
SEVIL: Secure and Efficient VerifIcation over Massive Proofs of
KnowLedge

Souha Masmoudi1,2 a, Maryline Laurent1,2 b and Nesrine Kaaniche1,2 c

1SAMOVAR, Telecom SudParis, Institut Polytechnique de Paris, Evry, France
2Member of the Chair Values and Policies of Personal Information, Institut Mines-Telecom, Paris, France

Keywords: Group Signatures, NIWI Proofs, Aggregated Verification, Batch Verification.

Abstract: This paper presents SEVIL, a group signature construction that offers an efficient, aggregated and batch ver-
ification over multiple signatures. The proposed group signature scheme is built upon Groth-Sahai Non-
Interactive Witness-Indistinguishable proofs, in an effort to reduce the computation complexity, closely as-
sociated with the number the number of signatures. SEVIL fulfills the main security and privacy properties,
proven through a detailed analysis. The implementation of SEVIL algorithms demonstrates the high efficiency
of the aggregated and batch verification with up to 50% of gain in comparison with naive verification of NIWI
proofs.

1 INTRODUCTION

The emergence of data-centric applications and ser-
vices have asserted various concerns related to the
massive data collection and analysis by different ac-
tors belonging to different levels of trust. Thus, the
need to continuously authenticate data origin and ver-
ify its integrity has significantly increased. To achieve
the aforesaid security requirements, digital signatures
are commonly considered as promoting cryptographic
primitives and main building blocks of authentication
protocols. However, in a multi-owner context, ad-
ditional requirements are needed, namely (i) ensur-
ing that various signers are trustful and (ii) protecting
their privacy.

For this purpose, group signatures are the best
primitive to fulfill the desired properties. In fact,
group signatures allow a group member to sign a mes-
sage on behalf of the group while remaining anony-
mous. Group signatures support privacy properties,
namely unlinkability. Indeed, they prevent both the
linkability between multiple signatures issued by the
same member and the identification of the signer of
a given signature. However, in order to ensure that a
signer is trustworthy, the signing key should be ver-
ified, which harms the signer’s privacy. Thus, to en-
sure the trade-off between trust and privacy, the group
signature scheme might rely on a proof of knowl-

a https://orcid.org/0000-0002-7194-8240
b https://orcid.org/0000-0002-7256-3721
c https://orcid.org/0000-0002-1045-6445

edge (PoK) scheme. A proof of knowledge enables a
prover (i.e., signer) to convince a verifier that he owns
a secret (i.e., a valid pair of keys) without disclosing
it, in an interactive session.

Giving consideration to the huge number of proofs
collected, in many applications, and to the process-
ing time needed to verify a single proof, there is a
crucial need to optimize the verification algorithm by
verifying multiple proofs at once. To this question,
batch verification has been introduced by Naccache
et al. (Naccache et al., 1994) enabling the verification
of multiple signatures generated by different signers.
Batch verification has been applied to some group sig-
nature schemes to efficiently verify the huge number
of transactions on Blockchain (Zhang et al., 2021) and
data transmitted in the Internet of Things (Alamer,
2020). However, to the best of our knowledge, no
batch verifier has been constructed over PoK-based
group signature schemes, i.e., signatures that endorse
the verification of the signer key.

In this paper, we present SEVIL, a novel group
signature that offers an efficient, aggregated and
batch verification over multiple Groth-Sahai Non-
Interactive Witness-Indistinguishable proofs (Groth
and Sahai, 2008). SEVIL supports a decentralized
data certification and a centralized multi-signer data
aggregated and batch verification. Indeed, SEVIL al-
lows a signer, belonging to a trusted group, to gen-
erate anonymous group signature (i.e., NIWI proof).
Relying on this proof, the signer is able to prove to
a verifier the integrity of the data without revealing
the signing keys. For efficiency reasons, the verifier

Masmoudi, S., Laurent, M. and Kaaniche, N.
SEVIL: Secure and Efficient VerifIcation over Massive Proofs of KnowLedge.
DOI: 10.5220/0011125800003283
In Proceedings of the 19th International Conference on Security and Cryptography (SECRYPT 2022), pages 13-24
ISBN: 978-989-758-590-6; ISSN: 2184-7711
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

13

is given the capacity to proceed to the verification of
multiple proofs at once. If the batch verification fails,
the verifier proceeds to a divide and conquer verifi-
cation. It splits the list of proofs into sub-lists and
performs verification to each sub-list recursively until
all invalid signatures are identified.

In a nutshell, SEVIL satisfies several properties of
interest. First, it ensures data integrity without reveal-
ing the data contents, thanks to the use of proofs of
knowledge. Second, SEVIL ensures a high level of
security as it allows the verifier to check the valid-
ity of signers’ keys. Third, the proposed system pre-
serves signers’ privacy. It ensures that a verifier is
not able to link two or several pieces of information
signed by the same signer. Fourth, SEVIL proposes
a concrete construction of its algorithms, while giv-
ing a detailed aggregated and batch verification over
Groth-Sahai NIWI proofs. Finally, a complete imple-
mented prototype of SEVIL, introducing two steps of
computation improvements (multithreading and pre-
processing), proves its efficiency as the aggregated
verification reaches a gain of up to 50% compared to
the individual verification.

