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3Université de Grenoble Alpes, CEA, LETI MINATEC Campus, F-38054 Grenoble, France
4DGA Maı̂trise de l’Information, Bruz, France

Keywords: Blind Side Channel Analysis, Hamming Weight, Elephant, LFSR, NIST.

Abstract: Elephant is a finalist to the NIST lightweight cryptography competition. In this paper, the first theoretical blind
side channel attack against the authenticated encryption algorithm Elephant is presented. More precisely,
we are targetting the LFSR-based counter used internally. LFSRs are classic functions used in symmetric
cryptography. In the case of Elephant, retrieving the initial state of the LFSR is equivalent to retrieving the
encryption key. The paper ends by the study of different ways to tweak the design of Elephant to mitigate our
attack.

1 INTRODUCTION

Internet of things (IoT) devices become more and
more widespread within our day-to-day life. From
military grade to general purpose hardware, the need
for strong security raises. The cryptosystems imple-
mented on those devices must ensure both security
and low power consumption overhead. In this con-
text, the National Institute of Standards and Technol-
ogy (NIST) started the competition for lightweight
cryptography candidates for authenticated encryp-
tion (NIST, 2018). An authenticated encryption al-
gorithm should ensure confidentiality and integrity of
the communications.

The security of authenticated encryption schemes
can be supported by several strategies. Various ap-
proaches have been considered by the lightweight
cryptography competition candidates:

• cryptographic permutation with sponge or du-
plex construction (Dobraunig et al., 2014; Beierle
et al., 2019; Daemen et al., 2020),

• block cipher combined with a mode (e.g. AES
combined with Galois/Counter Mode) (Iwata
et al., 2020; Beyne et al., 2021),

• stream cipher paradigms (Hell et al., 2021).
When discussing about the security of a crypto-

graphic algorithm, numerous tools allow the cryp-
tographers to prove the security of a cipher. Un-
fortunately those tools do not consider the interac-
tion of the computing unit with its physical environ-

ment. Physical attacks are a real threat, even for cryp-
tographic algorithms proved secure mathematically.
Physical attacks are divided in two families: Side-
Channel Analysis (SCA) and the fault injection at-
tacks.

Motivations

Many attacks exist on the different traditional cryp-
tographic algorithms, for example on AES (Brier
et al., 2004; Giraud, 2004). Lightweight cryptogra-
phy, much younger and used in embedded devices,
has been far less studied. For example, attacks on
stream ciphers (Rechberger and Oswald, 2004) or
sponge functions (Samwel and Daemen, 2017) are
less common. That is why we chose to study SCA
against new authenticated encryptions. The chosen
algorithm is the cryptosystem Elephant (Beyne et al.,
2021). More precisely, in this paper, the focus is
about using Linear Feedback Shift Registers (LFSR),
in a block cipher combined with a mode construction.
Some attacks exist yet as in (Rechberger and Oswald,
2004; Joux and Delaunay, 2006; Burman et al., 2007;
Chakraborty et al., 2014; Kazmi et al., 2017; Jurecek
et al., 2019), but the main difference is in model of
the attacker. To the best our knowledge, there is no
blind side channel attack on LFSR in the context of
authenticated encryption. So in this paper, a blind side
channel attack targeting the LFSR of the Elephant al-
gorithm, is presented.
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Contribution

In this paper, we present the first theoretical blind
side channel attack targeting the LFSR of the Ele-
phant algorithm. We exploit the usage of intermediate
variables that are statistically dependent to the secret
(here the secret LFSR initial state) and show that this
structure could eventually threaten the security of a
cryptosystem’s regarding side-channel analysis.

Also the study of the influence of the choice of the
LFSR is presented.

Organisation

The paper is organized as follows. In section 2 the
context about blind side channel attack and the Ele-
phant are introduced. The theoretical attack is ex-
plained in section 3. Details of implementation attack
are described in section 4. The section 5 presents ex-
perimental results and discussion about LFSR design.
Finally, a conclusion is drawn in 6.

