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Abstract: The rating of users requesting financial services is a growing task, especially in this historical period of the
COVID-19 pandemic characterized by a dramatic increase in online activities, mainly related to e-commerce.
This kind of assessment is a task manually performed in the past that today needs to be carried out by automatic
credit scoring systems, due to the enormous number of requests to process. It follows that such systems play
a crucial role for financial operators, as their effectiveness is directly related to gains and losses of money.
Despite the huge investments in terms of financial and human resources devoted to the development of such
systems, the state-of-the-art solutions are transversally affected by some well-known problems that make the
development of credit scoring systems a challenging task, mainly related to the unbalance and heterogeneity of
the involved data, problems to which it adds the scarcity of public datasets. The Region-based Training Data
Segmentation (RTDS) strategy proposed in this work revolves around a divide-and-conquer approach, where
the user classification depends on the results of several sub-classifications. In more detail, the training data
is divided into regions that bound different users and features, which are used to train several classification
models that will lead toward the final classification through a majority voting rule. Such a strategy relies
on the consideration that the independent analysis of different users and features can lead to a more accurate
classification than that offered by a single evaluation model trained on the entire dataset. The validation process
carried out using three public real-world datasets with a different number of features, samples, and degree
of data imbalance demonstrates the effectiveness of the proposed strategy, which outperforms the canonical
training one in the context of all the datasets.

1 INTRODUCTION

The exponential increase in e-commerce activities
that characterizes today’s modern societies has un-
dergone further growth as a result of the restrictions
on movement imposed by the COVID-19 pandemic,
which has prompted people to increase their online
purchases and, more generally, to increase the use of
the services offered by the Internet. This scenario
has at the same time increased requests for consumer
credit and therefore, generalizing, the need for finan-
cial operators to assess the solvency of their potential
customers. Unlike in the past, where the low number
of requests allowed human management, today this
activity is carried out through automatic systems that,
based on the outcome of past customers, evaluate the
new users, performing an operation that in the liter-
ature is named as Credit Scoring. The credit scor-
ing task is usually performed by classifying the new
users according to a binary (classification as reliable
or unreliable) or continuous (assignment of credit rat-

ings) criterion. Such a classification relies on a large
number of approaches, where the evaluation model is
trained by using the users’ information (which from
now on we define instances), e.g., age, current job,
total income, other loans in progress, etc.

It should be noted that the type of data involved
in the credit scoring processes has drastically reduced
the number of public datasets available to researchers,
compared to other domains. This is due to a whole se-
ries of reasons mainly related to the privacy of finan-
cial operators and their customers, as also when such
data are anonymized it is possible to extract privacy-
sensitive information. In addition to this problem of
data scarcity, the data available for the training of the
evaluation models are commonly affected by a high
degree of unbalance of the data classes, which are
typically two: reliable and unreliable users. This con-
figuration, to define evaluation models not influenced
by the samples that belong to the majority class, must
be appropriately managed through re-sampling tech-
niques (Leevy et al., 2018), which add synthetic in-
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stances to the minority class or remove them from the
majority one. However, such a process generates data
with similar series of features that characterize reli-
able and unreliable users.

Initially formalized by us for a different domain,
the proposed strategy revolves around the idea that we
can reduce the heterogeneity problem by adopting a
divide-and-conquer criterion, which relies on the con-
sideration that the instances that compose the datasets
used to train the evaluation models refer to different
users and features. On the basis of this consideration,
we can split the classification task into several sub-
classifications, each of them performed by an evalua-
tion model trained by using a different region of the
dataset, in terms of instances and features. In this re-
gard, then we propose a Region-based Training Data
Segmentation (RTDS) strategy, according to which
the training dataset is divided into several regions by
following an experimentally-defined number of rows
and columns that, respectively, bound a region com-
posed by certain instances (dataset rows) and features
(dataset columns). The defined regions are then used
to train independent evaluation models and the final
classification of the new instances is reached accord-
ing to an ensemble criterion regulated by a majority
voting rule.

