Design Guidelines for a Team Formation and Analytics Software

Bowen Hui, Opey Adeyemi, Mathew de Vin, Callum Takasaka and Brianna Marshinew

Computer Science, University of British Columbia, Kelowna, Canada

Keywords: Team Formation, Team Analytics, Learning Analytics, Design Guidelines.

Abstract: Many researchers over the past several decades studied the success factors of a team. Despite much research efforts, there is still no consensus on how a team should ideally be formed. Consequently, how one decides to form teams in a class depends on the domain, classroom context, and pedagogical objectives. Therefore, software used to support an instructor in forming teams must be flexible enough to accommodate a variety of use case scenarios. In this work, we review the general team formation process and summarize our development efforts in building a team formation and analytics software over the past four years. We found two advantages of using learning analytics in our software: (i) to gain the user’s trust in the system and (ii) to help the user assess whether the suggested teams are balanced and which modifications should be made if any. Based on our experience, we present design recommendations for developing team formation software that reveals challenges and opportunities, especially in combination with learning analytics.

1 INTRODUCTION

Many classes involve team-based activities to foster collaborative learning. The common steps in generating teams are illustrated in Figure 1. As illustrated in Steps 1-4 of Figure 1, in most cases, the instructor forms teams once at the beginning of the class and have the teams work together on a project or multiple activities together throughout the course. In another setting, the instructor may wish to form different teams that change based on the milestone. These additional steps are indicated as Steps 5-6 in Figure 1. A common example is university science labs that typically run weekly. In these labs, students often work in pairs or groups of three’s to complete the lab assignment. To mix up domain and teamwork skill levels, the instructor may change these teams each week. These changes may also consider peer evaluation feedback. Thus, educational technology that offers the ability to form teams needs to support these common use case scenarios.

Over the past several decades, many researchers have studied what makes a team successful (Navimipour and Charband, 2016; McEwan et al., 2017; National Research Council, 2015; Spoelstra et al., 2014). From the perspective of how teams should initially be formed, researchers have studied different compositions of team members’ characteristics in different domain contexts. The variety of characteristics that have been considered includes at least the team member’s personality traits, attitudes and goals, skills, social preferences, and time availability (Alfonseca et al., 2006; M. et al., 2018; Hastings et al., 2018; Alberola et al., 2016). Where projects exist, team member skills are matched against project requirements to guarantee some level of success. While these are common team composition parameters discussed in the literature, there is no consensus as to how a team should ideally be formed due to the conflicting empirical results that have been reported (Takai and Esterman, 2017). Consequently, how one decides to form teams in a class will depend on the domain, classroom context, as well as pedagogical...
objectives. For this reason, team formation software must be designed in a general enough way to accommodate the range of the instructor’s needs which are a function of their pedagogical objectives.

Current approaches to assigning teams in classrooms often have limitations that do not generalize well. In some cases, teams are randomly assigned based on a class list. However, this only works if we do not need to consider student preferences and skills or other pedagogical criteria. Alternatively, we can ask students to self-select their teams. Unfortunately, this often results in unbalanced teams (Layton et al., 2010; Post et al., 2020; Fischer et al., 2020) or situations where students are singled out because they do not know others in the class or do not get along with them. Ideally, we would like to form teams based on specific pedagogical objectives that the instructor identifies and elicit additional information needed from the students, whether it be their traits, attitudes, skills, or preferences. If the course has projects, the instructor may wish to optimize team assignments to increase the chance of project success. It is easy to see that the general team formation problem involves many constraints and individual preferences that potentially conflict with each other. With small class sizes, it is possible to manually form teams following this process. However, this strategy does not scale to large class sizes and we must turn to software designed for solving this complex problem.

In previous work, we built a team formation and analytics software and evaluated it in various settings including benchmarking simulations and preliminary classroom feasibility studies (Hui et al., 2022; Bulmer et al., 2020; Bulmer, 2021). The purpose of this work is to summarize the findings from our classroom studies, demonstrate the new Visual Analytics component that has been added to the system, and provide initial feedback from our ongoing classroom studies. Our experience over the past four years has shown that there is still much room for contributions, particularly in the design and use of team analytics. Based on our experience, we provide a set of design guidelines for designing team formation and analytics software as our main contribution. These guidelines reveal challenges and serve as a resource to practitioners working on advancing the state-of-the-art in this area.