2 CONTEXT

In this section, first Elephant description is presented,
then the context of blind SCA is introduced.

2.1 Elephant

An authenticated encryption algorithm should ensure
confidentiality and integrity. It takes as input dif-
ferent parameters: a plaintext, data associated to the
plaintext, a secret key, and an initialisation vector also
called a nonce. The nonce is public but must be dif-
ferent for each new plaintext. The algorithm ensures
confidentiality of the plaintext and integrity of both
the plaintext and the associated data.

Elephant (Beyne et al., 2020; Beyne et al., 2021)
is a nonce-based authenticated encryption with asso-
ciated data (AEAD) finalists to the NIST lightweight
cryptography competition. It is an Encrypt-then-
MAC construction that combines CTR-mode encryp-
tion with a variant of the protected counter sum (Bern-
stein, 1999; Luykx et al., 2016).

It uses a cryptographic permutation masked with
LFSRs in an Even-Mansour-like fashion (Granger
et al., 2016) in place of a blockcipher.

Let P be an n-bit cryptographic permutation, and
ϕ an n-bit LFSR. Let the function mask : {0,1}128×
N×{0,1,2}→ {0,1}n be defined as follows:

maski,b
K = (ϕ⊕ id)b ◦ϕ

i ◦P(K||0n−128) (4)
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Figure 1: Elephant associated data authentication (top),
plaintext encryption (middle), and ciphertext authentication
(bottom).

Let Split(X) be the function that splits the input X
into n-bit blocks, where the last block is zero-padded.
Let Trunct(X) be the t left-most bits of X .

Encryption enc under Elephant gets as input a
128-bit key K, a 96-bit nonce N, associated data
A ∈ {0,1}∗, and a plaintext M ∈ {0,1}∗. It outputs
a ciphertext C as large as M, and a t-bit tag T . The
description of enc is given in Algorithm 1 and is de-
picted on Figure 1.

Decryption dec gets as input a 128-bit key K, a
96-bit nonce N, associated data A ∈ {0,1}∗, a cipher-
text C ∈ {0,1}∗, and t-bit tag T . It outputs a plaintext
M as large as C if the tag T is correct, or the symbol
⊥ otherwise. The description of dec easily follows
from that of enc.

Elephant comes in three flavours which differ on
the n-bit cryptographic permutation P and the LFSR
ϕ used, as well as the tag size t.
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x0 x1 x2 x3 x4 . . . x12 x13 x14 . . . x18 x19

≪ 3 � 7 � 7

Figure 2: 160-bit LFSR ϕDumbo.

x0 x1 x2 x3 x4 . . . x18 x19 x20 x21

≪ 1 � 7 � 7

Figure 3: 176-bit LFSR ϕJumbo.

x0 x1 x2 x3 . . . x12 x13 x14 . . . x23 x24

≪ 1 ≪ 1 � 7

Figure 4: 200-bit LFSR ϕDelirium.

ϕDumbo : (x0, · · · ,x19) 7→ (x1, · · · ,x19,x0 ≪ 3⊕ x3� 7⊕ x13� 7) (1)
ϕJumbo : (x0, · · · ,x21) 7→ (x1, · · · ,x21,x0 ≪ 1⊕ x3� 7⊕ x19� 7) (2)

ϕDelirium : (x0, · · · ,x24) 7→ (x1, · · · ,x24,x0 ≪ 1⊕ x2 ≪ 1⊕ x13� 7) (3)

Algorithm 1: Elephant encryption algorithm enc.

