and a flow of processes that guide the 
application of the logical model of the data. We tested 
the modelling and flow (Figure 4) in a controlled 
environment to verify their applicability and 
efficiency. 

 

Figure 4: Logical Flow of Startable Modelling. 

We highlighted and discussed, Figure 4, the four 
main stages for creating the Startable modelling and 
the tasks involved in each of these stages:  

1. Star Schema Modelling: 
 Develop the standard process of 

multidimensional modelling seen in (Kimball 
and Ross, 2002; Inmon, 2002); 
 Perform complete denormalisation by 

transforming the Star Schema model into a 
single table composed of facts and all 
dimensions, as proposed in (Chevalier et al., 
2015a; Ferreira, 2015; Dehdouh et al., 2014). 

2. Partition Selection: 
 Identify the dimensions that are most used as 

filters in queries, for example, Dates, 
Geolocalization (country, states, cities), 

Organizational Data (company name, branch 
name); 
 Identify the mandatory filters applied in 

proportion to Pareto. According to the 
theoretical concept of Pareto, in most cases, we 
asked 80% of the examples to use 20% of the 
dimensions as filters (Zhu and Xiang, 2016; 
Vandewalle et al., 2007); 
 Identify the dimensions that have a distribution 

more uniform of data in the cluster; for example, 
a more granular data dimension is probably 
more evenly distributed. Therefore, among the 
aspects that identify geolocation data, for 
example, the City dimension should probably 
have a better distribution characteristic between 
the cluster than the Country or State dimensions; 
 Minimise the number of fields for partitions (1 

to 5 partition fields generally) (Chebotko et al., 
2015); 
 Do not use partition fields that are not used as 

filters in queries. Not using this task can 
generate a Full Scan in the database. 

3. Buckets Selection: 
 Identify the frequency of use of filters not 

required; 
 Identify the frequency of ordering data usage 

(order by); 
 Identify the frequency of data usage in the 

grouping (group by) and drill-down; 
 Identify the order of the granularity of the 

dimensions and insert them in a reverse way 
(less granular to the more granular). For 
example, we can have the following hierarchy: 
Year, Month, Day. The Year field is the least 
granular of this aspect. If we need the three 
fields in the buckets, we must first insert the year 
field, followed by month and day, as this 
facilitates the sorting and grouping the data and 
drill-downs. 

4. Priority - Partition and Buckets: 
 Select, like partitions and buckets, fields that 

appear in most queries answering the business 
questions; 
 If there is a possibility of performance testing of 

queries, then we must select partitions and 
buckets which we can use in the consultations 
with the most impact on the workload of the 
analytical system; 
 When more than one field is partitioned, first 

use the minor granularity field, followed by the 
more granular area. For example, for the 
dimension Date, we must first use the Year field, 
then the Month field and so forth; 
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 In the case of hierarchies of dimensions, use the 
most specific field as a bucket, for example, for 
the hierarchy of Date (YYYYMMDD). But, if 
there is not or need to use more than one 
hierarchy field, first use the areas with less 
granularity, for example, (Year, Month, Day); 
 All fields used as a partition should be filtered 

in the queries to avoid a Full Scan. 

Another essential point in Figure 4 is the "views," 
which permeate each stage. "Views," Figure 4, 
focused on data and the business model concerning 
the steps of the transition. We highlighted five views 
in Figure 4: 

 View over Traditional Model - Develop 
the Star Schema traditional model on 
existing data; 

 View over Filters - Establish the primary 
filters used in the business for most of the 
questions that the data in the model will 
answer; 

 View over Groups - Establish the main 
groupings used by the business; 

 View over Order - Establish the order and 
priorities that the queries will present; 

 View over Data Distribution - Focus on the 
data distribution in the cluster. We need to 
ponder the model, improving the data 
distributed through the clusters. We can 
improve its efficiency in processing the 
queries. 

6 BENCHMARK – DATA 
MODELLING 

We applied an analytical benchmark to the distributed 
and controlled environment before of test the 
performance of the logical model proposed in this 
research (Startable). The chosen Benchmark model 
was the Star Schema Benchmark (SSB), proposed by 
O'Neil et al. (2009). In the scientific community, this 
benchmark stands out for its simplicity of application 
and for being a specific reference for 
multidimensional modelling. Also, it is a 
simplification of the TPH-C benchmark model. TPH-
C follows the Snowflake modelling based on Star 
Schema but with high normalisation of dimensions. 
SSB transforms the Snowflake model on the Star 
Schema multidimensional model. 

