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Abstract: We present a new approach to design the system of autonomous vehicles based on practical test scenarios in 
simulation. As the level of driving automation functions advances, various events and problems have occurred 
in many unexpected or unseen situations, so the design of autonomous driving systems is required to be more 
robust and sufficiently practical. We propose a Simulation Driven Development Process (SDDP) based on 
practical test scenarios in a simulation environment. We described the Euro NCAP test scenarios and harsh 
conditions using the ASAM OpenSCENARIO format and implemented them using the Carla simulator. We 
can verify how realistic and functional the system requirements are through the simulation results. It is also 
possible to derive numerical values optimized for Advanced Driver Assistance System (ADAS) function 
safety from the simulation results, and we can get the requirements robust and improve ADAS performance 
by applying them to V-model. We created the Euro NCAP AEB-VRU test scenario to design an effective 
AEB function. We used RoadRunner to build the test road and used ScenarioRunner to render the test scenario 
written by ASAM OpenSCENARIO format according to Euro NCAP test requirement. The result of AEB-
VRU has been investigated under normal conditions and harsh environments as well. This work shows that 
we can extend the safety of the AEB function by changing the vehicle speed according to situation perception, 
which indicates the possibility of utilization of a simulator for autonomous vehicle system design. 

1 INTRODUCTION 

The automotive industry has changed over the past 
few years. With the leadership of the government, 
industrial institutions including automakers, related 
companies, research institutes, and universities have 
focused their research on electric and hydrogen 
vehicles from internal combustion engine vehicles, 
and they are striving to secure a higher level of 
autonomous driving technology. Accordingly, the 
complexity of vehicle development is increasing, its 
requirements are frequently changed, and the cycle of 
development is getting faster. Simulation is being 
utilized throughout the V-Model process from the 
design stage of the vehicle to development and 
validation in response to these changes. 

Driving simulations allow us to verify various 
scenarios iteratively so that we can travel “billions of 
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miles”, enabling difficult tests in the real world, and 
making it possible to diagnose and verify real-world 
problems before the actual implementation of 
autonomous functions. A formal methods approach 
using SCENIC language enables scenario-based test 
generation for autonomous vehicles in simulation 
(Fremont, et. al., 2020). A naturalistic and adversarial 
driving environment by training the background 
vehicles to learn when to execute what adversarial 
maneuver can significantly reduce the required test 
miles without loss of evaluation unbiasedness (Feng, 
et. al., 2021). 

Our motivation is to plan practical and verified 
test cases through the test scenarios proposed by Euro 
NCAP, and to build a simulation environment that 
guarantees freedom of implementation by utilizing 
Carla Simulator, an open-source autonomous driving 
simulator. In addition to verifying the system 
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document through basic test scenarios, the limitations 
of functions are verified at the design stage, and 
requirements for optimizing performance for sudden 
and unpredictable driving situations are derived by 
adding a harsh environment. Finally, the performance 
is evaluated through simulation evaluation of the 
Autonomous Emergency Braking (AEB) function, 
which is one of the key Advanced Driver Assistance 
System (ADAS) functions. 

The remainder of this paper is structured as 
follows: In Section 2, we provide the methodology of 
the development process of vehicle software. Section 
3 provides the states of the art for driving simulation 
and responsibility-sensitive safety (RSS). The 
concept of our approach and its implementation are 
presented in Section 4 before the experimental results 
and evaluation in Section 5. Finally, we conclude this 
paper in Section 6. 