Input: (K,N,A,M) ∈ {0,1}128 × {0,1}96 ×
{0,1}∗×{0,1}∗

Output: (C,T ) ∈ {0,1}|M|×{0,1}t

1: M1, · · · ,M`M ← Split(M)
2: for i← 1 to `M do
3: Ci ← Mi ⊕ P(N||0n−96 ⊕ maski−1,1

K ) ⊕
maski−1,1

K
4: end for
5: C← Trunc|M|(C1|| · · · ||C`M )
6: T ← 0n

7: A1, · · · ,A`A ← Split(N||A||1)
8: C1, · · · ,C`C ← Split(C||1)
9: T ← A1

10: for i← 2 to `A do
11: T ← T ⊕P(Ai⊕maski−1,0

K )⊕maski−1,0
K

12: end for
13: for i← 1 to `C do
14: T ← T ⊕P(Ci⊕maski−1,2

K )⊕maski−1,2
K

15: end for
16: T ← P(T ⊕mask0,0

K )⊕mask0,0
K

17: return (C,Trunct(T ))

Dumbo uses the 160-bit permutation Spongent-
π[160] (Bogdanov et al., 2011), the LFSR ϕDumbo

given by equation 1 and illustrated on Figure 2, and
has tag size t = 64 bits.

Jumbo uses the 176-bit permutation Spongent-
π[176] (Bogdanov et al., 2011), the LFSR ϕJumbo

given by equation 2 and illustrated on Figure 3, and
has tag size t = 64 bits.

Delirium uses the 200-bit permutation Keccak-
f [200] (Bertoni et al., 2011; NIST, 2015), the LFSR
ϕDelirium given by equation 3 and illustrated on Fig-
ure 4, and has tag size t = 128 bits.

The three n-bit LFSRs used for the variants of Ele-
phant are the GF(2)-linear maps given at the byte-
level by the equations (1), (2) and (3).

2.2 Blind Side Channel Analysis

Even if an algorithm has been proven to be math-
ematically secure, its implementation can open the
gate to the so-called physical attacks. (SCA) are
a subcategory of physical attacks. They exploit
the fact that some physical values of a device
depend on intermediate values of the computation.
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This is the so-called leakage of information of the cir-
cuit. It could be used to retrieve secrets, as a secret
key.

Different kind of leakage can be exploited as
times (Handschuh and Heys, 1998), power consump-
tion or electromagnetic radiations (Standaert, 2010).
In this paper, the leakage is power consumption. At
each instant, the measurement of the intensity of the
electric current reflects the activity of the circuit. The
power consumption of a device is the sum of the
power consumptions of each of its logic gates. An
attacker therefore has the possibility of distinguishing
a transition from 0 to 1 from a transition from 1 to 0.

A SCA is often leaded with a divide-and-conquer
approach. Namely, the secret is divided into small
pieces that are analysed independently. Different kind
of analysis exist.

The Simple Power Analysis (SPA) (Mangard,
2002) are called simple because they determine di-
rectly, from an observation of the power consumption,
during a normal execution of an algorithm, informa-
tion on the calculation performed or the data manipu-
lated.

The family of Correlation Power Analysis
(CPA) (Kocher et al., 1999; Brier et al., 2004; Gier-
lichs et al., 2008) uses a mathematical model for the
leakage. A confrontation between measurement and
model is performed. More precisely, a statistic tool
called distinguisher gives score to the different tar-
gets.

Template attacks are statistical categoriza-
tions (Chari et al., 2002). No mathematical model is
required.

The blind side channel analysis family is new im-
provement in SCA (Joux and Delaunay, 2006; Bur-
man et al., 2007; Chakraborty et al., 2014; Linge
et al., 2014; Le Bouder et al., 2016; Clavier and Rey-
naud, 2017). The main idea is to not use the data as
plaintext or ciphertext. Only the leakage is used. The
power consumption leakage is very correlated to the
Hamming Weight (HW) of the data. So in blind SCA,
a strong assumption is make. The attacker can retrieve
HW with the leakage. More precisely, the power con-
sumption can be seen as a noisy HW. In this paper,
the considered adversary model is that: the HW of
bytes can be obtained by an attacker. This model is
made feasible by the fact that the attacker can average
power traces.