2 LITERATURE REVIEW

In this section, we review general-purpose team formation software that builds teams based on inputted student information and pedagogical criteria. We focus on educational technologies that enable instructors to form teams in their classes. Given this scope, we are only aware of three such systems: GRumbler, Team-Match, and CATME.

GRumbler (Group Rumbler) (Sparrow, 2011) is designed for an experienced user of Excel and users are recommended to dedicate an hour to the tutorial before using it for their classes. Since GRumbler is a spreadsheet, the interface is less user-friendly than the web applications in comparison. The user needs to input all the student data into the spreadsheet and all the teams are generated within the spreadsheet. The spreadsheet allows a large number of student characteristics to be specified so that the algorithm can take the information as constraints when forming the teams. The algorithm is designed to diversify students with the same values of the characteristics across teams, although gender is handled as an exception and can be diversified or clustered together. GRumbler allows for an enemies exclusion list, but not a friends inclusion list. The user can specify a weight for each constraint in the spreadsheet to assign different priorities to those constraints. Lastly, GRumbler can generate sequences of team assignments using the same diversification approach by having students assigned to teams with different members. Thus, it does not consider peer evaluation feedback in the process.

Team-Match is a web application that emphasizes personality and cognitive styles in the team formation process (Team-Match, 2012). The application is hosted by an American company. A key difference with this system is that part of the elicitation setup requires the students to complete a psychometric test so that they would get a personalized personality report that helps them understand their interpersonal skills and teamwork styles. It is unclear if other types of questions can be created by the instructor and used in the elicitation step, but the product advertises the importance to diversify the types of students (e.g., demographics), their skill sets, and their skill levels to create balanced teams. The product has been used in various American universities and has received positive feedback, including a high level of student satisfaction, improvement in work quality, and an increase in fairness and student integration. It appears that the product does not have a peer evaluation component. The application also generates team reports that enable teams to view how they are doing so they can monitor their performance. Unfortunately, details of these reports were not available.

CATME (Comprehensive Assessment of Team Member Effectiveness) is a web application built in 2002 that enables instructors to specify criteria to form teams (Layton et al., 2010; Ohland et al., 2012). CATME was originally free to use but eventually
moved to a software-as-a-service for institutions. The main features of this application are the automation of the team formation process by gathering survey responses from students as part of this application and the peer evaluation assessments provided in the application. The application offers several default questions for instructors to use as part of the survey in the initial elicitation step, but the instructor can also create new questions. After the students complete the survey, the instructor specifies team formation criteria through the web interface to generate teams. Once teams are generated, the instructor cannot change them. If the instructor wishes to explore another way of generating the teams, a new set of criteria must be specified to generate a new set of teams. Graphs are used to show the detailed distributions of individual characteristics for each team and an overall compliance score for each team is presented for comparison purposes. The peer evaluation component allows students to complete evaluations about themselves or their team members. In contrast to the general process illustrated in Figure 1, this feedback is not used to generate new teams, if the instructor wishes to form teams multiple times in the course. An underlying goal of CATME is to guide instructors to forming effective teams and to assist students in becoming better team players. Thus, at times, the interface can be more cluttered than necessary and the surveys can have too much information.

To our knowledge, all three systems exist as independent applications and are not integrated with any learning management systems (LMS). This means there is more initial class list setup and data coordination for getting the team list and peer evaluation results into the LMS. Furthermore, these systems focus on creating teams based on student characteristics and diversifying students across teams. It does not appear that any of these systems support the team formation needs in project courses by considering student skill sets, project requirements, and students’ project preferences. Aside from GRumbler, teams suggested by Team-Match and CATME cannot be modified manually; modifications must be made by specifying new criteria to regenerate the entire set of teams. Lastly, team analytics has not been a focus in these systems. While some forms of analytics exist in Team-Match and CATME, the details are not clear.