Unlike most credit scoring literature approaches,
all the experiments related to this work were carried
out by ensuring a real separation between the data
used to select the best credit scoring algorithm in the
context of a canonical training model process (to use
as competitor algorithm and strategy) and to define
the optimal number of regions for the proposed RTDS
strategy, and the data used to validate it (performance
comparison). In more detail, each dataset is divided
into two parts (50 percent each one) named in-sample
and out-sample, which are respectively used for the
aforementioned activities.

The scientific contributions of our work are sum-
marized as follows:
- formalization of the Region-based Training Data

Segmentation (RTDS) strategy, where the training
dataset is divided into several regions that bound
a certain number of instances (rows) and features
(columns), and the instance classification depends
on a series of independent evaluation models, each
of them trained on a different region, according to
an ensemble approach regulated by a majority vot-
ing rule;

- formalization of criteria that allow the adoption of
the RTDS strategy even when the data configuration
does not permit the division of the training dataset
into equal-size regions (padding criterion) or/and it
does not permit the application of the majority vot-

ing rule during the ensemble classification (classi-
fication criterion) because the regions are even in
number;

- definition of a classification algorithm that imple-
ments the RTDS strategy, classifying each new in-
stance as reliable or unreliable on the based of a
given training dataset;

- validation of the proposed RTDS strategy per-
formed by comparing its performance (using the
out-of-sample part of the dataset) to that of a canon-
ical training approach based on the same best clas-
sification algorithm (previously detected using the
in-sample part of the dataset).

2 BACKGROUND AND RELATED
WORK

Premising that an instance classification as unreliable
indicates a default status, i.e., the failure for the user
to grant the legal obligations related to the requested
financial service (e.g., a loan), the literature reports
three different risk models associated to the default
concept: Probability of Default (PD), when we need
to evaluate the likelihood of a default over a certain
period; Exposure At Default (EAD), when we need
to evaluate the total value of exposition of a finan-
cial operator in case of default; Loss Given Default
(LGD), when we need to evaluate the amount of mon-
etary losses of a financial operator in case of default.
In the above context, the work we proposed is aimed
to perform binary classification of the instances into
the reliable or unreliable classes, then it takes into ac-
count the PD model.

The literature shows how the credit scoring task
is faced by a large number of approaches, from those
focused on statistical algorithms to those that exploit
transformed data domains, machine and deep learning
algorithms, and a large number of hybrid approaches
that combine different algorithms and strategies. Re-
garding statistical approaches, literature offers many
works, such as the one that improve the Logistic Re-
gression algorithm with non-linear decision-tree ef-
fects (Dumitrescu et al., 2022), or that where the Lin-
ear Discriminant Analysis has been used for the credit
scoring task (Khemais et al., 2016). Regarding trans-
formed data domains approaches, in a work (Saia and
Carta, 2017b) the authors face the credit scoring task
by exploiting the Fourier Transform, similarly in an-
other work (Saia et al., 2018), which instead exploits
the Wavelet Transform, or in (Carta et al., 2021; Carta
et al., 2019), where the authors use a transformed fea-
ture space. Regarding machine learning approaches,
the Decision Tree and Support Vector Machine al-
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gorithms were combined in a work (Roy and Urola-
gin, 2019) in order to define a credit scoring system,
whereas in the work (Liu et al., 2022) the authors de-
signed a credit scoring system based on tree-enhanced
gradient boosting decision trees. Regarding deep
learning approaches, an Artificial Neural Network is
exploited in a work (Liu et al., 2019) in order to per-
form the credit scoring task, whereas for the same
goal an Imbalanced Generative Adversarial Fusion
Network based both on a feed-forward neural net-
work and on a Bidirectional Long Short-Term Mem-
ory network is proposed in another work (Lei et al.,
2019). Regarding other approaches, an entropy crite-
rion is exploited by the authors in several works (Saia
and Carta, 2016a; Carta et al., 2020), whereas a
linear-dependence criterion is used in (Saia and Carta,
2016c; Saia and Carta, 2016b), and the combination
of different algorithms and strategies to perform the
credit scoring task is faced in another work (Zhang
et al., 2019). Another interesting work (Saia. et al.,
2021) investigates the feasibility to define a credit
scoring model based on the bank transactions instead
of the canonical users’ information.
Open Problems: Although over time state-of-the-art
credit scoring solutions have gradually improved their
performance, there are well-known problems that re-
duce the effectiveness of all the approaches, as they
depend on the nature of the involved data. The main
problems are the scarcity of public datasets to be
used for the definition of new credit scoring approach-
es/strategies, and the complication that those avail-
able typically present a high degree of data imbal-
ance because the examples of unreliable instances are
fewer in number than those relating to reliable ones.
In more detail, the scarcity of real-world datasets
is mainly related to the privacy policies adopted by
many public and private entities (Sloan and Warner,
2018) such as, for instance, the banks and other credit
institutions. Concerning the data imbalance, it leads
toward the underestimation of the unreliable cases
during the training of the credit scoring evaluation
models, since that process results biased by the ma-
jority class (i.e., reliable cases). In this case, the only
solution is the adoption of balancing techniques that
work by removing some majority class samples (un-
dersampling), or by adding some synthetic instances
to the minority class samples based on the existing
ones (oversampling), and, in some cases, these two
approaches can be combined. It should be observed
how the adoption of undersampling techniques that
remove samples from the majority class reduces the
available information about this class, making the
trained valuation model less accurate (Park and Park,
2021), whereas the adoption of oversampling tech-