The first theoretical result on SCA on LFSRs
are (Joux and Delaunay, 2006) where the authors
leverage the dependence between the leakage and the
unique feedback bit of a Galois LFSR. The case of
Fibonacci LFSRs where a single new value is com-
puted at each iteration is studied in (Burman et al.,

2007). Finally, both kind of LFSRs are theoreti-
cally and practically compared in (Chakraborty et al.,
2014).

3 THEORETICAL ATTACK

3.1 Goal

LFSRs are used in different lightweight cryptography
candidates, and its initial state often depends on both
the key and the nonce. As the nonce needs to be
changed for each encryption, attacks on such schemes
are limited to the decryption algorithm. In the case of
Elephant, the LFSR only depends on the secret key,
Consequently, our attack can be applied in an encryp-
tion scenario.

The goal of the presented attack is to retrieve the
LFSR secret initial state. One has to remark three im-
portant points.

• Retrieving the initial state of the LFSR which is
equal to mask0,0

K is equivalent to retrieving the se-
cret key. Indeed, the initial state is just the result
of the known permutation P applied to the key.

• As the retroaction polynomial is publicly known,
it is possible to shift the LFSR backwards: an at-
tacker who knows 20 consecutive bytes of the se-
cret stream is able to recover the initial state.

• The smaller the LFSR is, the more the attack is
able to succeed. As a consequence, the Dumbo 2
instance is the most vulnerable instance: the focus
is on Dumbo in the following of this paper.

3.2 Leakage in the LFSR

In this attack, it is assumed that the Hamming Weight
of all bytes of the LFSR can be obtained by an at-
tacker.

Let x be a byte, so x can take 256 values in
[[0,255]]. With the HW of x, the attacker reduces the
list of possible values, as shown in Table 1.

Table 1: Number of possible values for an Hamming
weight.

HW (x) 0 1 2 3 4 5 6 7 8
#x 1 8 28 56 70 56 28 8 1

Since the LFSR generates a single new byte at
each iteration, let x0, · · · ,x19 be the content of the
Dumbo LFSR initialised with mask0,0

K , and extend the
notation for j≥ 20, by letting x j be the new byte gen-
erated at iteration j−20. In other words, the attacker
has the following relation (L1).
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L1 x j+20 = (x j ≪ 3)⊕ (x j+3� 7)⊕ (x j+13� 7).

The first idea is to use the knowledge of the
following Hamming weights: HW (x j+20),
HW (x j) = HW (x j ≪ 3), HW (x j+3) and
HW (x j+13).

Moreover, one has to remark that:

HW (x j) = HW (x j ≪ 3) . (5)

So with the two equations (L1) and (5) the attacker has:

HW (x j+20) =



HW (x j)

HW (x j)+1
HW (x j)−1
HW (x j)+2
HW (x j)−2

(6)

Looking more precisely at equation (L1), it can be
seen that the difference HW (x j+20)− HW (x j) de-
pends on only four bits. Letting x j[i] denote the
i-th least significant bit of byte x j, these four bits
are {x j+3[0];x j+13[7];x j[4];x j[5]}. Table 2 gives the
value of observed difference HW (x j+20)−HW (x j)
depending on the values of these four bits. In the
worst case, there are only 6 possibilities left, out of
16.

Table 2: Values of HW
(
x j+20

)
−HW

(
x j
)

according to
{x j+3[0];x j+13[7];x j[4];x j[5]}.

(x j+3[0],x j+13[7]) =
HW

(
x j+20

)
−HW (x j) (0,0) (0,1) (1,0) (1,1)

(x j[4],x j[5]) =

(0,0) 0 +1 +1 +2
(1,0) 0 +1 −1 0
(0,1) 0 −1 +1 0
(1,1) 0 −1 −1 −2

3.3 Link between the Different Masks

The value maski,1
K can be expressed in terms of

mask∗,0K as in (7).

maski,1
K = (ϕ⊕ id)

(
maski,0

K

)
= ϕ

(
maski,0

K

)
⊕maski,0

K

=maski+1,0
K ⊕maski,0

K .