3 TEAMABLE ANALYTICS

Teamable Analytics is implemented as a Django application with a PostgreSQL database on Amazon web services and runs on multi-container Elastic Beanstalk using Nginx, app, and worker (Hui et al., 2022). The tool will be released as open-source in August 2022. Its general architecture is shown in Figure 2. The system is designed to support all the use case scenarios outlined in the general team generation process. It has the following instructor components: Elicitation Setup, Team Generation, and Visual Analytics. Since our system gathers information from the LMS, students do not need to interact with the software if there are no peer evaluations in the course. For students who are constantly asked to learn and use new technologies these days, not having to learn another software for administrative purposes can alleviate unnecessary stress. If peer evaluations are present, Teamable Analytics has the following student components: Student Interface, and Peer Evaluations. Each component is described below.

![Figure 2: System architecture for Teamable Analytics.](image)

3.1 Instructor Components

The main user of the system is the instructor of a course. The tool is designed to support the instructor from getting course information (e.g., sections and students) to eliciting student preferences to specifying pedagogical criteria to generating teams.

3.1.1 Elicitation Setup

This component provides a process stepper shown in Figure 3 that guides the user through each step of the setup. The stepper appears at the top of every page and the details are automatically hidden if the user has visited the page before. Instructions are provided for each step of the process, including: importing course information (sections and students), defining attributes that represent student traits, skills, and preferences, defining attributes that represent project requirements (if projects are involved), creating a survey with questions based on attributes to elicit the data.
from the students, and gathering the responses from the completed survey. Once the instructor has all the information, the next step is to generate teams.

3.1.2 Team Generation

Currently, the system supports a random algorithm and a weight algorithm. The key advantages of the weight algorithm are its ability to handle many types of competing constraints, form teams quickly, and offer competitive benchmarking results against other exact algorithms (Bulmer et al., 2020). As shown in Figure 4, a customizable dashboard for the weight algorithm is presented to the instructor to choose the parameters for generating teams.

3.1.3 Visual Analytics

The findings of our initial pilot studies (see Section 4.1) identified specific areas of concern that led to the creation of this new analytics component. The purpose of this component is to help the instructor quickly and effectively assess whether the suggested teams match the desired pedagogical objectives.

The goal is to use visual analytics as a tool to reason about the suggested teams and change specific team memberships if needed. Our analytics provide a snapshot of the relevant student characteristics so the instructor can inspect a team to determine if it is problematic or not. For example, if the instructor wanted to diversify female students across all the teams in a male-dominated class but sees that one team has several females in it, the visual analytics should offer a representation that reflects this pattern. Once the instructor scans the analytics and finds problematic patterns, the user can manually move individuals to different teams and update the visualizations again. Alternatively, the instructor can regenerate the set of teams entirely using different criteria. This editing process can be repeated as much as needed. Once the instructor is satisfied with the teams, the suggested teams can be exported to the course LMS.

First, the instructor identifies the attributes they wish to visualize. Depending on the data types of these attributes, compatible visualizations will be available for selection. The system’s visual analytics currently support a pie chart, tally summary, comparison bar graph, radar graph, checklist, and heat map. Examples of each type of visualization are shown in Figures 5 to 10. In all of these cases, the system has both team-level and individual-level visualizations so the instructor can easily see problematic patterns across teams or delve deeper into the individual responses within a team to diagnose the problem.

In Figure 5, a pie chart is used to illustrate the gender distribution in a team.

![Figure 5: Pie chart for gender distribution in a team.](image)
distribution in a team along with the legend of possible student responses. Alternatively, this data can be shown in a list of tallies like Figure 6 or as a bar graph like in Figure 7. These visualization options differ in their ease of interpretability. The system provides recommendations for visualizing each type of data, but the choice is ultimately left in the user’s control.

Figure 6: A tally view for the distribution of operating systems owned in a team.

Figure 7: Comparison bar graph for viewing multiple skills averaged across team members.

The bar graph supports the ability to compare multiple skills together. Alternatively, the user can visualize these attributes using a radar graph, as in Figure 8, with lines connecting the neighboring points.

Figure 8: Radar graph with 5 personality traits.

Certain attributes require specialized visualizations. The first type is used to illustrate preferences. Students may have preferences over the set of project options, which friends to include in their team, and which enemies to exclude from their team. Although a tally view can be used, the visualization is not easy to digest. Instead, we defined a satisfaction metric to summarize the percentage of preferences satisfied for that team. Figure 9 shows the team working on “Mobile Game - iOS” has 7 students, with 86% of the project preferences satisfied. When the details of the team members are expanded, we see that a green checkmark indicates when a preference is satisfied a red cross indicates when a preference is not met.