The remainder of this paper is organized as fol-
lows. Section 2 presents the design system and goals
of this work including the involved entities and the
desired security, privacy and performance properties.
Section 3 gives an overview of the solution and a high
level presentation of its phases and algorithms. After
presenting the underlying cryptographic background
in Section 4, the proposed scheme is introduced in
Section 5. Security and performance discussions are
given in Section 6 and Section 7, respectively. Section
8 compares most closely-related works to SEVIL. Fi-
nally, Section 9 concludes the paper.

2 DESIGN SYSTEM AND GOALS

This section defines the involved entities and illustrate
the design goals that need to be supported by SEVIL.

2.1 Design System

As depicted in Figure 1, SEVIL involves four different
entities, defined as follows:

• The trusted authority (T A), is the central entity
which is responsible for initializing the whole sys-
tem.

• The signer (S) signs data on behalf of a group of
signers. The group of Ss is dynamically generated
and managed by a group manager (G).

• The group manager (G) sets-up the group of sign-
ers and certifies their keys.

• The verifier (V) checks the correctness of the re-
ceived data and their associated signatures of mul-
tiple signers in a single transaction.

2.2 Design Goals

The design of SEVIL is motivated by the fulfillment
of the following security and performance properties.

2.2.1 Security and Privacy Requirements

The proposed SEVIL system aims at ensuring the fol-
lowing security and privacy requirements:

• unforgeability: ensures that malicious entities
are not able to forge signatures over data.

• unlinkability: ensures that an attacker is not able
to link several signatures to the same signer.

2.2.2 Performance Requirements

SEVIL system should consider the following require-
ments for efficiency purposes:

• Computation Overhead: SEVIL should provide
low computation overhead, i.e. should have effi-
cient verification time even with high number of
messages.

• Communication Overhead: SEVIL should pro-
vide low communication overhead, i.e. should
maintain an acceptable communication cost be-
tween entities.

3 SEVIL Overview

SEVIL involves three main phases: SETUP, SIGNING
and VERIFYING presented hereafter.

The SETUP phase consists of initializing the
whole system. It relies on three algorithms, referred
to as Set params, Setup SGrG and Join SGrS/G .
During the SETUP phase, a trusted authority generates
the system public parameters published to all involved
entities, relying on Set params algorithm. The group
manager defines the group of signers. It generates the
group signature parameters using the Setup SGrG al-
gorithm and it interacts with each group member (i.e.,
signer) to derive the associated keys relying on the
Join SGrS/G algorithm.

The SIGNING phase occurs to sign a message m.
Indeed, a signer generates a group signature over the
message m, while executing the G SignS algorithm.
The resulting signature is locally stored.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

14

Figure 1: SEVIL Architecture.

The VERIFYING phase is run by the verifier to
check the correctness of the signed data provided by
multiple signers in a single transaction. Indeed, V
executes the Batch VerifyV algorithm to verify mul-
tiple group signatures issued by members of the same
group, in a single verification. Note that if the batch
verification fails, V should proceed progressively by
dividing the data list in sub-lists and then by verifying
the invalid sub-list message by message. To verify a
single message, V performs the Agg VerifyV

Hereafter, we detail the three phases of SEVIL
including the five algorithms that are represented in
a chronological sequence in Figure 2. Note that
Agg VerifyV algorithm is not represented in the se-
quence as it occurs only when the batch verification
fails.

For ease of presentation, we consider only two
signers in the sequence diagram. Recall that verifica-
tion can be performed on a large number of messages
generated by the same signer or by different signers.

3.1 SETUP Phase

The SETUP phase initializes the whole system, re-
lying on three main algorithms, referred to as:
Set params, Setup SGrG and Join SGrS/G defined as
follows.

• Set params(λ)→ pp – performed by the trusted
authority. Given the security parameter λ, this al-
gorithm generates pp i.e., the system public pa-
rameters that will be given as a default input for
all the following algorithms.

• Setup SGrG ()→ (skG ,vkG) – run by the group
manager in order to set up the group signature pa-
rameters. It returns the signers’ group verifica-

tion key vkG encompassing pkG the public key of
the group manager and ΣNIWI of a Non-Interactive
Witness-Indistinguishable (NIWI) proof (Groth
and Sahai, 2008) associated with the public key.
The Setup SGrG algorithm also outputs the secret
key skG of G .

• Join SGrS/G (skG) → (skS ,pkS ,σk) – executed
through an interactive session between the signer
and the group manager. It takes as input the secret
key skG of the group manager, and outputs the
pair of keys (skS ,pkS) of the group member (i.e.,
signer) S , and a signature σk over S ’s public key
pkS . Indeed, S is responsible for generating his
pair of keys, while G is in charge of the signature
σk generation aiming to certify S ’s keys.

3.2 SIGNING Phase

The SIGNING phase is performed by a signer. In this
phase, S relies on the G SignS algorithm to sign a
message m ∈G2:

• G SignS (vkG ,skS ,pkS ,σk,m) → (σm,Π) – per-
formed by the signer as a group member. This
algorithm takes as input the group public param-
eters vkG , the pair of keys (skS ,pkS) of S , the
signature σk over S ’s public key and the message
m. The G SignS returns a signature σm over the
message m and a NIWI proof Π over the two sig-
natures σk and σm. The proof Π is locally stored
with the message m.