(7)

Likewise, for maski,2
K , equation (8) holds.

maski,2
K = (ϕ⊕ id)2

(
maski,0

K

)
= (ϕ2⊕ id)

(
maski,0

K

)
= ϕ

2
(
maski,0

K

)
⊕maski,0

K

=maski+2,0
K ⊕maski,0

K

(8)

As in the case of maski,0
K , let y j denote either the

byte j of mask0,1
K when 0 ≤ j ≤ 19, or the new byte

obtained after j−20 iterations of the LFSR initialised
with mask0,1

K . Likewise, let z j denote either the byte
j of mask0,2

K when 0 ≤ j ≤ 19, or the new byte ob-
tained after j− 20 iterations of the LFSR initialised
with mask0,2

K .
Equation (7) then translates to equation (9).

y j = x j⊕ x j+1 (9)

Likewise, the equation 8 translates to (10).

z j = x j⊕ x j+2. (10)

The evolutions of the LFSR are analogous to (L1):

y j+20 = (y j ≪ 3)⊕ (y j+3� 7)⊕ (y j+13� 7).
(11)

z j+20 = (z j ≪ 3)⊕ (z j+3� 7)⊕ (z j+13� 7).
(12)

The attacker can thus exploit two attack vectors:
on the one hand, equations (L1), (11), and (12) coming
from iterating the LFSR, and on the other hand, equa-
tions (9) and (10) coming from the different masks
used for domain separation.

4 ATTACK STRATEGY

The whole search space corresponding to the initial
state of the LFSR is represented as a rooted tree. The
nodes at depth j correspond to the all possible values
for the bytes x0 to x j of the LFSR. The tested candi-
dates are denoted by (x′0, · · · ,x′19). The nodes in the
graph of the search space are labelled as follows:

• the nodes at depth j correspond to the all possible
values of (x′0, · · · ,x′j);

• the children of node (x′0, · · · ,x′j), are the nodes la-
belled: (x′0, · · · ,x′j,x′j+1) for all values of x′j+1.

In practice, to reduce the number of nodes, only the
nodes having the correct Hamming weights are con-
sidered. In other words, it suffices to consider nodes
with HW (x′j) = HW (x j). An example of such tree is
given on Figure 5.

A backtracking algorithm is used. The tree is tra-
versed in a depth-first manner. For each step, the at-
tacker tests whether the current candidate (x′0, · · · ,x′j)
satisfies the different conditions given by the observed
Hamming weights. This test is given by algorithm 2.

If the test succeeds, the algorithm goes down to
the next layer to test the values of the byte x′j+1. If it
reaches the bottom of the tree, then a good candidate
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HW (x2) = 4HW (x1) = 5HW (x0) = 2

Figure 5: Example of the tree representation of the LFSR
initial state for the Hamming weights given at the bottom.
Only the first three layers of the subtree rooted at x′0 = 03
are shown.

has been found, and can be saved. The algorithm then
iterates upon the next untested node.

If, at some point, the Hamming weights condi-
tions do not hold for the current (partial) candidate,
then no node in the sub-tree rooted at that node can
lead to a good candidate. Thus, it can be pruned

Algorithm 2: isvalid(X ′0, · · · ,x′j).

Input: Byte-wise partial candidate (x′0, · · · ,x′j) of
length 1≤ j+1≤ 20
Assumes isvalid(x′0, · · · ,x′j−1) is true.