Mobile Game - iOS
7 Students

Capstone Project Preference
Satisfaction Level: 86%

Figure 9: Project preferences shown for 3 of the 7 students.

To view a team’s schedule availability, we implemented a heatmap visualization as shown in Figure 10. Given specific blocks of times in a day, the gradient of the color represents whether more or fewer students are available to meet in that block of time. Here, lighter shades represent fewer students are available and dark red represents everyone is available. Figure 10 shows two heat maps. It is easy to see that the team on the left has more opportunities to work together than the team on the right because there are more dark red blocks.

Figure 10: Time availability for two teams.

Once teams are formed and students start working on their course work, the Visual Analytics component also has a monitoring page that allows the instructor to select grades from the course LMS and compare them visually. Figure 11 shows a box plot graph for comparing performance across teams. The instructor can also employ the same visualization to view performance within a team. Here, the user can turn on the line option so that trends in performance for the same team or the same individual are easier to trace. This is shown in Figure 12. Currently, these visualizations present a simple view of team performance.
In future work, we are exploring ways to incorporate richer data that can help teams reflect and improve on their performance (Fernandez-Nieto et al., 2021).

3.2 Student Component

The student user plays a minor role in this system and only uses the system if there are peer evaluations in the course. This component is essential to the use case where peer evaluation feedback is used to augment and generate new team sets.

3.2.1 Peer Evaluations

Figure 13 shows the student view of the system in the peer evaluation tab. Once an evaluation is selected, the student can see a list of peer evaluations for that milestone and their completion status as shown in Figure 14. Each evaluation consists of questions created by the instructor. Peer evaluations are generated so that a student must complete an evaluation for each member of the team. Another feature is that students can evaluate other teams in the class (e.g., give feedback on another team’s presentation).

Once the peer evaluations are completed, the instructor can export the data for further calculations if desired. If the instructor wishes to generate new teams based on these responses, the instructor can return to the Team Generation component to do so.

4 PILOT CLASSROOM STUDIES

Teamable Analytics was integrated with the Canvas LMS and piloted in several classes over the past four years. Section 4.1 reports initial studies on piloting the algorithm without the user interface or piloting the core instructor components supported heavily by a researcher (Bulmer, 2021). Section 4.2 summarizes the newer studies on piloting the whole system, which includes the Visual Analytics and the student-facing Peer Evaluation components.

4.1 Initial Studies

The system generated teams for four upper-level Computer Science undergraduate courses between September 2019 and April 2021. These courses had between 41 and 161 students, varied in team formation criteria, and assessed different parts of the system. When student satisfaction was measured, the reported values were on average between 0.78 and 0.86, with 0 being not satisfied at all and 1 being very sat-
isfied. A metric called activity cover was used to indicate the proportion of project requirements that are met by the skills in the student team, with 0% being none of the requirements are met and 100% being all of the requirements are met. The studies reported an average of 65.8% activity cover value across the project teams. Overall, the studies provided encouraging results and suggested that the tool made the team formation task easier for instructors. Much of the feedback was focused on user interface improvement because the rest of the tool was largely under development. The interested reader is referred to (Bulmer, 2021) for further details.

4.2 Full System Evaluations

In 2021, we completed 4 new classroom evaluations using the full system in Kinesiology, Art Studies, and Physics. The class sizes range from 15 to 170 students. A variety of criteria was used to form teams, such as diversifying student skills to form balanced teams, or diversifying student degree majors to form heterogeneous teams, or matching students’ preferences and goals so similar minds can work together. Among these, only one class used peer evaluations to provide feedback to team members, but that feedback was not used to regenerate new teams.

All the studies successfully built teams for their classes with a few minor production problems. Generally, we received positive feedback from the instructors indicating that the interface was easy to use and the system saved them a lot of time from having to generate teams manually or semi-automatically. Among those who used the peer evaluation component, 93% of the students reported a neutral or positive experience with the tool.

We are running the study in five more courses across Medical Studies, Computer Science, and Biology. The class sizes range from 59 to 539 students. One class is matching student skills to available projects, one class is forming discussion groups that change after a few months based on peer evaluation feedback, and the other classes are forming teams to work on creative assignments.