niques (the most used in the literature) could lead
to an overfitting problem because the introduction of
synthetic samples in a class might overestimate it in
terms of probability (Weiss, 2004). In the light of the
current literature (Shen et al., 2021), which demon-
strates that the adoption of a data balancing technique
based on the oversampling of the minority class can
improve the performance of a credit scoring system,
we will adopt it for preprocessing the used datasets
during the experiments. A side effect related to the
scarcity of real-world datasets and the reduced num-
ber of unreliable cases available for the training of the
evaluation model is the cold start. It means that until
we have an adequate number of unreliable samples,
we can not train an evaluation model, not even by re-
curring to an oversampling technique.
Performance Evaluation: In order to evaluate
the performance of a credit scoring system, aimed
at the binary classification of users as reliable or
unreliable, different metrics are used in the lit-
erature, many of which based on the confusion-
matrix, a matrix of size 2x2 that contains the
numbers of True Negatives (TN), False Nega-
tives (FN), True Positives (TP), and False Positives
(FP). Some of these metrics largely used are the
Accuracy = T P+T N

T P+T N+FP+FN , the Sensitivity = T P
T P+FN

(also defined True Positive Rate), the Speci f icity =
T N

T N+FP (also defined True Negative Rate), the
Fallout = FP

FP+T N (also defined False Positive
Rate), and the Matthews Correlation Coe f f icient =

T P·T N√
(T P+FP)·(T P+FN)·(T N+FP)·(T N+FN)

(MCC).

The literature also shows how, in order to provide
a more reliable assessment of the credit scoring per-
formance with any data configuration, then regardless
of the level of balance of the classes, these afore-
mentioned metrics are usually combined with other
metrics such as, for instance, those based on the Re-
ceiver Operating Characteristic (ROC) curve (Green
and Swets, 1966) the most used of which is the Area
Under the ROC Curve (AUC). The ROC plots the
Sensitivity on the y-axis, against the Fallout on the
x-axis, evaluating the separability, i.e., the ability to
discriminate the two data classes (i.e., reliable and un-
reliable) correctly.