Note that the NIWI proof represents the group signa-
ture generated by S as a group member.

SEVIL: Secure and Efficient VerifIcation over Massive Proofs of KnowLedge

15

Figure 2: Workflow of the SEVIL system.

3.3 VERIFYING Phase

The VERIFYING phase involves two main algorithms
referred to as Batch VerifyV and Agg VerifyV :

• Batch VerifyV (vkG ,{mi,Πi}N
i=1) → b – per-

formed by V . Given the public parameters vkG , a
list of N messages mi and N corresponding proofs
Πi sent by multiple signers (i.e., a signer can send
to V more than one message), the Batch VerifyV
algorithm returns a bit b ∈ {0,1} stating whether
the list of proofs is valid or not.

• Agg VerifyV (vkG ,m,Π)→ b – performed by V
when Batch VerifyV returns 0 over a list or a sub-
list of messages. Given the public parameters
vkG , a message m and the corresponding proof
Π, from an invalid sub-list, the Agg VerifyV algo-
rithm returns a bit b∈ {0,1} stating whether proof
is valid or not.

4 CRYPTOGRAPHIC
BACKGROUND

In this section, we first present the Non-Interactive
Witness-Indistinguishable (NIWI) proofs introduced
by Groth and Sahai (Groth and Sahai, 2008). Then,
we propose a group signature scheme built upon
NIWI proofs.

4.1 Non-Interactive
Witness-Indistinguishable Proofs

Here, we present the Groth-Sahai NIWI proof scheme
applied to pairing product equations when consider-
ing an asymmetric bilinear map.

The NIWI scheme, involves four PPT algorithms
(NIWI.Setup, NIWI.CRS, NIWI.Proof, NIWI.Verify):

• NIWI.Setup: This algorithm outputs a setup
(gk,sk) such that gk = (n,G1,G2,G3,g1,g2,e)
and sk= (p,q) where n = pq.

• NIWI.CRS: This algorithm generates a
common reference string CRS. It takes
(gk,sk) as inputs and produces CRS =
(G1,G2,G3,e, ι1, p1, ι2, p2, ι3,U,V), where
U= rg1, V= sg2 ; r,s ∈ Z∗n and

ι1: G1→G1 ι2: G2→G2 ι3: G3→G3
x 7→ x y 7→ y z 7→ z

p1: G1→G1 p2: G2→G2 p3: G3→G3
x 7→ λx y 7→ λy z 7→ zλ

• NIWI.Proof: This algorithm generates a NIWI
proof for satisfiability of a set of pairing product
equations of the form of

k

∏
i=1

e(Ai,Yi)
l

∏
i=1

e(Xi,Bi)
l

∏
i=1

k

∏
j=1

e(Xi,Yi)
γi j = t

SECRYPT 2022 - 19th International Conference on Security and Cryptography

16

also written as
(A⃗ · Y⃗)(X⃗ · B⃗)(X⃗ ·ΓY⃗) = t

It takes as input gk, CRS and a list of pairing
product equations {(A⃗i, B⃗i,Γi, ti)}N

i=1 and a sat-
isfying witness X⃗ ∈ Gk

1, Y⃗ ∈ Gl
2. To generate

a proof over a pairing product equation, the al-
gorithm, first, picks at random R ← Veck(Zn)
and S ← Vecl(Zn), commits to all variables as
C⃗ := X⃗ +R U and D⃗ := Y⃗ +SV, and computes

π = R ⊤ι2(B⃗)+R ⊤Γι2(Y⃗)+R ⊤ΓSV
θ = S⊤ι1(A⃗)+S⊤Γ

⊤
ι1(X⃗)

The algorithm outputs the proof (π,θ).
• NIWI.Verify: This algorithm checks if the proof

is valid. It takes gk, CRS, {(A⃗i, B⃗i,Γi, ti)}N
i=1 and

{(C⃗i,D⃗i,πi,θi)}N
i=1 as inputs and for each equa-

tion, checks the following equation:
e(ι1(A⃗i),D⃗i)e(C⃗i, ι2(B⃗i))e(C⃗i,ΓiD⃗i) = ι3(ti)e(U,πi)e(θi,V)

(1)
The algorithm outputs 1 if the equation holds, else it
outputs 0.

4.2 Group Signatures

We present an instantiation of a group signature
scheme that relies on a witness-indistinguishable
proof of knowledge system NIWI and structure-
preserving signatures.

A group signature scheme GSIG relies on the
four following algorithms (GSIG.Setup, GSIG.Join,
GSIG.Sign, GSIG.Verify):

• GSIG.Setup : represents the setup algorithm. It
generates the key pair (skg,pkg) of the group
manager and sets up a CRS ΣNIWI for the NIWI
proof. The group verification key is set as vkg =
(pkg,ΣNIWI), while the certification secret key skg
is privately stored by the group manager.

• GSIG.Join: represents the join algorithm. It is
composed of two steps. In the first one, the group
member generates his own key-pair (skp,pkp).
The public key pkp is sent to the group manager.
This latter generates a signature σp over the key
pkp that he sends to the group member.

