
Is There Any Correlation between Refactoring and Design Smell
Occurrence?

Lerina Aversano1 a, Mario Luca Bernardi1 b, Marta Cimitile2 c, Martina Iammarino1 d

and Debora Montano1

1University of Sannio, Department of Engineering, Benevento, Italy
2Unitelma Sapienza University, Rome, Italy

Keywords: Software Evolution, Software Quality, Refactoring, Design Smells.

Abstract: Software systems are constantly evolving making their architecture vulnerable to decay and the emergence of
numerous design problems. This paper focuses on the occurrence of design smells in software systems and
their elimination through the use of refactoring activities. To do this, the data relating to the presence of Design
Smell, the use of refactoring, and the result of this use are analyzed in detail. In particular, the history of five
open-source Java software systems and of 17 different types of design smells is studied. Overall, the results
show that the removal of Design Smells is not correlated with the use of refactoring techniques. The analysis
also provides useful insights about the developers’ use of refactoring activities, the likelihood of refactoring
on affected commits and clean commits, and removing and/or adding Design Smells both during refactoring
and manual code cleaning operations.

1 INTRODUCTION

A problem widely discussed by the software engi-
neering communities is software changes, which if
done in a very short time often lead to design er-
rors. Indeed, software systems’ continuous evolu-
tion makes their architecture vulnerable to decay and
introduces numerous design problems. In literature,
several research articles deal with design issues and
their impact on the evolution of the software system.

Not managing the design smells can lead to tech-
nical issues that increase the maintenance effort.

Often design smells are introduced as the result
of inefficient decisions in terms of design and archi-
tecture (Hochstein and Lindvall, 2005; Garcia et al.,
2009) that harm system internal qualities, such as
maintainability, understandability, testability, exten-
sibility, and reusability (Le and Medvidovic, 2016a;
Aversano et al., 2007).

Of all the design smells defined in the literature
(Fowler, 2002), our analysis focuses on 17 different
types of design smells classified into four main cat-

a https://orcid.org/0000-0003-2436-6835
b https://orcid.org/0000-0002-3223-7032
c https://orcid.org/0000-0003-2403-8313
d https://orcid.org/0000-0001-8025-733X

egories: abstraction, encapsulation, modularization,
and hierarchy. Furthermore, the study investigates the
possible impact that refactorings have on source code
components for both removal and internal quality im-
provement. The results confirm that source code el-
ements affected by design smells are more prone to
change, but developers seldom perform these changes
through refactoring activities. This suggests that the
removal of the design smell is not related to the pres-
ence of refactoring.

The remaining of the work is structured as fol-
lows: Section 2 reports studies related to our study, in
Section 3 we detail the data extraction process (sub-
section 3.2), the features set (subsection 3.3) and the
research questions (subsection 3.1). Section 4 de-
scribes the results of the empirical study we have con-
ducted, while the threats that could affect the results
obtained are reported in Section 5. Finally, Section 6
reports the conclusions and future work.

2 RELATED WORKS

Fowler (Fowler, 2018) defines refactoring as ”A disci-
plined technique for restructuring an existing body of
code, altering its internal structure without changing

Aversano, L., Bernardi, M., Cimitile, M., Iammarino, M. and Montano, D.
Is There Any Correlation between Refactoring and Design Smell Occurrence?.
DOI: 10.5220/0011139400003266
In Proceedings of the 17th International Conference on Software Technologies (ICSOFT 2022), pages 129-136
ISBN: 978-989-758-588-3; ISSN: 2184-2833
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

129



its external behavior”. The purpose of this technique
is therefore to improve the errors present in the source
code by modifying only the lines of code and not its
final result.

Some empirical studies show that refactoring can
only remove code smells included in the Fowler list
(Chaparro et al., 2014; Aversano et al., 2008). For
this reason, in recent years more and more researchers
have investigated the role that refactoring plays in the
removal of code smells and in the changes in qual-
ity metrics after its use (Cedrim et al., 2016; Chávez
et al., 2017; Mkaouer et al., 2017; AlOmar et al.,
2019; Fernandes et al., 2020). In particular, Bib-
iano et. al (Bibiano et al., 2019) surprisingly show
that batch refactoring in 51% of cases introduces new
smells and in 38% of cases does not remove all smells
from the code.

Like our results, these studies show that refactor-
ing is useful only in very few and rare cases.