2 METHODOLOGY 

2.1 V-model 

The demand for autonomous driving functions in the 
automobile industry continues to expand. As the 
number of sensors increases, so does the number of 
ECUs in the vehicle. The increase of ECUs and 
autonomous driving functions makes the related 
software more complex and scalable. Therefore, 
many countries and automakers strive to minimize the 
risk of failure by complying with international 
standards such as ISO26262 and Automotive 
Software Process Improvement and Capability 
Determination (ASPICE) for developing autonomous 
driving software. And they follow the typical 
development process, V-model (Rook, et. al., 1986). 
The process varies from manufacturer to 
manufacturer in detail, but it is largely divided into 
two stages. One consists of requirements analysis, 
functional design, and development. The other 
proceeds with verification and validation of these. V-
model is an extension of the waterfall methodology 
and it is aligned with the ASPICE standard. Each 
development step is clearly defined and separated in 
the model. V-Model emphasizes testing, particularly 
the need for early test planning. This reflects the 
Broken Window Theory (Wilson, et. al., 1982). If the 
early stages of development are verified and 
improved, the overall costs are reduced and the 
quality is enhanced. However, sometimes the 
requirements may not contain implementation details 
in many cases. Therefore, the system’s practical 
operation will be required based on real-world 

scenarios. The V-model is clear and easy to track 
current development status and before and after. If 
only the requirements are established in the initial 
stage, the overall process runs efficiently. 

We propose a Simulation Driven Development 
Process (SDDP) using simulation from the initial 
stage of the V-model to refine requirements based on 
feasible scenarios. The use of our proposed system 
from the requirement analysis stage in the V-model is 
beyond the limited module unit verification such as 
the existing Model in the Loop (MiL), it is not only 
essential for functional design based on basic vehicle 
test scenarios, but also more practical by simulating 
unexpected situations or harsh environment where 
autonomous driving is difficult. It will enable realistic 
and practical design and development of ADAS by 
utilizing simulators from the first step of the V-model. 

2.2 Development Methodology 

In the past, automotive software development was 
based on a waterfall method that went through the 
process of analyzing requirements, designing, 
implementing, and testing in turn, but the cycle of 
software development is getting faster and the 
requirements are changed frequently (Balaji, et. al., 
2012). To actively respond to these changes, different 
development methods are used.  

A goal-driven requirements engineering method 
is the Knowledge Acquisition in Automated 
Specification (KAOS) model approach in which the 
main goal is decomposed into sub-goals and then 
refine the subgoals again until reaching explicit, 
unambiguous requirements (Fatima, et. al., 2015). 
The method proceeds by discovering the stakeholders’ 
goals and by using these goals to unveil and motivate 
system requirements. Both bottom-up and top-down 
approaches are typically used to identify the 
stakeholders’ goals. Goals are hence refined from 
more general strategic goals to lower-level 
operational goals. All system requirements are 
identified and introduced in the model to meet some 
operational goals. It is designed using the Objective 
tool to find the reconciling requirements (Singh, et. 
al., 2017). 

A graph-based development has the advantages of 
modularity and reusability of sub-scenarios. The 
method enhances comprehensibility for other 
engineers. This approach makes the scenario creation 
to be easily generated and enables the utilization of 
scenarios within development and testing steps 
(Schütt, et. al., 2020). 

A situation-based method especially focuses on 
road intersections where the highest accidents occur. 
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The development environments are based on an 
ontology of all possible situations at the intersection. 
Derivative of the ontology developed automatically 
and randomly creates test suites according to a 
situation coverage criterion (S. Lee, et. al., 2021). The 
situation-based method finds the weaknesses of the 
autonomous driving algorithms, especially in edge 
cases which are combinations of harsh environments 
and intersection road conditions (Tahir, et. al., 2021). 

There is a survey study of various methodologies 
for developing autonomous vehicles to establish an 
integrated method for testing autonomous driving at 
different stages of development. Development 
methods are used in appropriate situations according 
to their characteristics (Huang, et. al., 2016).  

However, most development methods focus on 
how efficiently the system requirements are reflected 
in the software. Our proposed development process is 
a simulation-driven development. The purpose of our 
method is to verify requirements from the design 
stage to validate the performance using reusable and 
practical test scenarios in a simulation environment. 

3 STATE OF THE ART 

3.1 Driving Simulation 

A driving simulator facilitates the development and 
testing of autonomous driving systems. It provides 
physics models for automotive, and robotics and 
allows them to build testing environment systems. 
Unity is available free for non-commercial versions. 
Unity is a cross-platform game engine developed by 
Unity Technologies. The unity engine can be used to 
create three-dimensional (3D) and two-dimensional 
(2D) games, as well as interactive simulation and 
other experiences. However, the usage of platform 
and asset re-source can be paid access only (Juliani, 
et. al., 2018). 