• GSIG.Sign: represents the signing algorithm run
by a group member on a message m ∈ Zq. The
group member generates, over the message m, a
signature σm and a NIWI proof Π.

• GSIG.Verify: represents the group signature ver-
ification algorithm run by a verifier. It takes
(vkg,m,Π) as input and verifies the correctness
of the NIWI proof Π w.r.t. pub = (pkg,m) and the
CRS ΣNIWI.

5 SEVIL ALGORITHMS

This section gives the concrete construction of SEVIL.
Based on the Groth-Sahai NIWI proof scheme pro-
posed in Section 4, it details the three phases of the
SEVIL, including the six algorithms presented in Sec-
tion 3 .

5.1 SETUP Phase

• Set params – given λ, T A selects an asymmetric
bilinear group (n, G1, G2, G3, g1, g2, e) where G1
and G2 are two cyclic groups of prime order n, g1
and g2 are generators of respectively G1 and G2
and e is a bilinear map such that e : G1×G2 →
G3. The Set params algorithm outputs the tuple
(n,G1,G2,G3,g1,g2,e) denoted by pp. pp repre-
sents the system global parameters that are given
as a default input to all the algorithms run by the
system’s entities.

• Setup SGrG – G sets up the public parameters of
the group of signers. It generates a group public
key vkG and a certification secret key skG as de-
tailed in Algorithm 1.

• Join SGrS/G – First, S generates his pair of keys
(skS ,pkS) as depicted in Algorithm 2 (line 4 –
line 9). Afterwards, G generates a signature σk
over the public key pkS as detailed in Algorithm
2 (lines 11 – 17).

5.2 SIGNING Phase

• G SignS – S sets a message m∈G2 S that he signs
on behalf of the group. Indeed, S generates a sig-
nature σm over the message m, and computes a
proof Π over the signatures σk and σm as shown
in Algorithm 3.

5.3 VERIFYING Phase

• Batch VerifyV – We consider a list of N messages
mi and the corresponding proofs Πi. Each proof
Πi is composed of six sub-proofs (i.e., two sub-
proofs generated over the signature σm w.r.t. the
message m, and four sub-proofs generated over
the signature σk w.r.t. the signer key pkS). The
list of proofs can be presented as follows:

{(A⃗i jm, B⃗i jm,Γi jm, ti jm)}i=N, j=2
i, j=1 ,

{(C⃗i jm,D⃗i jm,πi jm,θi jm)}i=N, j=2
i, j=1 ,

{(A⃗ilk, B⃗ilk,Γilk, tilk)}i=N,l=4
i,l=1 ,

{(C⃗ilk,D⃗ilk,πilk,θilk)}i=N,l=4
i,l=1 .

SEVIL: Secure and Efficient VerifIcation over Massive Proofs of KnowLedge

17

1: Input: the system public parameters pp
2: Output: the group public parameters vkG and the se-

cret key skG
3: // The next iterations are executed to generate the

pair of keys of G
4: pick at random gr1,hu1←G∗1, gr2,hu2←G∗2 for i = 1

to 2 do
pick at random γ1i,δ1i ← Z∗n compute g1i ←

gr1
γ1i , h1i← hu1

δ1i

end
for j = 1 to 7 do
pick at random γ2 j,δ2 j ← Z∗n compute g2i ←

gr2
γ2 j and h2 j ← hu2

δ2 j

end
5: pick at random γ1z,δ1z,γ2z,δ2z← Z∗n ;
6: compute g1z ← gr1

γ1z , h1z ← hu1
δ1z , g2z ← gr2

γ2z and
h2z← hu2

δ2z ;
7: pick at random α1,α2,β1,β2← Z∗n ;
8: pk1 ← (g2z,h2z,g2r,h2u,g

α2
1 ,gβ2

1 ,{g2 j,h2 j}7
j=1) and

sk1← (pk1,α2,β2,γ2z,δ2z,{γ2 j,δ2 j}7
j=1) ;

9: pk2 ← (g1z,h1z,g1r,h1u,g
α1
2 ,gβ1

2 ,{g1i,h1i}2
i=1) and

sk2← (pk2,α1,β1,γ1z,δ1z,{γ1i,δ1i}2
i=1) ;

10: set pkg← (pk1,pk2) and skg← (sk1,sk2) ;
11: // The next iterations are executed to generate

ΣNIWI

12: pick at random r,s← Z∗n and set U= rg1 and V= sg2
;

13: set ΣNIWI = (G1,G2,G3,e, ι1, p1, ι2, p2, ι3,U,V) ;
14: vkG ← (pkg,ΣNIWI) ;
15: return (skG ,vkG)

Algorithm 1: Setup SGrG algorithm.