Sahraoui et all (Sahraoui et al., 2000) report that
the process between design improvement and its au-
tomation required developer validation and manual
use of the control. So, it is important to understand
when a code is smelly, how programmers recognize
it, and when they care. A work of Yamashita et al.
(Yamashita and Moonen, 2013) studies developers’
knowledge of code smells through the use of a sur-
vey. Results show that a large number of program-
mers were unaware of the smells of the wrong code.
They also show that, unfortunately, the knowledge of
smells is entirely theoretical, and the name and defini-
tion are known, but this is so far from practice because
most errors do not occur as described by the theory.

Furthermore, another study (Tufano et al., 2015)
shows that every time a change is introduced in the
source code it is more likely to induce new smells.
They testify that the number of smells is greater when
developers use the refactoring technique and for this
reason, the refactoring technique is used only for
source code that has at least one critical attribute
(Fernandes et al., 2020). A lot of attention is paid
to design smells because they are frequently indica-
tors of architectural problems of the code and often a
symptom of the harmful maintainability of the soft-
ware (Aversano et al., 2020a; Le and Medvidovic,
2016b; Fowler, 2002; Alkharabsheh et al., 2019). For
this reason, the study (Tsantalis and Chatzigeorgiou,
2009) emphasizes the need for tools capable of rec-
ognizing the presence of design smells in code be-
fore their introduction into it. The authors have pre-
dicted design smells through a new version of Tem-
poral Convolutional Networks (TCN) that provides
better estimates than traditional TCN. Some empiri-
cal studies (Ardimento et al., 2021; Aversano et al.,

2020b; Sharma et al., 2020; Aversano et al., 2020a)
show that refactoring cannot remove any kind of de-
sign smells from the source code. Furthermore, in
(Aversano et al., 2020b) it is shown that refactoring
most of the time introduces new smells into the code.
These studies also found that code smells removal is
more likely when refactoring is not done. Driven by
these results, our work aims to analyze the impact of
refactoring on design smells and try to overturn or
confirm what others have found to date.

3 APPROACH

The execution of the empirical study entails the fol-
lowing steps:

• identification of the research questions;

• extraction and gathering of the required data;

• identification of the feature set.

Each step is described in more detail in the following
subsections.

3.1 Research Questions

Below are the research questions on which this study
is based.

• RQ1: Design Smells VS Refactoring: Do Pro-
grammers Use Refactoring When Design Smells
Occur? We aim to link developers’ use of refac-
toring to design smells occurrences.

• RQ2: Is refactoring Correlated to the Type of De-
sign Smell? Our purpose is to analyze the proba-
bility, given a design smell presence, of refactor-
ing activities. Furthermore, we want to investigate
if there are any relationships between the type of
design smell involved and such refactoring proba-
bility.

• RQ3: How Often Are Refactoring and Elimina-
tion of Design Smells Co-occur? Our goal is to
test to which extent refactoring activities and de-
sign smells removal occur together during the his-
tory of commits.

3.2 Data Extraction

The data used for this study comes from 5 open-
source Java software systems. Table 1 presents in the
first column the names of the system considered, in
the second column the tags created to briefly name
each of them, in the third column the number of com-
mits analyzed, and in the last column the dates of the

ICSOFT 2022 - 17th International Conference on Software Technologies

130



Table 1: Software systems involved into the analysis.
System Tag #commit First - Last Commit Date
Atlas AT 13667 08/12/2014 - 05/07/2019
Guice GU 8567 16/11/2006 - 06/06/2019

jUnite4 JU 5442 03/12/2000 - 20/06/2019
Log4j LO 9117 14/12/2000 - 11/02/2014

Zookeeper ZO 6216 06/11/2007 - 17/07/2019
Total TOT 43009 03/12/2000 - 17/07/2019

first and last commit taken into consideration. These
systems are selected considering that their reposito-
ries are available on Github 1, have different sizes,
and belong to different domains. The data collection
follows a process made of several steps. The first step
is consisted of extracting the source code elements
to analyze all the commits of each system. On the
extracted data, we execute the tool for detecting the
presence of smells, and for the refactoring detection.
Finally, we compare each commit with its previous
one to identify a possible addition or removal of the
design smell and collect refactoring activities by com-
mit. More specifically, we use two tools: Designite 2

and RefactoringMiner3. Respectively, the first for the
detection of smells, capable of evaluating the quality
of the design and therefore identifying the presence
of design smells.Therefore, for the sake of complete-
ness, in Table 2 we report the design smells detected
by this tool, indicating in the first column the macro-
categories of design smells, and in the second the list
of smells. The second tool identifies the possible pres-
ence of refactoring activities carried out on the source
code. More specifically, this is capable 4 of detecting
40 kinds of refactorings, for operations carried out on
packages, classes, methods, features, parameters, and
attributes. Finally, the dataset includes the history of
all software systems composed of 43009 commits and
35 features related to each type of design smell occur-
rence, the respective removal, and the presence of the
refactoring on the commit and the specific class.