SCENIC is a probabilistic language to generate 
realistic scenes automatically for autonomous vehicle 
learning or testing in a virtual environment. The 
system based on machine learning uses a modeling 
language as an input source to build simulation assets 
such as background, vehicles, and any traffic 
scenarios as well (Fremont, et. al., 2019). 

Carla is an open-source simulator with the special 
purpose of autonomous driving. It provides flexible 
APIs and high-quality assets. Its physics models and 
rendering are performed by the Unreal Engine (Oliver, 
et. al., 2012). Carla is designed as a client-server 
system. Multiple clients can connect to the server 
simultaneously. The server builds the driving test 

world. The client provides interfaces between users 
and the virtual world by controlling the ego actors. 
Because of this, multiple developers can access the 
Carla at the same time, and enable support training, 
prototyping, and validation of autonomous driving 
models, including both perception and control while 
experiencing realistic driving in the simulation 
environment (Dosovitskiy, et. al., 2017). 

3.2 Responsibility-Sensitive Safety  

Responsibility-Sensitive Safety (RSS) is a model 
proposed by Intel and Mobileye to ensure the safety 
of autonomous vehicles (Gassmann, et. al., 2019). It 
was presented to use the autonomous vehicle as a 
basis for determining who is responsible in the event 
of a traffic accident. NVIDIA also has a calculated 
defensive driving policy, Safety Force Field (SFF), to 
prevent collisions with autonomous vehicles. They 
have similarities in focusing on the protection of the 
autonomous vehicle from collision. The 
mathematical model provides safety functions for 
digitization of these implicit driving rules as follows.  
 Ego vehicle does not hit the car front. RSS 

calculates the safe longitudinal distance. 
 Ego vehicle does not cut into the car in the next 

lane. RSS calculates the safe lateral distance. 
 Ego vehicle has right of way according to RSS 

situation perception 
 Ego vehicle drives slowly with RSS limited 

visibility 
 If an ego vehicle can avoid a crash without 

causing another one, change the lane. 
 

Although RSS has a function similar to the ADAS 
functions such as Adaptive Cruise Control (ACC), 
and AEB, it delegates its judgment to the situation 
perception without presenting a mathematical model 
except for calculating longitudinal and lateral 
distance. Functionally, ADAS assumes that the 
driving speed is maintained when calculating the 
distance during the reaction time. On the other hand, 
since RSS assumes that the speed of the front vehicle 
changes at the maximum deceleration and the speed 
of the rear vehicle changes at the maximum 
acceleration during the reaction time, a relatively long 
safety distance is calculated with low-speed. As a 
result, RSS has a longer distance than necessary in the 
low-speed section. If the safe distance is excessively 
secured, the traffic flow may be slower and it causes 
inefficient vehicle flow. Therefore, RSS needs to 
percept the situation for improving its performance 
and it is possible to be trained and validated under the 
simulation environment. 
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4 CONCEPTIONS OF THE 
SIMULATION ENVIRONMENT 

4.1 The Environment of a  
Simulation-driven Development in 
the V-model 

The V-model process has the advantage that product 
development proceeds properly as the activity of each 
stage is clear and step-by-step verification is carried 
out. However, it is not easy to verify the upper design 
level in this waterfall method. Therefore, we propose 
a process that applies a simulation-driven 
development to the V-model so that verification of 
each stage is continuously performed in one 
simulation environment as shown in Figure 1. 

At the design level, the requirements can be 
verified according to the simulation results reflecting 
Euro NCAP scenarios, and realistic numerical values 
are applied to the documents. The improved 
requirements lead to detailed development 
requirements, which ultimately lead to optimized 
product performance. 

 
Figure 1: The proposed process of SW requirements 
verification utilizing the Carla simulation environment. 