Informal feedback from these studies so far is that the tool generally works well for their needs, but the Visual Analytics component is difficult to use due to the large number of graphs displayed for large classes. In one case, an instructor used a team formation strategy that resembles a self-selection strategy, with additional criteria to balance teams and to prevent student isolation. However, we discovered that our algorithm does not support this use case very well when students’ social preferences serve as the primary factor.

Thus, we are exploring options to tackle these two problems in our future work.

Based on our study findings, the next section presents recommendations for designing and developing team formation and analytics software.

5 DESIGN GUIDELINES

Software designed for educational use needs to take privacy and data security into serious consideration. For team analytics software that handles student data, it is crucial that the data does not access more student information than necessary and that any potentially sensitive data is encrypted and stored securely in the database. Many higher education institutions have privacy impact assessments to evaluate new software as part of the enterprise adoption process.

Accessibility is also a concern due to the wide range of users who may use this application. There are two user groups in a team formation software: instructors and students. The software needs to accommodate individuals who may have diverse needs due to their impairments. Furthermore, many institutions have compliance standards so that a web application must meet web content accessibility guidelines (e.g., WCAG 2.1, although new versions are underway).

The rest of this section describes the design needs that are unique to team formation and analytic software. We explain our recommendations in the context of our experience presented in earlier sections.

Customizability. Teams can be formed in many different ways as a function of the instructor’s pedagogical objectives. Thus, the software should allow the instructor to pick and choose the parameters for how s/he want to form teams. Such parameters may include team size, how much weight to place on one’s academic performance, whether students’ friends should be placed in the same teams, or how important project success is as an outcome. This approach promotes the idea in line with other work on customizable dashboards (Roberts et al., 2017; Quispe et al., 2021; Vázquez-Ingelmo et al., 2019).

While leaving the control of these parameter settings in the user’s hand is crucial, we have also been asked many times whether the software can suggest how teams should be formed. Unfortunately, without a deeper understanding of the course context, the student population, and the pedagogical objectives, it is not possible to automate such suggestions. As an initial step, the software can provide default questions commonly used in the literature for the user to consider as potential team formation criteria.
Composability. The need for computer assistance in forming teams is most apparent with large classes. In our experience, forming teams manually with class sizes up to 40 students is manageable, although the process is time-consuming, tedious, and error-prone. However, many university classes have more than 40 students. Therefore, the algorithm used in the team formation software must be able to handle multiple, competing constraints from a large number of variables so that the constraints can be considered, or composed, together to form meaningful teams. Since different instructors have different criteria in mind, the software should not limit the number of criteria used for forming teams.

Scalability. Our studies included a class with over 500 students. As mentioned earlier, instructors turn to automated solutions when they have large class sizes. The average class size in all of our full system studies is 157 students. Thus, the ability to form teams with large class sizes is crucial to the utility and the adoption of the software.

Efficiency. Our feedback indicates users do not want to wait a long time for the system to generate teams. However, this is infeasible at scale if the system’s algorithm is designed to find an exact, optimal solution. Thus, a tradeoff must be made between the practicality of use and the theoretical accuracy of the results. We argue that user satisfaction must be prioritized and that approximation algorithms should be explored in this field as they can generate teams quickly and provide near-optimal solutions (Bulmer et al., 2020).

Interoperability. New educational technology that supports class activities should seamlessly integrate with the institution’s LMS (e.g., using the LTI protocol). Thus, course data can be pulled into the application without additional overhead, student information can reside in the LMS to minimize security risks, and the software can export the teams directly to the course and view ongoing team analytics by pulling course grades from the LMS.

Transparency. One of the first pieces of user feedback we got is that the instructor needs to have the ability to inspect and verify that the suggested teams were formed based on the inputted criteria. We observed this feedback before the Visual Analytics component was built. This was an interesting finding because it showed that the instructor did not trust the system’s algorithm. As a solution, we used carefully presented analytics can enable the instructor to verify if their teams are formed as desired without having to analyze detailed student preferences. In general, data must be presented in an understandable and explainable way so that the user can trust the system (Verbert et al., 2020). Moreover, the solution should enable the user to diagnose the problem through a quick inspection of the teams so that the user knows which changes need to be made.