3.3 Feature Set

To examine the correlations between refactoring, de-
sign smells, and the removal of the latter, we use the
following features:

• Refactoring: a dichotomous feature that assumes
the value ”true” when the refactoring techniques
are applied to its reference commit, ”false” other-
wise

• Design Smells: we analyze 17 different types of
smell. These smells are represented as dichoto-

1https://github.com
2https://www.designite-tools.com
3https://github.com/tsantalis/RefactoringMiner
4At the time of extraction, in its version 2.1

Table 2: Type of design smells analyzed.

Design smell Category Type of smells

ABSTRACTION

Imperative Abstraction
Multifaceted Abstraction
Unnecessary Abstraction
Unutilized Abstraction

ENCAPSULATION Deficient Encapsulation
Unexploited Encapsulation

MODULARIZATION

Broken Modularization
Cyclically Dependent Modularization
Insufficient Modularization
Hub-Like Modularization

HIERARCHY

Broke Hierarchy
Cyclic Hierarchy
Deep Hierarchy
Missing Hierarchy
Multipath Hierarchy
Rebellious Hierarchy
Wide Hierarchy

mous features with a value of ’0’ if the particular
type of smell does not appear in the commit under
consideration, a value of ’1’ otherwise.

• Removal of the Design Smells: 17 nominal fea-
tures, one for each design smells, which take into
account the removal of the smell they refer to.
In particular, these features can assume three val-
ues: no change if the smell is not been eliminated,
smell eliminated if the smell is been eliminated
and added smell if the smell is been added.

• Year: the year in which the current commit is
made.

4 EMPIRICAL STUDY RESULTS

This section reports all the results obtained through
the data to approach previously explained.

4.1 Do Programmers Use Refactoring
When Design Smells Occur?

To understand if there is a connection between design
smells and the use of refactoring on them, we analyze
the use of refactoring on commits affected and non
by the presence of a design smells. We analyze the
contingency tables, double-entry frequency tables in
which two qualitative features cross, in our case, the
number of the commit where a particular type of de-
sign smell occurs, and the Refactoring feature. In Ta-
bles 3 and 4, we report respectively the contingency
analysis carried out on smelly commits and the one
carried out on clean commits, therefore unaffected by
the presence of design smells. Tables show in the first
column the type of the smell, in the second the num-
ber of commits with at least one smell present, which
have not been refactored, in the third the number of
commits in which there is at least one smell and it has

Is There Any Correlation between Refactoring and Design Smell Occurrence?

131



been carried out a refactoring activity, in the fourth
the sum of the two previous columns, and in the last
two columns the calculation of the respective ratios,
without refactoring and with refactoring. In partic-
ular, from the fourth column of Table 3 we can see
that some design smells appear more frequently, such
as Unutilized Abstraction, Deficient Encapsulation,
Cycle-Dependent Modularization, Insufficient Mod-
ularization, and Broken Modularization. To better
understand if the refactoring technique is used on af-
fected smells, we study the proportion between com-
mits where refactoring is used compared to the total
of commits by design type smells, and between the
commits where refactoring is not used compared to
the total of the affected commits.The results on the
smelly commits, reported in Table 3, highlight that in
most commits affected by design smells, no refactor-
ing is used on them. Looking at the Table, the number
of commits affected by design smells where refactor-
ing is not used varies between 61% in the case of the
Hub-like Modularization and 100% for the Deep Hi-
erarchy. Therefore, on average, for all types of smells
considered, 78% of smelly commits are not refac-
tored. The design smells types handled by refactoring
techniques are in the order: Deep Hierarchy (100%),
Unnecessary Abstraction (97%), Imperative Abstrac-
tion (90%), Cyclic Hierarchy (86%), and Rebellious
Hierarchy (82%). These types of design smells are
also the ones that occur less frequently. Therefore,
we can say that refactoring is seldom applied to rare
smells. On the other hand, on average 22% of com-
mits affected by design smells undergo refactoring
operations. In very few cases, in particular, for Un-
exploited Encapsulation, Cyclic Dependent Modular-
ization, Insufficient Modularization, Hub-like Mod-
ularization, and Multipath Hierarchy, the percentage
of commits affected by design smells and affected
by refactoring is greater than or equal to 30%. The
results reported in Table 4 show that the number of
refactored commits is much greater than those af-
fected by design smells and refactored. However, if
we consider the totality of commits not affected by
design smell, from the Table it is clear that most of
the clean commits are not refactored, in fact, on aver-
age, the refactoring techniques are used on about 25%
of the commits without the presence of smells design.
Therefore, refactoring is done more on commits with
no design smells than on commits with design smells.