4.2 Writing Test Scenario using ASAM 
OpenSCENARIO Format 

The simulation environment for the verification and 
validation in the V-Model process requires flexibility 
and compatibility. ASAM OpenSCENARIO defines 
a standard format to describe driving test situations 
including assets, scenarios, and traffic conditions. 
Other information, such as the explanation of the ego 
vehicle, pedestrian trajectory, and weather condition, 
is included as well. The standard format is useful to 
synchronize the movements of multiple agents like 
vehicles, bikes, pedestrians, and other traffic 
participants. All contents can be categorized and 
parameterized. Additionally, the test scenario 

supports parameterization, which allows test 
automation without creating a large size of scenario 
sequences. They are hierarchized and structured with 
an XML file format as the standard. It is easily 
editable and interacts with other formats. 

This is a simple example of writing generation of 
actors and positions as follows:  

 

<Vehicle name="vehicle.veh03" 
Category="car"> 

<Pedestrian model="walker.ped01" 
Category="pedestrian"> 

<WorldPosition x="150" y="55" z="0" 
h="0"/> 

<Maneuver name="PedestrianCrossing 
Maneuver"> 

<Event name="PedestrianStarts 
Walking" priority="overwrite"> 

<Action name="Starts Walking"> 
 

To create vehicles and pedestrians in a scenario, 
write vehicle and pedestrian names in each category, 
respectively, and input the x, y, z, and heading angles 
of the test world. Event triggers and actions can make 
pedestrians walk. In this way, we can take the 
readability of the test scenarios and the ease of 
modification of them. 

We wrote the start point, endpoint, and speed of 
the ego vehicle through ASAM OpenSCENARIO 
Format. In addition, by writing the pedestrian's start 
point, endpoint, speed, and event trigger, a scenario 
was created in which a pedestrian crosses the road 
when an event condition is triggered while the ego 
vehicle is driving. The format is functionalized in the 
simulation environments through ScenarioRunner in 
python format. Figure 2 shows the generation of 
AEB-VRU test scenarios using the formats. 

 
Figure 2: Euro NCAP AEB-VRU test scenario: The front 
view of Car-to-Bicyclist Nearside Adult (CBNA, a); of Car-
to-Pedestrian Nearside Adult (CPNA, b), and Car-to-
Pedestrian Nearside Child (CPNC, c); The bird view of 
CPNA (d); of CPNA (e), and CPNC (f). 
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4.3 A Modeling of Actors and Harsh 
Environments 

The Carla simulator allows us to build a virtual 
environment with realistic configurations to validate 
the practical test scenarios. We can utilize various 
vehicles, pedestrians, sensors, and physical 
environment models provided by Unreal Engine to 
implement test scenarios in the simulation. Figure 
3(a) shows vehicles that can be used in the simulation 
environment. Various types of vehicles can 
participate in the test environment through the 
simulator. Each vehicle can apply different vehicle 
kinematics and/or control dynamics parameters such 
as size, weight, gear, toque, wheels, and so on. Even 
the sensor models are equipped differently, and the 
mounting position and performance of the sensor can 
be implemented in a variety of ways as a real vehicle. 
Therefore, automakers or parts suppliers can verify 
and optimize the ADAS functions of any vehicle for 
functional requirements. 

Euro NCAP emphasizes safety for vulnerable 
road users (VRU) such as pedestrians and cyclists and 
especially provides AEB-VRU test protocols for the 
AEB function of ADAS. The real test is assessed 
using controllable balloon dolls in the shape of 
pedestrians and bicycles. Pedestrians are divided into 
an adult and a child and are designated with black 
shirts and blue pants. In addition to the VRU 
proposed by Euro NCAP, we have created a variety 
of pedestrians as shown in Figure 3(c). By 
differentiating gender, race, and/or hairstyle, ADAS 
functional validation for pedestrians is more practical 
in the simulation environment. Cyclists also can be 
changed in various ways, rather than one specified 
size and shape. As shown in Figure 3(b), the models 
such as bicycles, motor-bike, and small electric 
vehicles can be used, so it is possible to cover the area 
where the test cannot be confirmed in actual driving. 