3 RTDS STRATEGY

Before describing the proposed strategy, we report the
adopted formal notation. Denoting as |S| the cardi-
nality of a generic set S, we further denote a series
of instances I = {i1, i2, . . . , iN} composed by: a sub-
set I+ = {i+1 , i

+
2 , . . . , i

+
X } of reliable instances, then
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I+ ⊆ I; a subset I− = {i−1 , i
−
2 , . . . , i

−
Y } of unreliable

instances, then I− ⊆ I; a subset Î = {î1, î2, . . . , îM} of
unclassified instances, then Î ⊆ I.
So we have that I = (I+ ∪ I− ∪ Î), and each in-
stance i ∈ I is characterized by the features in the set
F = { f1, f2, . . . , fW}, and it can belong to one of the
classes in the set C = {reliable,unreliable}, then we
also formalize: the training set T = {i1, i2, . . . , iK}
given by I+ ∪ I−; the possibility to divide T into
R = {r1,r2, . . . ,rZ} regions, according to the T in-
stances (set rows) and features (set columns); the re-
gions definition operation as R(IR,FC), where IR is the
number of Instance Rows, and FC is the number of
Feature Columns, then |R|= Z = (IR×FC).

As a result of the above: concerning the set I, each
region is composed by N

IR instances and W
FC features,

since |I| = N and |F | =W ; the bounds of IR and FC
are, respectively, 1 ≤ IR ≤ |T | and 1 ≤ FC ≤ |F |; it
should be observed that IR = FC = 1 indicates the
canonical data configuration and that the IR value
must define a region with samples of both classes in
the set C, differently, the training process of an evalu-
ation model is not possible.
Problem Definition: Considering that we face the
credit scoring problem in terms of a binary classifi-
cation related to the two classes defined in the previ-
ously formalized set C, it is possible to define such a
problem as shown in the Equation 1, where α denotes
a generic classification algorithm, and the evaluation
function of an instance î (that returns 1 when performs
a correct classification and 0 otherwise) is denoted as
Evaluate(î,α). This means that the problem is for-
mulated as the maximization of the Θ value, since it
reports the sum of the instances correctly classified
(its upper bound is then |Î|).

max
0≤Θ≤|Î|

Θ =
|Î|

∑
m=1

Evaluate(îm,α) (1)

Strategy Overview: The proposed strategy relies on
a fusion fashion independent evaluation model, this
means that several evaluation models are trained by
using a different region of the IR×FC regions, where
each of these regions bounds specific user’s instances
(rows) and user’s features (columns). Based on this
division into regions, the classification process is per-
formed by several sub-processes, each of them based
on the training data bounded by the respective region,
according to our idea that such a strategy can reduce
the problem related to the data heterogeneity because
each new instance classification depends on a differ-
ent group of instances and features.
Strategy Formalization: Based on the proposed
RTDS strategy, the problem defined in Equation 1
needs to be revised by dividing the evaluation pro-
cess into Z sub-processes, i.e., |R|= Z. Therefore, the

generic credit scoring algorithm α runs Z times, and
the final classification depends on all the results, as
shown in Equation 2, which assumed K = 4, W = 4,
IR = 2, and FC = 2, giving rise to a subdivision
of the training set T into |R| = Z = (2× 2) = 4 re-
gions, where each region is composed by K

IR = 4
2 = 2

instances and W
FC = 4

2 = 2 features, generating four
m1,m2,m3,m4 evaluation models. In other words, the
training process of an evaluation model m related to a
classification algorithm α uses the instances and fea-
tures bounded by the r1,r2,r3,r4 regions, individually,
obtaining four m1,m2,m3,m4 evaluation models.

R(2,2) =

[
r1 r2

r3 r4

]
=


f1,1 f2,1 f3,1 f4,1

f1,2 f2,2 f3,2 f4,2

f1,3 f2,3 f3,3 f4,3

f1,4 f2,4 f3,4 f4,4

⇒
[

m1 m2

m3 m4

]
(2)

Whereby, the process of classification of a new in-
stance î ∈ Î will involve its f1, f2, f3, f4 features,
which are compared to all the evaluation mod-
els m1,m2,m3,m4, producing the four classification
c1,c2,c3,c4, as shown in Equation 3, where the com-
parison operation is denoted with⇔.

c1 =
[

m1

]
⇔
[

f1 f2

]
c2 =

[
m2

]
⇔
[

f3 f4

]
c3 =

[
m3

]
⇔
[

f1 f2

]
c4 =

[
m4

]
⇔
[

f3 f4

] (3)

Padding Criterion: The padding criterion is used
when the number of regions given by the IC and FC
values does not generate equal-size regions, as shown
inEquation 4.