Summary: The use of refactoring is not
as common on commits affected by design
smells and, in particular, it is almost not
used in the case of rare smells.

Table 3: Contigency Table & Table of Ratio - Refactoring
VS Commits affected by Design smells.

Type of design smell - ALL DATA Ref false Ref true Ref false Ref true
Imperative Abstraction 62 7 69 0.90 0.10
Multifaced Abstraction 218 68 286 0.76 0.24

Unnecessary Abstraction 153 4 157 0.97 0.03
Unutilized Abstraction 10517 2765 13282 0.79 0.21

Deficient Encapsulation 5661 2173 7834 0.72 0.28
Unexploited Encapsulation 154 66 220 0.70 0.30

Broken Modularization 52 15 67 0.78 0.22
Cyclic Dependent Modularization 4499 2136 6635 0.68 0.32

Insufficient Modularization 5757 2525 8282 0.70 0.30
Hub like Modularizaton 359 234 593 0.61 0.39

Broken Hierarchy 1930 634 2564 0.75 0.25
Cyclic Hierarchy 6 1 7 0.86 0.14

Deep Hierarchy 5 0 5 1.00 0.00
Missing Hierarchy 309 135 444 0.70 0.30

Multipath Hierarchy 9 4 13 0.69 0.31
Rebellious Hierarchy 58 13 71 0.82 0.18

Wide Hierarchy 147 47 194 0.76 0.24

Table 4: Contigency Table & Table of Ratio - Refactoring
VS Commits not affected by Design smells.

Type of design smell - ALL DATA Ref false Ref true Ref false Ref true
Imperative Abstraction 29097 9563 38660 0.75 0.25
Multifaced Abstraction 29041 9502 38543 0.75 0.25

Unnecessary Abstraction 29006 9566 38572 0.75 0.25
Unutilized Abstraction 18642 6805 25447 0.73 0.27

Deficient Encapsulation 23498 7397 30895 0.76 0.24
Unexploited Encapsulation 29005 9504 38509 0.75 0.25

Broken Modularization 29107 9555 38662 0.75 0.25
Cyclic Dependent Modularization 24660 7434 32094 0.77 0.23

Insufficient Modularization 23402 7045 30447 0.77 0.23
Hub like Modularizaton 28800 9336 38136 0.76 0.24

Broken Hierarchy 27229 8637 35866 0.76 0.24
Cyclic Hierarchy 29153 9569 38722 0.75 0.25

Deep Hierarchy 29154 9570 38724 0.75 0.25
Missing Hierarchy 28850 9435 38285 0.75 0.25

Multipath Hierarchy 29147 9566 38713 0.75 0.25
Rebellious Hierarchy 29098 9557 38655 0.75 0.25

Wide Hierarchy 29009 9523 38532 0.75 0.25

4.2 Is Refactoring Correlated to the
Type of Design Smell?

To understand the relationships between the design
smell and the use of refactoring on it, we use the lo-
gistic regression model.

In Table 5 we report the results of the logistic
model on the entire dataset. In particular, the first col-
umn shows the type of predictor, the second the values
of the BETA coefficients, a measure of the relation-
ships between the dependent feature and the predic-
tive features, the third column the values of the Stan-
dard Error associated with BETA coefficients, fourth
and fifth column the values of z-value and of the rel-
ative p-value, which respectively indicate the number
of standard deviations of each data value with respect
to the mean, and how much the BETA coefficient is
significantly correlated to the dependent feature (The
BETA coefficient is significant when the p-value is
less than 0.05) and finally in the last column the val-
ues of the Odds Ratio (OR) which represents the prob-
ability ratios between design smells and Refactoring.

The results highlight that when certain types of
smells are present such as Unnecessary Abstraction,
Unutilized Abstraction, Cycle Dependent Modular-
ization, and Rebellious Hierarchy the probability of
refactoring decreases because the OR is < 1. Oth-
erwise, when the design smell is Deficient Encapsu-

ICSOFT 2022 - 17th International Conference on Software Technologies

132



Table 5: Logistic Model Estimates (all data).