Referring to the generation of the group sig-
nature, the tuples {(A⃗ jm, B⃗ jm,Γ jm, t jm)}2

j=1 and

{(A⃗lk, B⃗lk,Γlk, tlk)}4
l=1 are unchanged for all N

proofs and all signers. Thus, for a given list of
messages, V verifies the validity of the proofs by
checking if equations (2) and (3), depicted in Fig-
ure 3, hold:

• Agg VerifyV – We consider a mes-
sage m belonging to an invalid proof-
list and its corresponding proof Π. Us-
ing the tuples {(A⃗ jm, B⃗ jm,Γ jm, t jm)}2

j=1

and {(A⃗lk, B⃗lk,Γlk, tlk)}4
l=1 along with

the tuples {(C⃗ jm,D⃗ jm,π jm,θ jm)} j=2
j=1 and

{(C⃗lk,D⃗lk,πlk,θlk)}l=4
l=1 derived from Π, V

checks if equations (4) and (5), depicted in Figure
4, hold.

1: Input: the security parameter λ and the secret
key of the group manager skG

2: Output: the pair of keys of a signer (skS ,pkS)
and the signature σk over the public key pkS

3: // The next is set by S
4: pick at random gr,hu←G∗1, γ,δ← Z∗n ;
5: compute gγ← gr

γ and hδ← hu
δ ;

6: pick at random γz,δz← Z∗n ;
7: compute gz← gr

γz and hz← hu
δz ;

8: pick at random α,β← Z∗n ;
9: set pkS = (gz,hz,gr,hu,gα

2 ,g
β

2 ,gγ,hδ) and skS =
(pkS ,α,β,γz,δz,γ,δ) ;

10: // The next is set by G
11: pick at random ζ2,ρ2,τ2,ϕ2,ω2← Z∗n ;
12: compute z2 = gζ2

2 , s2 = g1r
ρ2 , t2 = g2

τ2 ,
r2 = g2

α1−ρ2τ2−γ1zζ2 ∏
2
i=1m2i

−γ1i , u2 =

g2
β1−ϕ2ω2−δ1zζ2 ∏

2
i=1m2i

−δ1i , v2 = h1u
ϕ2 , w2 = g2

ω2

; where m⃗2 = (gα
2 ,g

β

2) ;
13: set σ2 = (z2,r2,s2, t2,u2,v2,w2) ;
14: pick at random ζ1,ρ1,τ1,ϕ1,ω1← Z∗n ;
15: compute z1 = gζ1

1 , s1 = g2r
ρ1 , t1 = g1

τ1 ,
r1 = g1

α2−ρ1τ1−γ2zζ1 ∏
7
j=1m1 j

−γ2 j , u1 =

g1
β2−ϕ1ω1−δ2zζ1 ∏

7
j=1m1 j

−δ2 j , v1 = h2u
ϕ1 , w1 = g1

ω1 ;
where m⃗1 = (gz,hz,gr,hu,gγ,hδ,s2);

16: set σ1 = (z1,r1,s1, t1,u1,v1,w1) ;
17: set σk = (σ1,σ2) ;
18: return (skS ,pkS ,σk)

Algorithm 2: Join SGrS/G algorithm.

6 SECURITY DISCUSSION

In this section, we prove that SEVIL’s construction
is secure and privacy-preserving w.r.t. the properties
defined in Section 2.2. In order to appropriately ad-
dress security and privacy requirements mentioned is
Section 2.2.1, we consider two main adversaries, as
follows:

• A Malicious Adversary: attempts, by himself or
when colluding with other malicious adversaries,
to generate a valid group signature over a mes-
sage without being authorized by the group man-
ager. A malicious adversary plays the role of an
outsider and is mainly considered against unforge-
ability property.

• A Honest but Curious Adversary: given a valid
group signature, a honest but curious adversary
tries to identify the signer of a particular message.
He may also attempt to link two signatures issued
by the same group member. A curious adversary
plays the role of a verifier (V), and considered
against unlinkability1 requirement.

1We assume that unlinkability property includes the
anonymity of signers as group members.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

18

∏i∏ j

(
e(C⃗i jm,ΓmD⃗i jm)

)
= e(U,∑i∑ jπi jm)e(∑i∑ jθi jm,V) (2)

∏le(ι1(A⃗lk),∑iD⃗ilk)e(∑iC⃗ilk, ι2(B⃗lk))∏i∏l

(
e(C⃗ilk,ΓlkD⃗ilk)

)
=
(
∏lι3(tlk)

N
)

e(U,∑i∑lπilk)e(∑i∑lθilk,V) (3)

Figure 3: Verification equations of Batch VerifyV algorithm.

∏ j

(
e(C⃗ jm,ΓmD⃗ jm)

)
= e(U,∑ jπ jm)e(∑ jθ jm,V) (4)

∏le(ι1(A⃗lk),D⃗lk)e(C⃗lk, ι2(B⃗lk))∏l

(
e(C⃗lk,ΓlkD⃗lk)

)
=
(
∏lι3(tlk)

)
e(U,∑lπlk)e(∑lθlk,V) (5)

Figure 4: Verification equations of Agg VerifyV algorithm.