(|T | mod IR) 6= 0
(|F | mod FC) 6= 0 (4)

According both to the notations µ2 = (|T | mod IR)
and µ1 = (|F | mod FC) and F = { f1, f2, . . . , fW}
and T = {i1, i2, . . . , iK}, Equation 5 formalizes the
padding criterion.

pad(T ) = {i1, i2, . . . , iK , iK+1, iK+2, . . . , iK+µ2}
with iK+1 = iK , iK+2 = iK−1, . . .= iK+µ2 = iK−µ2

pad(F) = { f1, f2, . . . , fW , fW+1, fW+2, . . . , fW+µ1}
with fW+1 = fW+2 = . . .= fW+µ1 = fW

(5)

The adopted criterion is aimed at not altering the in-
formation significantly since it follows two different
strategies: concerning T , it duplicates the last rows
(instances) µ2 times, facing the risk that the added in-
stances belong to the same class in C; concerning F , it
duplicates the last column of data (features) µ1 times.
This approach does not bias the machine learning pro-
cess because it involves both the training and the test
data. It should be noted that, in order to simplify the
exposition of the proposed strategy, we assume that
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this criterion is used as preprocessing step, automati-
cally, during the definition of the regions.
Classification Criterion: The classification criterion
is aimed to face the case when is not possible to ap-
ply a majority criterion during the ensemble classi-
fication. In this regard, taking into account that the
application of the RTDS strategy (except in the case
IR = FC = 1) generates c1,c2, . . . ,cZ classifications,
this can lead to the two cases reported in Equation 6,
where, differently from the Case 2 that allows us the
use of the majority criterion to perform a classifica-
tion of the instance, in the Case 1 it is not possible.
For this reason, we need to introduce a discriminat-
ing element, which is an additional classification cZ+1
performed through a canonical training approach for
the algorithm, then by using for this purpose the
whole set E, obtaining as result the c1,c2, . . . ,cZ ,cZ+1
classifications, which lead us to the Case 2.

Case 1 : Z = 2n, n ∈ N
Case 2 : Z = 2n−1, n ∈ N (6)

In other words, by taking into consideration the sce-
nario related to the Case 1, assuming IR = FC = 2, it
leads toward m1,m2,m3,m4 classification models and
c1,c2,c3,c4 classifications of an instance î, then we
add the the classification c5 by training an additional
evaluation model on the whole set T . This makes it
possible to apply the X criterion The majority crite-
rion can be apply by following the classification cri-
terion ρ that is formalized in Equation 7, where c1 and
c2 are, respectively, the elements reliable and unreli-
able of the set C.

ρ(ê) =



c1, i f
Z
∑

i=1
φ(ci,c1)>

Z
∑

i=1
φ(ci,c2)

c2, i f
Z
∑

i=1
φ(ci,c1)<

Z
∑

i=1
φ(ci,c2)

c1, i f
Z
∑

i=1
φ(ci,c1) =

Z
∑

i=1
φ(ci,c2)∧ cZ+1 = c1

c2, i f
Z
∑

i=1
φ(ci,c1) =

Z
∑

i=1
φ(ci,c2)∧ cZ+1 = c2

with

φ(a,b) =
{

0, i f a 6= b
1, i f a = b

(7)

Classification Algorithm: The Algorithm 1 exploits
the proposed RTDS Strategy in order to classify the
new instances in the set Î: it takes as input the clas-
sification algorithm α, the training set T , the set of
unclassified instances Î, and the values (IR) and (FC)
for the division of the training set into regions, return-
ing as output the classification of all the instances in
the set Ê.