Coefficients, Estimates and Odds Ratio - all data

Beta St. Err z value Pr(>—z—) OR
(Intercept) -0.83 0.02 -51.48 <2e-16 0.44

Imperative Abstraction -0.43 0.29 -1.48 0.14
Unnecessary Abstraction -2.10 0.39 -5.43 0.00 0.12

Unutilized Abstraction -0.23 0.02 -9.84 <2e-16 0.79
Deficient Encapsulation 0.08 0.03 2.97 0.00 1.08

Unexploited Encapsulation -0.31 0.18 -1.77 0.08
Broken Modularization -0.41 0.29 -1.42 0.15

Cyclic Dependent Modularization 0.14 0.03 4.66 0.00 1.15
Insufficient Modularization 0.47 0.03 18.36 <2e-16 1.60

Broken Hierarchy 0.11 0.04 2.62 0.01 1.12
Cyclic Hierarchy 3.14 1.05 2.98 0.00 23.10

Deep Hierarchy -12.87 53.44 -0.24 0.81
Missing Hierarchy 0.20 0.11 1.78 0.07

Rebellious Hierarchy -0.72 0.29 -2.46 0.01 0.49
Wide Hierarchy 0.40 0.13 3.22 0.00 1.50

Table 6: Table of Added smells when Refactoring is used.
ADDED SMELL vs REFACTORING

Type of design smells ALL ATLAS GUICE JUNITE LOG4J ZOOKEEPER

Imperative Abstraction 0% 0% 0% 0% 0% 0%
Multifaced Abstraction 2% 3% 3% 3% 0% 0%

Unnecessary Abstraction 0% 0% 0% 0% 0% 0%
Unutilized Abstraction 13% 13% 11% 24% 16% 5%

Deficient Encapsulation 15% 11% 10% 23% 25% 18%
Unexploited Encapsulation 0% 0% 2% 0% 0% 2%

Broken Modularization 0% 0% 0% 0% 1% 0%
Cyclic Dependent Modularization 23% 26% 39% 15% 17% 13%

Insufficient Modularization 37% 38% 28% 26% 39% 37%
Hub-like Modularizaton 4% 5% 2% 0% 0% 6%

Broken Hierarchy 4% 4% 3% 9% 2% 2%
Cyclic Hierarchy 0% 0% 0% 0% 0% 0%

Deep Hierarchy 0% 0% 0% 0% 0% 0%
Missing Hierarchy 0% 0% 2% 0% 0% 2%

Multipath Hierarchy 0% 0% 0% 0% 0% 0%
Rebellious Hierarchy 1% 0% 0% 0% 0% 15%

Wide Hierarchy 0% 0% 0% 0% 0% 0%
100% 100% 100% 100% 100% 100%

lation, Cycle-Dependent Modularization, Insufficient
Modularization, Broken Hierarchy, Cyclic hierarchy,
and Wide Hierarchy, the probability of refactoring in-
creases because the 0R is > 1. More specifically,
when the smell Cyclic Hierarchy is present, the prob-
ability of refactoring increases 23 times more.

Summary: The probability to use refactor-
ing is connected with the type of the design
smells.

4.3 How Often Are Refactoring and
Elimination of Design Smells
Co-occur?

To address this research question, we try to under-
stand the effects of refactoring operations on source
code in terms of management and removal of design
smells.

We first analyze the distribution frequencies of the
added or removed design smells in those commits in
which the presence of refactoring activities is also
detected. To conduct this analysis we only consider
commits where refactoring activity is detected. In Ta-
ble 6 we report the distribution of the added design
smells, while in Table 7 the distribution of the re-
moved design smells in concomitance with the refac-

Table 7: Table of Removed smells when Refactoring is
used.

REMOVED SMELL vs REFACTORING

Type of smells ALL ATLAS GUICE JUNITE LOG4J ZOOKEEPER

Imperative Abstraction 0% 0% 0% 0% 0% 1%
Multifaced Abstraction 3% 6% 2% 0% 0% 0%

Unnecessary Abstraction 0% 0% 0% 0% 1% 0%
Unutilized Abstraction 22% 18% 31% 16% 20% 53%

Deficient Encapsulation 13% 9% 6% 18% 25% 15%
Unexploited Encapsulation 0% 0% 1% 0% 0% 0%

Broken Modularization 0% 0% 0% 0% 0% 0%
Cyclic-Dependent Modularization 23% 28% 39% 21% 11% 1%

Insufficient Modularization 23% 35% 16% 13% 2% 19%
Hub-like Modularizaton 1% 0% 1% 0% 0% 8%