SSB has a data generator and a set of 13 ready 
queries, by which one can measure the query 
performance on several aspects such as filters, 

equalities, inequalities, groupings, and ordering. SSB 
data model consists of a fact table and four 
dimensions modelled in Star Schema format, as 
shown in Figure 5. 

 

Figure 5: SSB Data Model. 

We applied the SSB data model, the FNMM, and 
the Startable modelling. We pass by the four steps of 
the Startable modelling flow proposed in item 4. 
Firstly, we transform the SSB data model into the 
FNMM data model, in the following, in the Startable 
model. So, we replicated the Startable modelling over 
a Cassandra NoSQL database cluster (oriented to the 
column-family. Also, we measured the performance 
of the Startable model concerning the Star Schema 
traditional model and a version of the Star Schema 
modelling unifying facts and dimensions in a single 
table. Several authors proposed the last modelling 
(Carniel et al., 2012; Chevalier et al., 2015a; Ferreira, 
2015; Dehdouh et al., 2014; Dehdouh, 2016a).  

We cannot interfere in the SSB business model, 
for example, defining a mandatory field as a filter in 
all queries. Then, we studied the data and tables 
involved in understanding the business model 
implicit in the SSB. After applying the four steps of 
the Startable model, we kept the views of each of 
these. We obtained the Startable final model. We 
counted the fields with 13 queries, facilitating queries 
and SSB fundamental business models. Table 1 
shows how the counting of fields is accomplished in 
queries of the SSB model. 
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Table 1: Count of Queries Arguments on SSB Model. 

Line Labels 
Field 
Count 

Where 
Sum 

Group 
by 

Sum 

Order 
by 

Sum 
c_city 3 0 3 0 

c_nation 3 1 2 1 

c_region 4 4 0 0 

d_year 12 7 10 10 

d_yearmonth 1 1 0 0 

d_yearmonthnum 2 2 0 0 

lo_discount 3 3 0 0 

lo_quantity 3 3 0 0 

p_brand1 4 2 4 4 

p_category 3 2 1 1 

p_mfgr 2 2 0 0 

s_city 4 1 4 1 

s_nation 3 1 2 1 

s_region 7 7 0 0 

General Total 54 36 26 18 

In Table 1, the d_year field is often used as an 
argument in the queries, especially "where." Also, the 
d_year field appears as an argument in 12 of the 13 
queries for the SSB. With this information described 
and interpreting the data of the SSB model, we 
applied and analysed the Startable modelling based 
on the four main steps presented in Figure 5. 

Step 1 – Star Schema Model: 
 No action was required to perform Star 

Schema modelling since the SSB data 
model was already in this modelling. 

 We only perform the joining of the facts 
and dimensions by changing the Star 
Schema model to an FNMM by 
suppressing the primary key columns of 
the dimension tables. 

Step 2 – Partition Selection: 
 We identified that the d_year field was 

more used as a filter, following a 
proportion of Pareto (Zhu and Xiang, 
2016; Vandewalle et al., 2007). This field 
also had a uniform data distribution, which 
qualified him as a candidate for partition. 

 The s_region field could also be used as a 
partition because we often used it as a 
filter, and it could distribute the partitions 
into the smallest segments. However, this 
could also expressively fragment the 
partitions, so we only used the d_year field 
as a partition. 

Step 3 – Buckets Selection: 
 We identified the fields s_region 7 (seven) 

times and c_region 4 (four) times as filters. 

 We identified the p_mfgr, p_category, and 
p_brand1 fields at least 2 (two) times, each 
one in clauses "order by" and "group by." 

 Another vital piece of information to note 
is that we organised the hierarchical fields 
in the "part" dimension, where the 
"p_mfgr" is the less granular and the 
"p_brand1" the most granular.  

Step 4 – Priority - Partition and Buckets: 
 We applied the d_year field only for 

partition due to filter clauses' queries and 
the homogeneous distribution of data. 

 We chose the s_region and c_region fields 
as the primary bucket due to the frequency 
in the queries of filter clauses. We used 
"s_region" and " c_region " in 7 queries as 
filters and did not apply them for grouping 
or ordination any single time. The 
"s_region" field has a smaller distribution, 
so we chose it as the primary bucket, 
followed by "c_region". 