Algorithm 1: RTDS strategy classifier algorithm.

Input: α=Classification algorithm, T =Training set, Î=Unevaluated in-
stances, IR=Instances rows, FC=Feature columns

Output: κ=Classification of the Î instances
1: procedure CLASSIFIER(α, T , Î, IR, FC)
2: if Z is even then . Verifies if the number of regions is even
3: m′′← getTraining(α,T ) . Trains model using the whole set T
4: end if
5: R← getRegions(T, IR,FC) . Divides training set into regions
6: for each r ∈ R do . Trains an evaluation model for each region
7: m← getTraining(α,r) . Trains evaluation model
8: M.add(m) . Stores evaluation model
9: end for
10: for each î ∈ Î do . Processes instances in Î
11: R′′← getRegions(ê, IR,FC) . Divides instance into regions
12: for each m ∈M do . Gets all instances classifications
13: c← getInstanceClass(m,R′′) . Classifies instance

according to regions
14: C.add(c) . Stores classification
15: end for
16: if Z is even then . Verifies if the number of regions is even
17: c′′← getInstanceClass(m′′, ê) . Classifies instance

according to the whole set T
18: C.add(c′′) . Adds classification to the set C
19: end if
20: κ.add(getFinalClassi f ication(î,C)) . Gets and store final

instance classification
21: end for
22: return κ . Returns classification of Î instances
23: end procedure

4 EXPERIMENTS

All the code related to this work was developed
in the Python language with the scikit-learn (http:
//scikit-learn.org) library. We set the seed of the
pseudo-random number generator to 1 to grant the
experiments reproducibility. We also performed
the independent-samples two-tailed Student’s t-test,
which showed no statistical difference between the re-
sults (p > 0.05).

The validation process was performed by us-
ing three real-world datasets widely used in the
literature and publicly available(https://archive.ics.
uci.edu/ml/machine-learning-databases/statlog/): the
Australian Credit Approval (ACD), the Default of
Credit Card Clients (DCD), and the German Credit
(GCD) datasets, whose characteristics are summa-
rized in Table 1.

Table 1: Datasets Characteristics.

Dataset Total Reliable Unreliable Feature Unreliable
name instances instances instances number (%)

ACD 690 307 383 15 55.50
DCD 30,000 23,364 6,636 24 22.12
GCD 1,000 700 300 24 30.00
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The first two metrics used to evaluate the perfor-
mance of the proposed RTDS strategy are the Sen-
sitivity and the Specificity. These two metrics (for-
malized in Equation 8) assess, respectively, the true
positive rate and the true negative rate, evaluating the
capability of a credit scoring approach to classify the
reliable and unreliable instances correctly.

Sensitivity(Î) = T P
(T P+FN) , Speci f icity(Î) = T N

(T N+FP) (8)

In addition, we used the AUC since it allows us
to evaluate the performance regardless of the level of
data balancing. Considering the reliable (I+) and un-
reliable (I−) subsets of instances in I, it is formalized
in the Equation 9, where α denotes all possible com-
parisons between the scores of each instance i, and
the result in the range [0,1] (where 1 indicates the best
performance) is the average of them.

α(i+, i−) =


1, i f i+ > i−

0.5, i f i+ = i−

0, i f i+ < i−

AUC = 1
I+·I−

|I+|
∑
1

|I−|
∑
1

α(i+, i−)

(9)