Broken Hierarchy 10% 4% 3% 32% 26% 3%
Cyclic Hierarchy 1% 1% 0% 0% 0% 0%

Deep Hierarchy 0% 0% 0% 0% 0% 0%
Missing Hierarchy 0% 0% 2% 0% 0% 0%

Multipath Hierarchy 0% 0% 0% 0% 0% 0%
Rebellious Hierarchy 0% 0% 0% 0% 0% 0%

Wide Hierarchy 4% 0% 0% 0% 17% 0%
100% 100% 100% 100% 100% 100%

toring operations. More specifically, tables show in
the first column the type of smell, and in the follow-
ing columns the percentages of their addition in all
systems and then in the single systems considered for
the study (Table 6), and the percentages of their re-
moval (Table 7) in the commits in which refactoring
is present. The results of the distribution of the added
design smell show that not all types of design smells
are added after refactoring but the most added design
smells are Insufficient Modularization (37%), Cyclic
Dependent Modularization (23%), Deficient Encap-
sulation (15%), and Unutilized Abstraction (13%).
Considering the individual systems, for all systems,
except Guice, the most added design smell is In-
sufficient Modularization. Similarly, the results of
the distribution of removed smells show that not all
types of design smells are removed with the same fre-
quency where refactoring is also been done. The most
removed design smells are Insufficient Modulariza-
tion (23%), Cycle Dependent Modularization (23%),
Unutilized Abstraction (22 %), Deficient Encapsula-
tion (13%), and Broken Hierarchy (10%). The results
are almost the same for the single system analysis.

Moreover, to understand if the number of design
smells introduced is greater or less than those elim-
inated and vice versa, we analyze the relationship
between design smells added and design smells re-
moved (i) and the relationship between design smells
removed and smells added (ii). The ratio is calcu-
lated by dividing the number of design smells for a
particular type over the total of all smells counted in
the reference dataset. In Table 8 we report in the first
columns the type of design smell, from the second to
the seventh column the ratios of added/removed and
from the eighth column at the end of the Table, the
ratios of removed/added are reported. Focusing on
the relationships between added design smells and re-
moved design smells we have found that in most cases
smells are added rather than removed where refactor-
ing has also been done. In particular, Unexploited

Is There Any Correlation between Refactoring and Design Smell Occurrence?

133



Table 8: Table of ratios ’Added vs Removed’ & Table of ratios ’Removed vs Added’.

RATIO ADDED vs REMOVED RATIO REMOVED VS ADDED

Type of smells ALL ATLAS GUICE JUNITE LOG4J ZOOKEEPER ALL ATLAS GUICE JUNITE LOG4J ZOOKEEPER

Imperative Abstraction - - - - - - - - - - - -
Multifaced Abstraction 0.82 0.72 2.00 - - - 1.22 1.39 0.50 - - -

Unnecessary Abstraction - - - - - - - - - - - -
Unutilized Abstraction 0.96 1.19 0.49 1.80 1.07 0.27 1.04 0.84 2.04 0.56 0.94 3.77

Deficient Encapsulation 1.83 2.24 2.40 1.55 1.31 3.43 0.55 0.45 0.42 0.65 0.76 0.29
Unexploited Encapsulation 12.00 - 5.00 - - - 0.08 - 0.20 - - -

Broken Modularization - - - - - - - - - - - -
Cyclic-Dependent Modularization 1.66 1.57 1.41 0.85 2.08 33.00 0.60 0.64 0.71 1.18 0.48 0.03

Insufficient Modularization 2.61 1.84 2.46 2.38 25.89 5.39 0.38 0.54 0.41 0.42 0.04 0.19
Hub-like Modularizaton 9.00 39.00 2.00 - - 2.43 0.11 0.03 0.50 - - 0.41

Broken Hierarchy 0.55 2.12 1.20 0.35 0.08 1.33 1.83 0.47 0.83 2.86 13.00 0.75
Cyclic Hierarchy - - - - - - - - - - - -
Deep Hierarchy - - - - - - - - - - - -

Missing Hierarchy 4.00 - 1.67 - - - 0.25 - 0.6 - - -
Multipath Hierarchy - - - - - - - - - - - -
Rebellious Hierarchy - - - - - - - - - - - -

Wide Hierarchy 0.03 - - - - - 38.00 - - - - -

Figure 1: Differences between ’Added’ and ’Removed’ design smells - temporal analysis.

Encapsulation, Hub-like modularization, and Missing
Hierarchy are the design smells with the highest ra-
tio as well as the smells with the highest percentage
of introductions in the code. The analysis by system
shows the same results.

These results are also confirmed by the analysis
of the relationship between design smells removed
and design smells added. We find that all ratios are
less than 1, so the removed design smells are inferior
to the design smells introduced into the code where
refactoring is done. The only type of design smell on

wich the practice of refactoring is useful is Wide Hi-
erarchy.