 By frequency of use in grouping and 
sorting clauses, we used the p_mfgr, 
p_category, and p_brand1 fields as a 
bucket following the dimension's 
hierarchy for this use. 

The final modelling of partitions and buckets was 
defined, as shown in Table 2. We presented the order 
of the fields will be the order for the physical ordering 
of the data in the partitions. For NoSQL Apache 
Cassandra, we have the following structure of 
Clusters (in the Startable model refers to partitions) 
and partitions (in the Startable model refers to 
buckets):  

"PRIMARY KEY ((D_YEAR), S_REGION, 
C_REGION, P_MFGR, P_CATEGORY, 
P_BRAND1))" 

Table 2: Partitions and Buckets model applied to the SSB. 

Startable 

Field Partitions Buckets 

d_year X - 

s_region - X 

c_region - X 

p_mfgr - X 

p_category - X 

p_brand1 - X 

For Apache Cassandra, the most internal 
parentheses refer to the fields defined as the clusters, 
and the most external refers to the fields defined as a 
partition. 
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We accomplished two tests with loads of different 
order data from the model developed. The first load 
had about 1GB of data, and the second load had 10GB 
of data. We tested two different data models and 
compared the results (as shown in section 7). Thus, 
the models tested were the traditional Star Schema, 
the FNMM, and the modelling proposed in this work: 
Startable. 

To perform the benchmark, we used a distributed 
cluster. We built the cluster with four machines and 
used the Google Cloud Platform (as Platform as a 
Service (PaaS)). The machines used had the 
following configurations: 200 GB Hard Disk (not 
SSD), 8 CPUs (Intel Skylake), 48 GB Memory, and 
Operating System CentOS 7. The version of 
Cassandra was Cassandra 3.11.4, and we also used 
PrestoDB 0.214 as an auxiliary framework to perform 
the queries. The Cassandra Cluster was composed of 
4 (four) nodes ring with identical configurations for 
each node. Cassandra clusters do not have a 
master/slave architecture, requiring only the 
processing nodes. 

7 PERFORMANCE RESULTS OF 
THE STARTABLE 
MODELLING APPLICATION 

We present the results concerning the methodology 
described above. To analyse the Startable model, we 
carried out two tests with data loads of different 
orders, about 1GB of data and 10GB of data. Also, we 
tested for each load of data the three data models: 
Traditional Star Schema, FNMM, and Startable 
modelling. Besides, we tested each modelling with 
the two data volumes on Apache Cassandra. 

We can observe in Table 3 the total volume of data 
and the number of records generated for each 
modelling. Also, we can see in Table 3 that the 
volume of data is not much of a difference in storage 
for each model, as the most significant volume of data 
is in the line order fact table. There is no high volume 
increase when we perform the join for the FNMM 
model. The volume of data in the FNMM and 
Startable model is identical since, structurally, the 
data model is different only in partition and bucket 
selection.  

The tests were based on the response time of each 
SSB query performed on each of the persistence 
systems. Remember that we performed all the queries 
to the PrestoDB applied on Apache Cassandra. We 
triggered the queries to the PrestoDB through a 
Python script that calculated the time spent for each 
 

Table 3: Benchmark Data Volumetry. 

Modelling Volume Storage Quantity 

customer 
1GB 5.5M 60000 

10GB 47M 510000 

supplier 
1GB 328K 4000 

10GB 2.8M 34000 

dim_date 
1GB 228K 2556 

10GB 228K 2556 

part 
1GB 33M 400000 

10GB 83M 1000000 

lineorder 
1GB 1.2G 11998051 

10GB 9.9G 101987916 

FNMM 
1GB 1.2G 11998051 

10GB 10G 101987916 

Startable 
1GB 1.2G 11998051 

10GB 10G 101987916 

of them. After the tests, we compiled the data and 
showed the results from Figures 6 and 7. We 
compared the response times of queries in seconds for 
the three models, Star Schema, FNMM, and Startable. 

 

Figure 6: SSB Query Benchmark for Startable over 1GB 
Charge – Cassandra. 

 

Figure 7: SSB Query Benchmark for Startable over 10GB 
Charge – Cassandra. 

When we analysed the results from 1 GB and 10 
GB of data for Startable modelling compared to other 
modellings, we observed a substantial performance 
gain in the return of the queries in both volumes. 
Concerning the charge of 10GB data, the Startable 
modelling with column-oriented NoSQL (Apache 
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Cassandra) was dozens of times faster than the Star 
Schema traditional model. We can verify a 
performance increase in the application of Startable 
modelling in large data volumes. 