The experiments were performed by dividing each
dataset into two parts: in-sample and out-of-sample
parts, respectively 50% and 50%. The in-sample part
is used to detect the best credit scoring algorithm to
use as a competitor and in the ensemble approach re-
lated to the proposed RTDS strategy, in addition to the
optimal values of IR and FC, and the out-of-sample
part is instead used in order to perform the validation
process. It should be added that a canonical k-fold
cross-validation criterion with k = 10 is still used in
all the experiments. In addition to the k-fold cross-
validation criterion, this dataset division, largely used
in the literature with regard to some crucial data do-
mains (e.g., financial market forecasting), allows us to
avoid any over-fitting (Hawkins, 2004) problem, con-
sidering that it operates a real separation between the
data used to define and tune the evaluation model and
the ones used for the performance evaluation. In or-
der to avoid that after the oversampling process (per-
formed by us as preprocessing step on all the datasets)
the two classes of instances are contiguous, creating
issues during the k-fold cross-validation and the divi-
sion into the region operations (i.e. due to the absence
of one of the two data classes in a data fold/region),
the oversampled datasets were also shuffled. The al-
gorithms used in the experiments are those reported
in Table 2 together with their configuration.
Results and Discussion: As a first step we evalu-
ate the state-of-the-art algorithms in the context of a
canonical approach, i.e., in order to train the related

Table 2: Algorithms Configuration.

Algorithm Parameter Value

AdaBoost n estimators 50
(ABA) learning rate 0.1

algorithm SAMME.R

Decision Tree min samples split 2
(DTA) max depth none

min samples lea f 1

Gradient Boosting n estimators 100
(GBA) learning rate 0.1

max depth 3

Multilayer Perceptron al pha 0.0001
(MPA) max iter 200

solver adam

Random Forests n estimators 10
(RFA) max depth none

min samples split 2

evaluation models we use the whole in-sample subset
of data, applying the k-fold cross-validation criterion.
The results are shown in Table 3, where the Average
column reports the mean value of the three used met-
rics and where the best performance for each metric is
highlighted in bold, indicating as the most performing
algorithm to use RFA (i.e., Random Forests).

Table 3: Algorithms Canonical Performance.
Algorithm Dataset Sensitivity Specificity AUC Average

ABA ACD 0.8278 0.8372 0.8322 0.8324
DTA ACD 0.7994 0.7763 0.7850 0.7869
GBA ACD 0.8577 0.8454 0.8487 0.8506
MPA ACD 0.7986 0.7937 0.7824 0.7916
RFA ACD 0.8811 0.8675 0.8716 0.8734

ABA DCD 0.7597 0.7398 0.7492 0.7496
DTA DCD 0.7243 0.7398 0.7319 0.7320
GBA DCD 0.7999 0.7654 0.7813 0.7822
MPA DCD 0.5972 0.6649 0.5771 0.6131
RFA DCD 0.8377 0.8088 0.8224 0.8230

ABA GCD 0.7476 0.7547 0.7512 0.7512
DTA GCD 0.6580 0.6865 0.6731 0.6725
GBA GCD 0.7846 0.7745 0.7796 0.7796
MPA GCD 0.7918 0.7566 0.7718 0.7734
RFA GCD 0.7987 0.7841 0.7940 0.7923

As a second step we identify the optimal number
of regions (i.e., IR and FC values) to partition the
training set. Also in this case we use the whole in-
sample subset of data and the k-fold cross-validation
criterion. In this context we tested all the IR and FC
values in the range {2,3, . . . ,6} (i.e., the most signifi-
cant range of values, and the pair of values IR=1 and
FC=1 is not considered, as it refers to a canonical
configuration without regions). We perform the eval-
uation using the average value of all the used metrics
on the y-axis, since this offers a global vision of the
strategy performance, considering that it takes into ac-
count both the capability to detect the reliable (Sensi-
tivity) and unreliable (Specificity) cases, and the ca-
pability to discriminate them effectively (AUC). The
results indicate (IR=1, FC=2) as optimal values in the
context of all the datasets with the previously selected
RFA algorithm.

As a last step we compare the canonical approach
(denoted as BASE) based on the whole training set to
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the proposed RTDS strategy configured according to
the optimal number of regions defined in the previous
step. The comparison process was performed in the
context of the out-of-sample subset of data, applying
the k-fold cross-validation criterion, and the results
for each metric and in terms of the average of all met-
rics are reported, respectively, in Table 4 and Figure 1.