We have also analyzed the distribution of added
and removed design smells as a function of the ’Year’
feature, to eliminate the redundancy of information
due to time. The data collection goes 2000 and 2019.

To understand if more design smells are added or
removed, we calculate the differences between the
design smells added and removed year by year. So
when the difference is negative it means that the de-
sign smells added in a year are more than the removed

ICSOFT 2022 - 17th International Conference on Software Technologies

134



ones, otherwise when the difference is positive. In
Figure 1 we show the results for the four categories
of smell, Abstraction, Encapsulation, Modularization,
and Hierarchy, reporting with the blue bars the dif-
ferences on which the refactoring is performed, and
with the orange bars the differences on which is not
refactored. It can be seen that the only category of
design smells that has more negative differences be-
tween added and removed design smells is the Ab-
straction Category, but this happens, most of the time,
when there is no refactoring. In all other categories,
the number of design smells added is greater than the
number of design smells removed. This is especially
true when also refactoring tasks are present (most of
the blue bars are on the positive side of the graphs).

Summary: Refactoring is very often more
related to the introduction of new design
smells rather than to the removal. When
refactoring is used, the added design smells
are 1.60 times greater than the number of
removed design smells.

5 THREATS TO VALIDITY

The threats to the validity concern the relationship be-
tween the theoretical world and what we observe.

Concerning the removal of Design Smells, the
dataset is built and validated through a few studies and
could be considered reliable. To mitigate the same
threat, in the case of the Refactoring detection, we
use the Refactoring Miner tool, for which the (Tsan-
talis et al., 2018) study showed that this tool has a
high precision (98%) and recall (87%).

Threats to internal validity relate to factors inter-
nal to our research that could affect the results ob-
tained. In general, we cannot pretend that the cause-
effect relationship between the refactoring and re-
moval actions of Design Smells is always the same
as that obtained from our analyzes. To mitigate
this threat, we investigate refactoring on both smells-
affected commits and clean commits where possible.

The threats to the validity of the conclusions are
due to the lack of generalization of the results ob-
tained. To mitigate this threat, we consider five dif-
ferent systems, carrying out the analyses both on the
individual systems, taking into account their particu-
larities, and on the union of these, to obtain results for
both single sample and overall population.

The generalizability of our results is also an ex-
ternal threat, but being this a preliminary work, we
analyze only five software systems. The results can

be consolidated or denied during the study phases of
future work.

6 CONCLUSIONS AND FUTURE
WORK

This study proposes a novel approach to analyzing
the relationship between design smells and refactor-
ing activities.

We show that refactoring techniques are still very
little used in the world of software development. We
found that the likelihood of using refactoring in com-
mits where smells are present is closely related to the
type of design smell present in the code. In particular,
refactoring is more linked to the presence of Encap-
sulation and Modularization design smells. and less
to the presence of Abstraction and Hierarchy design
smells. This is an interesting aspect worth investi-
gating on a larger number of systems in a dedicated
study. We also found that the refactoring activity is
not correlated with the removal of some particular de-
sign smells. More specifically, for the Wide Hierarchy
smell, and in most commits where there is refactoring
there is the addition of other design smells, rather than
the removal of those already existing.

Future work could be a predictive model that can
forecast the behavior of refactoring in terms of adding
or removing design smells. It would be interesting
to understand how the use of refactoring changes as
the number of types of design smells increases and to
examine multiple software systems even with differ-
ent programming languages to validate the techniques
and results obtained in this study.

REFERENCES

Alkharabsheh, K., Crespo, Y., Manso, E., and Taboada,
J. A. (2019). Software design smell detection: a sys-
tematic mapping study. Software Quality Journal,
27(3):1069–1148.

AlOmar, E. A., Mkaouer, M. W., Ouni, A., and Kessentini,
M. (2019). On the impact of refactoring on the re-
lationship between quality attributes and design met-
rics. In 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE.

Ardimento, P., Aversano, L., Bernardi, M. L., Cimitile, M.,
and Iammarino, M. (2021). Temporal convolutional
networks for just-in-time design smells prediction us-
ing fine-grained software metrics. Neurocomputing,
463:454–471.

Aversano, L., Bernardi, M. L., Cimitile, M., Iammarino, M.,
and Romanyuk, K. (2020a). Investigating on the rela-

Is There Any Correlation between Refactoring and Design Smell Occurrence?

135



tionships between design smells removals and refac-
torings. In ICSOFT, pages 212–219.

Aversano, L., Carpenito, U., and Iammarino, M. (2020b).
An empirical study on the evolution of design smells.
Information, 11(7):348.