Driving simulation has the advantage of being 
able to reproduce and validate test scenarios that 
require a long wait in a real vehicle at any time and 
place. This allows us to iteratively validate our test 
scenarios under different time and weather conditions. 
Through the OpenSCENARIO format, the time and 
weather conditions of the test environment can be 
written simply, and this is reflected in the Carla 
simulation as a change in the physical environment of 
the Unreal Engine. These changed time and weather 
conditions enable validation of ADAS functions in 
adverse environments, such as at night, in fog, in 
heavy rain, and in backlight conditions. Figure 4 
shows the test scenarios for different times and 
environmental conditions. 

 

 

 
Figure 3: The modeling of actors utilized in the test scenario: 
(a) Vehicles; (b) Road users two-wheeled; (c) Pedestrians. 

 
Figure 4: Screenshots of the harsh environmental condition: 
(a) Day; (b) Foggy; (c) Light turned on darkness; (d) No 
light in darkness; (e) Sunset; (f) Sunrise. 
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5 SIMULATION AND 
EVALUATION 

5.1 Description of the AEB-VRU Test 
Scenario and Modeling 

We aim to implement the AEB-VRU test scenario 
proposed by Euro NCAP in a virtual environment to 
evaluate the AEB function and derive improved 
system requirements to improve AEB-VRU safety 
due to performance degradation in Harsh 
Environment situations. 

Since the ego vehicle’s speed is constant in this 
scenario, A two-lane round-trip road model is used to 
represent the vehicle dynamics. Test roads are created 
according to the guidelines of Euro NCAP with a 
constant width of 3.5 m in the environment. The 
sensor model consists of a front radar, which 
measures the distance to the front target in an angular 
range of ±15 °, and a camera, which detects the object 
to the front from the Carla sensor model. The AEB 
function is a key ADAS function for braking the ego 
vehicle within the time to collision (TTC) limit. The 
TTC requirements for the AEB function are 
dependent on a car manufacturer but it usually has a 
variable range from 1.0 to 2.5 seconds. We fixed the 
TTC of the AEB function to 1.8 seconds for the test 
environment in this work. 

We prepare the two types of variables. The first 
variable is visibility, with or not obstacles on the road. 
The second variable is road condition, the normal 
road, and wet road. The obstacles blocking the view 
and the wet road cause lower friction. The friction 
between the tires of the test vehicle and the road 
determines the minimum stopping distance. The 
coefficients of friction are about 0.7 for dry roads and 
0.4 for wet roads (Jin, et. al., 2014). In the simulation, 
we assigned a braking zone and friction triggers. 
Friction triggers let users define different friction of 
the vehicles' wheels when being inside those types of 
triggers. When entering the zone, the coefficient of 
friction of the road surface was set to 60% (i.e. ≈ 
100×0.4/0.7) of a dry road surface, which could easily 
drop braking performance on the slippery road. The 
ego vehicle runs at a constant speed and performs 
simulations from 5kph to 45kph in 0.5kph 
increments. When the ego vehicle approaches a 
distance of about 30 meters from the pedestrian, the 
pedestrian begins to cross the road. The pedestrian 
has a constant speed according to the vehicle's speed 
to meet TTC requirements. 

Figure 5 shows the real test road and the 
simulation road. The 3.5m lane width and 8m radius 
of curvature required by the Euro NCAP test were 
applied. The slippery road of the simulation test 
environment is visualized in Figure 6. We can get 

lower friction by changing the value of the friction 
coefficient in simulation. 

Figure 7 shows the overview of the AEB-VRU 
scenario. Vehicles, pedestrians, bikes, or other actors 
are generated on the road and harsh conditions such 
as bad weather, road friction, traffic situation, night, 
and obstacles can be added. 

 
Figure 5: Overview of the track for test drive simulation. 

 
Figure 6: Lower friction visualized on the slippery road. 