1: Input: the public parameters of the signers’ group vkG , the pair of keys (skS ,pkS), the signature σk over the
signer public key and the message m

2: Output: a signature σm over the message m and a proof Π over the signatures σk and σm

3: // The next is executed by S to sign m
4: pick at random ζ,ρ,τ,ϕ,ω← Z∗n ;
5: run z = gζ

2, r = g2
α−ρτ−γzζm−γ, s = gr

ρ, t = g2
τ, u = g2

β−ϕω−δzζm−δ, v = hu
ϕ, w = g2

ω ;
6: set σm = (z,r,s, t,u,v,w) ;
7: // The next is set to generate a proof on equations {(A⃗im, B⃗im,Γim, tim)}2

i=1 where A⃗im = B⃗im = 0⃗,
Γim = M AT 3×3(1) for i = 1,2, t1m = t2m = 1G3

8: X⃗1m = (gz,gr,s), X⃗2m = (hz,hu,v) , Y⃗1m = (z,g2
α−ρτ−γzζ, t) and Y⃗2m = (z,g2

β−ρτ−δzζ,w) ;
9: πm = {(C⃗im,D⃗im,πim,θim)}2

i=1← NIWI.Proof(vkg, {(A⃗im, B⃗im,Γim, tim)}2
i=1, {(X⃗im, Y⃗im)}2

i=1) ;

10: // The next is set to generate a proof on equations {(A⃗ik, B⃗ik,Γik, tik)}4
i=1 where A⃗1k = (gα2

1), A⃗2k = (gβ2
1), A⃗3k =

(g1z,g1r), A⃗4k = (h1z,h1u), B⃗1k = (g2z,g2r), B⃗2k = (h2z,h2u), B⃗3k = (gα1
2), B⃗4k = (gβ1

2), Γ1k = (γ2z,−1), Γ2k = (δ2z,−1),
Γ3k = (γ1z,−1), Γ4k = (δ1z,−1), t1k = e(gα2

1 ,g2r), t2k = e(gβ2
1 ,h2u), t3k = e(g1r,g

α1
2) and t4k = e(h1u,g

β1
2)

11: X⃗1k = (z1,g1
α2−ρ1τ1−γ2zζ1), X⃗2k = (z1,g1

β2−ρ1τ1−δ2zζ1), X⃗3k = (g1r), X⃗4k = (h1u) , Y⃗1k = (g2r), Y⃗2k = (h2u), Y⃗3k =

(z2,g2
α1−ρ2τ2−γ1zζ2), and Y⃗4k = (z2,g2

β1−ρ2τ2−δ1zζ2) ;
12: πp = {(C⃗ik,D⃗ik,πik,θik)}4

i=1← NIWI.Proof(vkg,{(A⃗ik, B⃗ik,Γik, tik)}4
i=1, {(X⃗ik, Y⃗ik)}4

i=1) ;
13: set πk = ((πik,θik)

4
i=1) ;

14: set Π = (πk,πm) ;
15: return (σm,Π)

Algorithm 3: G SignS algorithm.

6.1 Unforgeability

The unforgeability property states that a malicious
outsider is not able to forge the SEVIL group signa-
ture.

Let us consider an adversary A that is allowed to
query, as many times as he wants, the G Sign algo-
rithm on a message mi. Then, during the challenge
phase, A is asked to produce a valid message signa-
ture pair (m∗,Π∗) such that the message m∗ was not
queried before.

For this purpose, we consider two adversaries B1
and B2 respectively against the unforgeability of the
group signature2 scheme GSIG and the soundness3 of
the proof system NIWI. The advantage of A to break

2Unforgeability of group signatures states that it is not
possible to generate a valid message signature pair unless
secret keys are known.

3The soundness property ensures that is it not possible
to prove a false statement.

SEVIL unforgeability is expressed as follows:

Advun f or
A (1λ)≤ Advun f or

GSIG,B1
(1λ)+Advsound

NIWI,B2
(1λ)

According to (Bellare et al., 2003), the unforgeability
property can be directly inherited from the traceabil-
ity property stating that it is not possible to generate
signatures without tracing its originator. As the group
signature scheme GSIG, relying on the construction
of Bellare et al. (Bellare et al., 2003), is proven to
be traceable, then the unforgeability property of GSIG
is also satisfied. Thus, the Advun f or

GSIG,B1
(1λ) function

is negligible. The advantage function Advsound
NIWI,B2

(1λ)
can be expressed as follows:

Advsound
NIWI,B2

(1λ) = Pr[B2 out puts (m,Π) :

NIWI.Verify(m,Π) = 1]

Referring to (Bellare et al., 2003),
Pr[B3 out puts (m,Π) : NIWI.Verify(m,Π) =

1] ≤ 2−λ as the NIWI proof system is sound. As

SEVIL: Secure and Efficient VerifIcation over Massive Proofs of KnowLedge

19

such, the advantage function Advsound
NIWI,B3

(1λ) is neg-

ligible. Thus, the advantage function Advun f or
A (1λ)

is also negligible proving that SEVIL satisfies the
unforgeability property.

6.2 Unlinkability

The unlinkability property states that a curious ver-
ifier is not able neither to link two or several group
signatures issued by the same signer nor to identify
the originator of a group signature.