Output: true if candidate (x′0, · · · ,x′j) is compatible
with the observations, false otherwise

# Hamming weights of the xors
1: if HW (x′j) 6= HW (x j) then
2: return false
3: end if
4: if HW (x′j⊕ x′j−1) 6= HW (y j−1) then
5: return false
6: end if
7: if HW (x′j⊕ x′j−2) 6= HW (z j−2) then
8: return false
9: end if

# Hamming weights of the feedbacks
10: if |HW (x′j ≪ 3)−HW (x j+20)|> 2 then
11: return false
12: end if
13: if |HW (x′j−3 ≪ 3⊕ x′j � 7)−HW (x j+17)| > 1

then
14: return false
15: end if
16: if HW (x′j−13 ≪ 3 ⊕ x′j−10 � 7 ⊕ x′j � 7) 6=

HW (x j+7) then
17: return false
18: end if

19: return true

from the whole tree, saving the cost of searching it.
Finally, the algorithm ends when the whole tree has
been searched. A pseudocode of the attack is given
by algorithm 3.

To improve the efficiency of algorithm 3, the at-
tacker can overlook some of the first iterations of the
LFSR, and start the attack at a time they deem more
satisfying. Indeed, the complexity of the attack de-
pend on the number of nodes visited in the tree. Look-
ing only at the first four layers, that number, denoted
by N4, can be expressed using binomial coefficients as
a function of (HW (x0),HW (x1),HW (x2),HW (x3)):

N4 =

(
8

HW (x0)

)(
8

HW (x1)

)(
8

HW (x2)

)(
8

HW (x3)

)
.

The idea is then to look at the quadru-
plet at the next iteration, namely
(HW (x1),HW (x2),HW (x3),HW (x4)), and so
on, until the number of nodes in the first four layers
of the tree is sufficiently small. One has to remark
that the number 4 is arbitrary here, and the attacker
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Algorithm 3: Attack.
Input: Observed Hamming weights

HW (x0), · · · ,HW (x19), HW (y0), · · · ,HW (y18),
and HW (z0), · · · ,HW (z17). For the sake of
clarity, they are seen as global variables.

Output: S set of keys compatible with the observed
Hamming weights

1: (x′0, · · · ,x′19)← (0, · · · ,0)
2: `← 0
3: S←{}
4: while true do
5: if j < 19 and isvalid(x′0, · · · ,x′j) then
6: j← j+1
7: x′j← 0
8: else
9: if j = 19 and isvalid(x′0, · · · ,x′j) then

10: S← S∪{(x′0, · · · ,x′j)}
11: end if
12: while j ≥ 0 and x′j = FF do
13: j← j−1
14: end while
15: if j ≥ 0 then
16: x′j← x′j +1
17: else
18: break
19: end if
20: end if
21: end while
22: return S

can choose whatever value they might prefer.
The question is now, what bound on N4 does the

attacker choose? We have chosen to fix a threshold
at N4 ≤ 1,756,160. With this, about 25% of the all
quadruplets are kept. Luckily, the probability to find
such a quadruplet in the LFSR rapidly increases to
one when iterating, because of the good statistical
properties of LFSRs.

5 RESULTS AND DISCUSSION

5.1 Elephant Attack

We have simulated the attack on Nruns = 560 ran-
domly generated Dumbo keys. For each, the num-
ber Nnodes of nodes effectively traversed in the tree
has been counted. This number roughly corresponds
to the time complexity of the attack. Among those
nodes, we have specifically counted the number Nkeys
of nodes on the last layer; i.e. nodes that correspond
to plausible guesses that remain to be brute forced to
finish the attack.

Unfortunately, only just above half (53.57%) of
the runs have ended after two days, and about a quar-
ter has been still running after a week. On average,
for the runs that finished after two days, the number
of nodes traversed is Nnodes = 241.82, and the number
of remaining keys is Nkeys = 236.59.

5.2 Impact of the Generation of Masks

The natural question is about what could be done to
mitigate this attack. Outside of using generic coun-
termeasures, like e.g. boolean masking, there seem
to be two possibilities for improvement. Indeed, the
attacker gains information from two sources:

• from equations (7) and (8) used to derive the
masks for domain separation;

• from the LFSR state update equation (L1).
Thus either the mask derivation, or the LFSR can be
changed, or both. This section studies the former
case.