 
Figure 7: Overview of the Proposed simulation for the 
AEB-VRU scenario. 
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5.2 Simulation Results and Evaluation 

The results show that there is a 4-zone in AEB 
performance domains shown in Figure 8. Zone A is 
where AEB is not operating due to low vehicle speed. 
Zone B is where the AEB function is operating 
properly to meet the TTC of 1.8 sec. In full visibility 
of the target ahead, the function acts to brake 
perfectly and there were no crashes within the speed 
range. For harsh conditions, we added an obstacle of 
a parked car, to occlude the visibility of the ego 
vehicle. Even though the field of vision to the target 
is limited by obstacles, the almost same level 
performs. However, at the speed above that, brake 
operation distance does not increase until collision 
occurrence. Zone C is where the AEB function has 
limited performance. The function is not guaranteed. 
Zone D is where the occurrence of a collision is 
satisfied. 

Figure 8(b) shows the AEB performance by 
adding a harsher environment, and wet conditions. 
When the friction is lower, the brake distance 
becomes longer. However, the performance with no 
obstacle leads to no crashes in the test speed range. 
On the other hand, if the visibility is limited by 
obstacles, the collision occurs at lower speed 
conditions. It shows that the Zone C area is reduced 
while the Zone D area is expanded. Therefore, it can 
be derived that the presence of obstacles causes 
limitations in AEB operation. In addition, the lower 
friction affects the performance limit to avoid 
collision significantly. 

TTC decreases if obstacles block the detection of 
targets. The performance degradation occurs because 
targets can’t be tracked and suddenly appear as shown 
in Figure 8(c). The result with lower friction is in 
Figure 8(d). Therefore, if AV has full visibility, the 
AEB function performs properly despite low friction. 

Table 1 lists the RMSE of TTC. The performance 
is greatly affected by the presence of occluding 
obstacles. 0.498/ 0.190 sec is with/without occluding 
obstacles, respectively. Lower friction gets the 
performance limit lower. Table 2 shows the crash rate 
as shown in Figure 8. No collisions occurred in two 
cases; 1) No occluding obstacle on a dry road, and 2) 
No obstacle under the wet road. However, collisions 
occurred for 12.9% of test cases with obstacles on the 
normal road, furthermore, the accident rate increased 
to 35% of test cases on the wet road. 

Table 1: RMSE of time to the collision of each condition. 

Test Environment RMSE 
No occluding obstacle on dry road 0.190 

No obstacle under Rainy 0.192 
Occluding Obstacles on dry road 0.498 
Occluding Obstacle under Rainy 0.502 

 

 

 

 
Figure 8: Simulation results of the AEB-VRU test scenario: 
Brake operation distance comparison between w/ and w/o 
obstacle on the normal road (a), and for on the wet road (b); 
TTC comparison between w/ and w/o obstacle on the 
normal road (c), and on the wet road (d). 

Table 2: Simulated AEB crash rate for test speed conditions 
shown in Fig. 8. 

Test Environment Rate (%) 
No occluding obstacle on dry road 0 

No obstacle under Rainy 0 
Occluding Obstacles on dry road 12.5 
Occluding Obstacle under Rainy 35.0 
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6 CONCLUSION AND OUTLOOK 

We proposed a simulation-driven development 
utilizing the Carla simulator that verifies the design 
and validates the performance. The proposed 
methodology is to process V-model with a simulation 
environment. To confirm and prove this process, we 
built the simulation environment to execute the test 
scenarios from Euro NCAP especially, AEB-VRU 
and we added harsh environments such as obstacles 
and rainy conditions. A harsh environment was 
applied as a complex element in the simulation 
results. Because changes in the driving environment 
are not simply affected by one variable, but they are 
affected by various environmental variables, not only 
weather conditions but also road friction were 
simulated in the system when applying the rainy 
environment to the simulation. These simulation 
environments allow us to recognize the driving 
environment and iterate on how to react to the 
perceived environment, thereby making requirements 
robust and improving performance for autonomous 
driving. 

We found four domains of AEB performance 
from the simulation results and derived the vehicle 
speed value for AEB operation guaranteed and 
limited speed value under the harsh environment we 
set. By repeating these processes in the simulation 
environment, key variables can be optimized from the 
test result which makes the system requirements 
robust. Our proposed process can be used for a variety 
of purposes, such as not only for functional 
requirements, but also for optimized sensor mounting, 
practical test case development, and counterplan to 
unexpected issues occurring in the real world. 
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