The turnaround time of queries on Startable 
modelling remained practically the same in 1GB and 
10GB volumes; however, in traditional Star Schema 
and FNMM modelling, there was an increase 
proportional to the data volume. 

We saw that the correct application of the 
Startable modelling could be 100 to 150 times more 
efficient than the Star Schema and FNMM modelling 
on queries in large volumes of data.  

Through the tests carried out, we were able to 
verify that our central hypothesis regarding the 
Startable modelling proposition showed up to be 
coherent. Correctly defining the partitioning and 
buckets according to the needs of the business rules, 
rules that were expressed in SQL queries, can 
significantly reduce the query time in analytical 
environments based on column-oriented NoSQL. 

The results of the performance of queries in 
FNMM modelling compared to traditional Star 
Schema modelling were surprisingly negative. It is 
common in the literature to verify that joining into a 
single table of facts and dimensions brings 
performance gains in queries (Dehdouh, 2016b; 
Scabora et al., 2016b; Chevalier et al., 2017; Bouaziz 
et al., 2017; Bonnet et al., 2011b; Tournier, 2017b). 
However, in our tests, there was an inverse result. 
Joining the fact and dimensions into a single table 
made the performance of queries worse. We believe 
that the better performance of traditional Star Schema 
than FMNN is due to optimisations of the PrestoDB 
processing framework, which applies advanced 
optimisations in its execution plan to improve 
performance in federated queries. PrestoDB may 
have used the primary keys of each of the tables in the 
Star Schema physical model to improve the 
performance of the queries, especially in the joining 
of tables and data selection. On the other hand, tables 
in the FNMM model have only a single partition 
primary key, which may have made PrestoDB's 
optimisations unfeasible. In later works, these 
suspicions need to be validated by scientific tests in 
controlled environments. 

Finally, we can observe that the increase in 
performance in the queries on the Startable modelling 
occurred in all the proposed queries and the two-
volume scenarios, maintaining a similar time for the 
return of the query regardless of the volume, which 
indicates substantial gains even with the addition of 
10 times the volume of data. Other data quantities 
must be tested in later works to verify the continuity 

of the performance gain of the Startable modelling 
even over vast volumes of data. 

8 CONCLUSIONS AND FUTURE 
WORKS 

We proposed in this work logical modelling for 
analytical systems with persistence in Column-
oriented NoSQL, Startable modelling. Our modelling 
was able to unify two different concepts of 
multidimensional modelling, the Star Schema and 
fully non-normalised. Besides, it consolidated facts 
and dimensions in a single table and focused on 
modelling partitioning, bucket, and data ordering. 

Startable modelling met the initial requirements 
for independent simplicity applicability of the 
business domain. It is modelling that bases its 
development on the business rules of each case, 
mainly to answer business questions more efficiently. 

The proposed methodology for developing the 
model based on logical flow met the requirements of 
data queries and the better distribution of the data on 
the persistence system. We proposed and followed all 
steps of the workflow. Each of these steps must have 
a specific view of the process development, 
facilitating the replicability of the model in any data 
domain. Concerning the applicability, the results 
were successful since we obtained them from 
benchmark tests defined in the academic community 
and used for performance testing on a logical, 
analytical data model. We can highlight another 
reason for success in the analysis and results of 
modelling. We suggested and followed the steps in 
the Logical Flow of Development of the Startable 
modelling. 

The performed tests showed significant gains in 
the performance of the organised data according to 
the Startable modelling about the classic Star Schema 
and the FNMM modelling. Several queries had 
substantial performance gains when running on 
Startable-organized data, especially on large data 
volumes (10GB of data) in data persistence on 
NoSQL Apache Cassandra. 

We believe that Startable is flexible enough to 
adapt to other families of NoSQL, such as document-
oriented ones. We also believe that its application can 
be helpful in Big Data distributed file systems such as 
HDFS S3, among others. Another exciting 
implementation that can be performed on top of 
Startartable is on distributed relational databases 
specific to Data Warehouse, like Amazon Redshift, 
Azure Synapse, Google Big Query, Snowflake, and 
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Apache Druid, among others, which can benefit from 
the partitioning and buckets implementation model. 
Thus, we suggest implementing Startable over other 
data persistence models and NoSQL Document-
oriented, HDFS/S3 and Distributed Relational Data 
Warehouse DBMS as future works. 
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