Social Relevance. The software should have the ability to accommodate social preferences in creating teams. In hopes of improving the quality of collaboration, many instructors elicit student preferences about their friends and enemies when forming teams. However, these relationships cannot be the sole factor in deciding team membership because there are cases when one student is singled out or when a student does not know anyone else in the class. Furthermore, some instructors may prefer to have more diverse teams by distributing the females in a male-dominant class or by distributing visible minority students across the teams. A concept that is well-documented in the psychology literature called tokenism suggests that teams with a token minority student often result in poor team dynamics and decrease the minority student’s sense of belonging (Cohen and Swim, 1995). Thus, some instructors may wish to diversify on a student characteristic only if a minimum of two or more similar students are present in the team. For example, in a male-dominated class, a team with all male students and a team with two female students is better than having two teams each with a token female student. However, we must consider the possibility that many minority students who have survived through their degree to their senior years have formed friendships with non-minority students. In such cases, it would be more prudent to respect their social preferences rather than their gender or ethnic identities. Other factors to ensure teams are formed in an inclusive way should also be considered (Muheidat and Tawalbeh, 2018).

Flexibility. One particular use case that poses an interesting problem to standard team formation algorithms in the literature is the ability to incrementally adjust teams based on new information. One scenario is when new students register late into the class and teams have already been formed. This problem is very common, especially in elective courses where students opt into a course at the last minute or even past the registration deadline. Here, the software needs to facilitate a way to handle adding late registrants to existing teams. Another scenario is when
the instructor wants to form new teams for the class based on peer evaluation data on the existing teams. Many Science classes have labs where students work in pairs to solve tasks weekly. Each week, the instructor may tweak the teams using peer evaluation data. For one lab, the work involved in building the teams is not that intensive. However, for a large class with many lab sections, the amount of work involved can be extremely overwhelming. The system should have the functionality to accommodate this use case. Additionally, rather than regenerating all the teams, the instructor may wish to lock some teams in place and only regenerate the others.

Usability. Although usability is a key criterion for any software, we note that having a simple, intuitive interface is especially important in team formation and analytics software due to the wide range of users in the target user group. First of all, we cannot expect instructors to have specialized computer skills because instructors come from a wide range of disciplines. Other unacceptable expectations include requiring the user to export data and analyze it in another format, placing features in hard-to-discover parts of the interface, or showing numeric details that require mathematical expertise. This also means that visual team analytics need to be presented in a user-friendly manner so that users with different levels of data literacy do not feel intimidated by the visualizations and can make use of the analytics effectively.

Extensibility. Software should be designed in a way that supports the most common use cases illustrated in Figure 1. Early in the software development lifecycle, designers can discover use cases through focus groups, interviews, and reported case studies. As the system gains popularity, new use cases are likely to arise. We may also discover new use cases through pedagogical changes. Thus, the software should be designed and built in a way that can be easily extended to handle new scenarios.

6 CONCLUSIONS

In this work, we illustrated the general team formation process based on common use case scenarios. While several team formation systems exist, they all focus on diversifying similar students across teams. In contrast, we have built Teamable Analytics as a general-purpose team formation and analytics system that encompasses more use cases, such as matching students to projects and regenerating the next set of teams based on peer evaluation feedback. Our Visual Analytics was designed to increase trust and diagnose unbalanced teams. Lastly, Teamable Analytics is built using the LTI protocol and can be easily integrated with any LMS that uses the protocol.

Our immediate next steps are to extend the algorithm to prevent tokenism in teams and incorporate a self-evaluation option. Ultimately, we wish to explore research opportunities available in team analytics and advance the Visual Analytics component. Not only are team analytics helpful in the team formation step, but they are also crucial in the team monitoring stages for increasing team success. Visual analytics can inform us about team compositions. This can help students to better understand themselves and their team members. It also helps instructors take preventative actions to support teams that may have conflicts or lack certain skills. Team analytics can include information beyond grades to provide a richer story about the teams. The analytics can also be coupled with at-risk alert features that prompt the instructor about potential team or individual issues. Lastly, experimental interventions can also be carried out where team analytics provide empirical insights on changes resulting from those interventions.

REFERENCES