Table 4: Performance Comparison.
Approach Algorithm Dataset Sensitivity Specificity AUC

BASE RFA ACD 1.0000 0.8000 0.9130
BASE RFA DCD 0.8507 0.8117 0.8302
BASE RFA GCD 0.7429 0.8286 0.7878

RTDS RFA ACD 0.9376 0.9224 0.9266
RTDS RFA DCD 0.9111 0.8911 0.9008
RTDS RFA GCD 0.9259 0.9085 0.9166

Based on the experimental results, we can make
the following considerations:
- the experiments aimed to detect the optimal IR and

FC values for each dataset show regions bounded
only along with the features since these optimal pa-
rameters (i.e., IR=1 and FC=2 for all the datasets)
do not split in terms of instances, and it depends
on the nature of the training data, since in these
datasets each row refers to a different user, differ-
ently from other domains where there is a relation
between the dataset rows (time-series);

- additional experiments we conducted showed two
aspects: the average value we used for the tuning of
the IR and FC parameters leads to the same results
of the AUC metric, proving the effectiveness of this
combined metric as a criterion of optimization; it
is possible an optimization based on a single met-
ric, which leads toward different IR values (i.e., by
Sensitivity in the ACD, DCD, and GCD datasets we
get, respectively, 1, 2, and 6, and by Specificity in
the ACD, DCD, and GCD datasets we get, respec-
tively, 5, 3, and 3), but only in one case the IR value
is different from 1 (i.e., 2 by Sensitivity in the ACD
dataset), supporting the initial hypothesis we made;

- the comparison of the canonical approach of train-
ing to the proposed RTDS strategy, performed in
the out-of-sample part of the datasets, shows that
it outperforms the canonical approach, except for
the Sensitivity in the context of the ACD dataset,
but it is directly related to the increase of unreliable
instances erroneously classified as reliable, as evi-
denced by the Specificity and AUC values;

- in more detail, in spite of a lower performance re-
garding Sensitivity in the ACD dataset (−6.24%)
we get better performance in terms of Specificity
(+15.30%) and AUC (+1.49%), analogously to
the DCD dataset, where in terms of Sensitivity,
Specificity and AUC we get, respectively, +7.10%,
+9.78%, and +8.50%, and to the GCD dataset,
where we get in terms of Sensitivity, Specificity

and AUC, respectively, +24.63%, +9.64%, and
+16.35%;

- the best performance of the proposed RTDS strat-
egy is further highlighted by the average perfor-
mance reported in Figure 1, where it outperforms
the canonical approach in all the datasets;

- in the light of the above considerations, strength-
ened by the fact that the adoption of the in-
sample/out-of-sample and k-fold cross-validation
criteria ensure experimental results not biased by
over-fitting (since they grant that the algorithm se-
lection and the RTDS parameter tuning operations
do not affect the results), the experiment demon-
strated how the proposed RTDS strategy can im-
prove the performance of a credit scoring system.
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Figure 1: Average Performance.

5 CONCLUSIONS AND FUTURE
DIRECTIONS

The Region-based Training Data Segmentation strat-
egy proposed in this work relies on the idea that it is
possible to improve the performance of a credit scor-
ing system dividing the training set of a classification
model into several regions, along with instances and
features, using each of them to define an independent
model, and obtaining the instance classification based
on all classification models, according to an ensemble
criterion regulated by a majority voting rule. The ex-
perimental results were performed on three real-world
datasets by following an in-sample/out-of-sample cri-
terion aimed at creating an effective separation be-
tween the data used for the operations of choosing the
classification algorithm and those related to the tuning
of the parameters of the proposed strategy, together
with the k-fold cross-validation criterion, demonstrate
the advantages of the proposed strategy. This is be-
cause its adoption leads toward an improvement of the
credit scoring system in the context of all the datasets.

As future work, we would like to experiment with
this strategy in different data domains, such as, for in-
stance, those related to the Intrusion Detection (Saia
et al., 2019) and Fraud Detection (Saia and Carta,
2017a) areas, in order to evaluate its effectiveness on
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different nature of data, such as the time-series.
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