Let us consider an adversary A that is al-
lowed to query, as many times as he wants, the
G Sign algorithm on the same message m∗, for
two signers S0 and S1. For each session, A re-
ceives a group signature represented by the tuple
((C⃗ i

jm,D⃗ i
jm,π

i
jm,θ

i
jm)

2
j=1, (C⃗ i

jk,D⃗
i
jk,π

i
jk,θ

i
jk)

4
j=1). Af-

terwards, A is given a pair of group signatures over
the same message m∗. The first signature is gener-
ated for the signer S0 and is represented by the tuple
((C⃗ ∗jm,D⃗∗jm,π∗jm,θ∗jm)2

j=1, (C⃗ ∗jk,D⃗∗jk,π
∗
jk,θ

∗
jk)

4
j=1). The

second signature is generated either for signer S0 or
signer S1, according to a randomly selected bit b ∈
{0,1}. This second signature is represented by the tu-
ple ((C⃗ b

jm,D⃗b
jm,π

b
jm,θ

b
jm)

2
j=1, (C⃗ b

jk,D⃗
b
jk,π

b
jk,θ

b
jk)

4
j=1).

A is asked to guess if the two group signatures are
generated by the same signer or two different signers
with a probability greater than 1

2 .
Let us suppose that A has an advantage ε

against the unlinkability property of SEVIL. A
simulator B against the computational witness-
indistinguishability property can be constructed with
the help of the adversary A . Indeed, B is given
two commitments (C,D) and (Cb,Db). The commit-
ment (C,D) is generated over a witness (X0,Y0), while
(Cb,Db) is computed over a witness (Xb,Yb), where
b ∈ {0,1}. B is asked, by its own challenger C , to
guess guess the bit b i.e., guess whether the com-
mitments were generated over the same witness or
two different witnesses. Thus, B selects two tuples
(A0,B0,Γ0, t0) and (Ab,Bb,Γb, tb) and computes the
corresponding proofs (π0,θ0) and (πb,θb) over (C,D)
and (Cb,Db). The two proofs are given back to A
that outputs a bit b′ and sends it to B . This latter an-
swers its own challenger C with the same bit b′ . As
such, A succeeds in breaking the unlinkability prop-
erty of SEVIL with the same probability of breaking
the computational witness-indistinguishability prop-
erty, which is negligible. Thus, SEVIL ensures the un-
linkability property w.r.t. the computational witness-
indistinguishability property of Groth-Sahai NIWI
proofs.

7 PERFORMANCE ANALYSIS

This section first introduces the test environment.
Then, it presents the performances’ analysis of SEVIL
according to the computation time, the complexity
and the communication cost of the different algo-
rithms. This evaluation is complemented with (1) a
comparative analysis of the computation time of the
SEVIL aggregated verification against the naive veri-
fication of group signatures, and (2) the evaluation of
the impact of the messages’ number on the computa-
tion time.

7.1 Test Environment

The implementation includes the three phases
SETUP, SIGNING and VERIFYING of SEVIL includ-
ing the six algorithms referred to as Set params,
Setup SGrG , Join SGrS/G , G SignS , Batch VerifyV
and Agg VerifyV . For comparison purposes, the four
primitives of the group signature scheme presented in
Section 4.2 are also implemented relying on the pub-
lic parameters obtained through the Set params algo-
rithm.

Our tests are conducted on an Ubuntu 18.04.3 ma-
chine - with an Intel Core i7@1.30GHz processor and
8GB memory. Based on JAVA version 11, the associ-
ated cryptographic library JPBC 4 and the implemen-
tation of Groth-Sahai proofs5, the SEVIL test-bed is
built upon four main java classes, w.r.t. to the differ-
ent entities of SEVIL, referred to as TrustedAuthor-
ity.java, GroupManager.java, Signer.java and Veri-
fier.java. For each class, we defined different meth-
ods w.r.t. the algorithms performed by each entity as
described in Section 3.

For efficiency purpose, two types of improve-
ments are introduced in SEVIL algorithms. The
improvements are applied, in particular, on G Sign
and Batch Verify algorithms of SEVIL and the
GSIG.Verify algorithm of GSIG signature scheme, as
follows:

• Multithreading: applied on the four algo-
rithms G Sign, Batch Verify, Agg Verify and
GSIG.Verify. It enables to simultaneous execute
multiple threads on different processor cores. The
multithreading helps G Sign to compute different
parts of the NIWI proof simultaneously, while for
Batch Verify, Agg Verify and GSIG.Verify algo-
rithms, it enables higher computation throughput
on both sides of the verification equations of the
NIWI proof.

4http://gas.dia.unisa.it/projects/jpbc/
5https://github.com/gijsvl/groth-sahai

SECRYPT 2022 - 19th International Conference on Security and Cryptography

20

• Preprocessing: applied only on the Batch Verify,
Agg Verify and GSIG.Verify algorithms. It helps
reduce the computation time when some variables
need to be computed several times during the ex-
ecution of the algorithm. This is the case for the
variables (e.g., U and V of the CRS ΣNIWI) which
can be prepared in advance (i.e., before the exe-
cution of algorithms) for next be provided as in-
put to the pairing functions of the Batch Verify,
Agg Verify and GSIG.Verify algorithms.

Those two improvements are efficient as the compu-
tation time can be decreased by up to 50%.