Aversano, L., Cerulo, L., and Del Grosso, C. (2007). Learn-
ing from bug-introducing changes to prevent fault
prone code. pages 19–26.

Aversano, L., Cerulo, L., and Palumbo, C. (2008). Mining
candidate web services from legacy code. pages 37–
40.

Bibiano, A. C., Fernandes, E., Oliveira, D., Garcia, A.,
Kalinowski, M., Fonseca, B., Oliveira, R., Oliveira,
A., and Cedrim, D. (2019). A quantitative study on
characteristics and effect of batch refactoring on code
smells. In 2019 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 1–11. IEEE.

Cedrim, D., Sousa, L., Garcia, A., and Gheyi, R. (2016).
Does refactoring improve software structural quality?
a longitudinal study of 25 projects. In Proceedings of
the 30th Brazilian Symposium on Software Engineer-
ing, pages 73–82.

Chaparro, O., Bavota, G., Marcus, A., and Di Penta, M.
(2014). On the impact of refactoring operations on
code quality metrics. In 2014 IEEE International
Conference on Software Maintenance and Evolution,
pages 456–460. IEEE.

Chávez, A., Ferreira, I., Fernandes, E., Cedrim, D., and Gar-
cia, A. (2017). How does refactoring affect internal
quality attributes? a multi-project study. In Proceed-
ings of the 31st Brazilian symposium on software en-
gineering, pages 74–83.

Fernandes, E., Chávez, A., Garcia, A., Ferreira, I., Cedrim,
D., Sousa, L., and Oizumi, W. (2020). Refactoring
effect on internal quality attributes: What haven’t they
told you yet? Information and Software Technology,
126:106347.

Fowler, M. (2002). Tutorials-refactoring: Improving the
design of existing code. Lecture Notes in Computer
Science, 2418:256–256.

Fowler, M. (2018). Refactoring: improving the design of
existing code. Addison-Wesley Professional.

Garcia, J., Popescu, D., Edwards, G., and Medvidovic,
N. (2009). Toward a catalogue of architectural bad
smells. In Proceedings of the 5th International Con-
ference on the Quality of Software Architectures: Ar-
chitectures for Adaptive Software Systems, QoSA ’09,
page 146–162, Berlin, Heidelberg. Springer-Verlag.

Hochstein, L. and Lindvall, M. (2005). Combating archi-
tectural degeneration: A survey. Inf. Softw. Technol.,
47(10):643–656.

Le, D. and Medvidovic, N. (2016a). Architectural-based
speculative analysis to predict bugs in a software sys-
tem. In Proceedings of the 38th International Confer-
ence on Software Engineering Companion, ICSE ’16,
page 807–810, New York, NY, USA. Association for
Computing Machinery.

Le, D. and Medvidovic, N. (2016b). Architectural-based
speculative analysis to predict bugs in a software sys-

tem. In Proceedings of the 38th International Con-
ference on Software Engineering Companion, pages
807–810.

Mkaouer, M. W., Kessentini, M., Cinnéide, M. Ó., Hayashi,
S., and Deb, K. (2017). A robust multi-objective ap-
proach to balance severity and importance of refactor-
ing opportunities. Empirical Software Engineering,
22(2):894–927.

Sahraoui, H. A., Godin, R., and Miceli, T. (2000). Can
metrics help bridging the gap between the improve-
ment of oo design quality and its automation. In Proc.
of the International Conference on Software Mainte-
nance (ICSM’00), pages 154–162.

Sharma, T., Singh, P., and Spinellis, D. (2020). An empir-
ical investigation on the relationship between design
and architecture smells. Empirical Software Engineer-
ing, 25(5):4020–4068.

Tsantalis, N. and Chatzigeorgiou, A. (2009). Identifica-
tion of move method refactoring opportunities. IEEE
Transactions on Software Engineering, 35(3):347–
367.

Tsantalis, N., Mansouri, M., Eshkevari, L., Mazinanian, D.,
and Dig, D. (2018). Accurate and efficient refactor-
ing detection in commit history. In 2018 IEEE/ACM
40th International Conference on Software Engineer-
ing (ICSE), pages 483–494. IEEE.

Tufano, M., Palomba, F., Bavota, G., Oliveto, R., Di Penta,
M., De Lucia, A., and Poshyvanyk, D. (2015). When
and why your code starts to smell bad. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, volume 1, pages 403–414.
IEEE.

Yamashita, A. and Moonen, L. (2013). Do developers
care about code smells? an exploratory survey. In
2013 20th working conference on reverse engineering
(WCRE), pages 242–251. IEEE.

ICSOFT 2022 - 17th International Conference on Software Technologies

136