We ran two experiments, similar to that in sec-
tion 5.1 except that the attacker does not gain infor-
mation on every Hamming weights. In the first exper-
iment, they only know the values of the HW (x j), and
the HW (y j) for sufficiently j. In other words, com-
pared to the experiment in section 5.1, they lost the
knowledge of the HW (z j). Likewise, in the second
experiment, they only know the values of the HW (x j)
for sufficiently j. Unfortunately, in both cases, none
of the Nruns = 120 runs done has terminated after a
week.

From these experiments, it seems that the knowl-
edge of the HW (x j), HW (y j), and HW (z j) con-
tributed heavily on the success of the attack. It would
then seem a good idea to tweak the cryptographic
mode of operation by finding another way of gener-
ating masks for domain separation.

5.3 Studies on Different LFSRs

This section is dedicated to the study of the influence
of the choice of the LFSR. To keep the spirit of the
original Elephant, only Fibonacci-like LFSRs, at the
byte level, are considered. More specifically, LFSRs
considered are: LFSRs where a single new byte is
computed from a combination of three bytes using
byte-wise shifts and rotations. As usual, the associ-
ated feedback polynomial must be primitive to ensure
only maximum-length sequences can be generated.

Among all possible candidates, different be-
haviours can be triggered.

In this paper, the type of an LFSR is defined as the
sequence of number of bits unknown to the attaquer at
each depth in the tree where a new feedback occurs.
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Looking at equation (L1), it can be seen that:∣∣HW (x j+20)−HW (x j ≪ 3)
∣∣≤ 2

since there are only 2 bits that are modified by:

x j+3� 7⊕ x j+13� 7.

Thus, if other feedback function are used, with more
bits involved, it can be expected to have an impact on
the attack.

Later in the attack, when at depth 3 in the tree, the
same idea can be applied to check whether:∣∣HW (x j+17)−HW (x j−3 ≪ 3⊕ x j� 7)

∣∣≤ 1

since now only the single bit x j+10 � 7 is unknown.
In conclusion, the type of the Dumbo LFSR is [2,1].

LFSR with different types can be a first criterion
when testing our attack.

A second criterion can be: how far apart the feed-
back bytes are. Indeed, the tighter they are, the faster
the attacker can use equation (L1) at its full potential.
In the case of Dumbo, the feedback bytes are at in-
dices 0, 3, and 13. We call 13 the depth, this is simply
the highest index of the feedbacks.

We chose LFSR based on these two criteria. Types
is defined from [2,1] to [8,8]. For types [2,1], and
[5,∗], we looked at all the possible LFSRs in order to
study the influence of their depth.

The state update function of the different LFSR
tested are given by equations (L2) to (L21). Their type
and depth are given at the second, respectively third,
column of Table 3.

L2 x j+20← x j ≪ 3⊕ x j+1� 7⊕ x j+11� 7

L3 x j+20← x j ≪ 3⊕ x j+14� 3⊕ x j+17� 7

L4 x j+20← x j ≪ 1⊕ x j+3� 3⊕ x j+13� 7

L5 x j+20← x j ≪ 1⊕ x j+9� 3⊕ x j+15� 7

L6 x j+20← x j ≪ 3⊕ x j+9� 4⊕ x j+19� 7

L7 x j+20← x j ≪ 3⊕ x j+1� 5⊕ x j+3� 6

L8 x j+20← x j ≪ 1⊕ x j+4� 3⊕ x j+19� 5

L9 x j+20← x j ≪ 1⊕ x j+7� 3⊕ x j+18� 5

L10 x j+20← x j ≪ 1⊕ x j+3� 3⊕ x j+9� 5

L11 x j+20← x j ≪ 3⊕ x j+1� 7⊕ x j+17� 4

L12 x j+20← x j ≪ 3⊕ x j+5� 7⊕ x j+19� 3

L13 x j+20← x j ≪ 1⊕ x j+5� 7⊕ x j+16� 3

L14 x j+20← x j ≪ 1⊕ x j+1� 7⊕ x j+9� 3

L15 x j+20← x j ≪ 1⊕ x j+13� 5⊕ x j+19� 3

L16 x j+20← x j ≪ 3⊕ x j+14� 7⊕ x j+17� 3

L17 x j+20← x j ≪ 3⊕ x j+4� 1⊕ x j+5� 6

L18 x j+20← x j ≪ 1⊕ x j+3� 1⊕ x j+9� 1

L19 x j+20← x j ≪ 1⊕ x j+4� 1⊕ x j+5� 1
L20 x j+20← x j ≪ 3⊕ x j+1� 1⊕ x j+8 ≪ 7
L21 x j+20← x j ≪ 3⊕ x j+3� 5⊕ x j+4 ≪ 5

We ran the same experiment as in section 5.1 for
every considered LFSR with Ntests = 120. For each
LFSR, we noted the proportion of runs finished af-
ter two days of computations, the average number of
nodes effectively traversed in the tree, and average
number of remaining keys. Results are summarized
in Table 3.

Table 3: Type, depth, proportion of runs finished after two
days of computations, average number of nodes traversed,
and number of remaining keys for Dumbo (L1), and LF-
SRs (L2) to (L21).

LFSR type depth finished Nnodes Nkeys
(L1) [2,1] 13 53.57% 241.82 236.59

(L2) [2,1] 11 82.5% 241.23 236.39

(L3) [5,1] 17 0.83% 242.89 234.68

(L4) [5,1] 13 94.17% 239.68 233.68

(L5) [5,1] 15 28.33% 242.13 235.25

(L6) [5,1] 19 11.67% 242.38 236.77

(L7) [5,2] 3 100.0% 230.93 224.93

(L8) [5,3] 19 0.83% 243.99 237.59

(L9) [5,3] 18 0.0% − −
(L10) [5,3] 9 95.83% 240.32 234.0

(L11) [5,4] 17 0.83% 243.58 235.6

(L12) [5,5] 19 0.0% − −
(L13) [5,5] 16 0.0% − −
(L14) [5,5] 9 82.5% 241.43 234.95

(L15) [5,5] 19 0.0% − −
(L16) [5,5] 17 0.0% − −
(L17) [8,2] 5 100.0% 235.53 229.17

(L18) [8,7] 9 78.75% 241.56 234.79

(L19) [8,7] 5 100.0% 235.41 229.42

(L20) [8,8] 8 79.17% 241.59 235.78

(L21) [8,8] 4 100.0% 234.76 229.29

From these experiments, it seems that the depth
has a much more relevant impact than the type. Yet,
this seems to be quite tailored to our particular attack.
Changing the generation of the different masks is gen-
erally more impactful, since it can cut down in three
the amount of information given to the attacker.

6 CONCLUSION

In this paper, a theoretical blind side channel at-
tack targeting the LFSR of the Elephant algorithm
has been presented. Elephant is a good target.
First, Elephant is a finalist to the (NIST) competition
for lightweight cryptography candidates for authenti-
cated encryption. Moreover, Elephant is an interest-
ing target because the internal LFSR only depends on
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the secret key. In other words, in the use-case of Ele-
phant, retrieving the encryption key is equivalent to
retrieving the initial state of the LFSR.

Our attack is based on the fact that an attacker can
retrieve the Hamming weights of the different bytes
in the LFSR. The Elephant design, where there exist
relations between the different internal states of the
LFSR, is an added vulnerability to our attack. In half
the cases, the key is retrieved in less than two days.

Different tweaking options have been considered.
Going from the most impactful to the least, they are:
changing the mask derivation for domain separation;
modifying the LFSR, looking at the importance of
depth and type.

Future works may include the inclusion of noise in
the simulations, or even better performing the attack
on an actual implementation.

ACKNOWLEDGMENTS

This research is part of the chair CyberCNI.fr with
support of the FEDER development fund of the Brit-
tany region.

REFERENCES

Beierle, C., Biryukov, A., dos Santos, L. C., Großschädl,
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