Based on the JPBC library, we choose to evalu-
ate the computation time of each algorithm relying
on two different types of bilinear pairings, referred to
as pairings type A and type F. Pairing type A repre-
sents the fastest symmetric pairing type while relying
on the elliptic curve y2 = x3 + x with an embedding
degree equal to 2. Pairing type F supports asymmet-
ric pairing features and was introduced by Barreto and
Naehrig (pai,) with an embedding degree equal to 12.
Two different levels of security are considered for the
pairings type A and type F referred to as 112-bits and
128-bits security levels6.

The tests rely on 100 samples of randomly gener-
ated messages. Each algorithm is run 100 times, and
the given computation times are the average of the
100 runs. The standard deviation of an order 10−2 is
considered.

7.2 Computation Overhead of SEVIL

This section presents the theoretical and experimental
computing costs of SEVIL’s six algorithms.

Table 1 shows that the G Sign and Batch Verify
are the most consuming algorithms in terms of expo-
nentiation and pairing operations. To sign a single
message, G Sign requires 302 exponentiations and 18
multiplications in both groups G1 and G2. The the-
oretical computation cost of Batch Verify mainly de-
pends on the number of messages, especially in terms
of multiplication and pairing operations. The signif-
icant computation costs of G Sign and Batch Verify
algorithms are reduced thanks to the two steps of im-
provements presented in Section 7.1.

Table 1 shows that the selected pairing types along
with the security level strongly impact the computa-
tion times. Note that both Set params and Setup SGr
algorithms, as part of the SETUP phase, are consum-
ing but they are limited to only one execution, respec-
tively from a powerful trusted authority and a group

6The 112-bits and 128-bits security levels are recom-
mended by the US National Institute of Standards and Tech-
nology (NIST) (http://keylength.com).

manager. The performances of the Join SGr algo-
rithm depend on the selected pairing type and secu-
rity level, with respectively 2 and 6 seconds for sym-
metric pairing settings (i.e., pairing type A) for re-
spectively 112 and 128 bit security, and 1,2 and 1,4
seconds for asymmetric pairing settings (i.e., pairing
type F), for respectively 112 and 128 bit security. For
the SIGNING phase, the G Sign algorithm is also con-
suming, with respectively 19 and 40 seconds in sym-
metric pairing settings, and 3 and 4 seconds in asym-
metric pairing settings. Finally, for the VERIFYING
phase, the Batch Verify algorithm executed to verify
100 messages simultaneously, requires approximately
4 and 8 minutes for pairing type A and 17 and 22 min-
utes for pairing type F. However, when it is needed to
verify a single message, the Agg Verify algorithm re-
quires 3 and 7 seconds for pairing type A and 16 and
19 seconds for pairing type F. It is worth noticing that,
for a number of messages N = 100, the execution of
the Batch Verify algorithm gives improved computa-
tional costs compared to the Agg Verify algorithm ex-
ecuted 100 times, separately.

Experimental results depicted in Table 1, confirm
the theoretical results that G Sign, Batch Verify and
Agg Verify are the most consuming algorithms. This
is logical as they include a large number of exponenti-
ations and pairing functions. However this result must
be put into perspective as both the signer and the ver-
ifier are assumed to be powerful and have advanced
hardware features.

From Table 1, it is also clear that the G Sign
algorithm performed with asymmetric pairing set-
tings is faster than with symmetric settings. Indeed,
the elementary functions of multiplication and expo-
nentiation are more consuming for pairing type A
than for pairing type F 7. However the Batch Verify
and Agg Verify algorithms have an opposite behavior
with a faster execution with pairing type A than with
pairing type F. This can be explained by the excessive
memory allocation and deallocation needed by pair-
ing type F.

7.3 Communication Overhead of SEVIL

This section discusses the communication costs of
SEVIL. As shown in Table 1, the communication
cost is evaluated according to the size of group el-
ements G1, G2, G3 and Zn. Each pairing type and
each security level are characterized with different
group sizes. From Table 1, it is worth noticing that
the SETUP phase is the most consuming in terms

7The experimental results are thus compliant to
the JPBC library http://gas.dia.unisa.it/projects/jpbc/
benchmark.html

SEVIL: Secure and Efficient VerifIcation over Massive Proofs of KnowLedge

21

Table 1: Computation and communication cost of SEVIL.

Algorithm Entity Synch/Asynch Communication cost Complexity Computation time (ms)
A/112-bits A/128-bits F/112-bits F/128-bits

Set params T A Asynch. |Zn|+ |G1|+ |G2|+ |G3| γG 874 2521 1230 1364
Setup SGr G Asynch. 21|(G1|+ |G2|) 24γE1,2 1955 4075 346 451
Join SGr S /G Synch. (S): 8|G1|+2|G2| / (G): 7(|G1|+ |G2|) (S): 6γE1,2 / (G): 32γE1,2 + 22γM1,2 2861 6014 1159 1409
G Sign a S Synch. 6(|G1|+ |G2|) 302γE1,2 + 18γM1,2 19353 40371 3164 4170

Batch Verify b V Asynch. N.A. 4γE3 + (6N +10)γM3 +(6N +9)γP 222989 485233 1018375 1312879
Agg Verify V Asynch. N.A. 4γE3 + 16γM3 +15γP 3096 6916 16065 18834

NOTE: Synch./Asynch. indicates whether the algorithm must be run online (i.e. in real time) or offline (i.e. later); a indicates
that the algorithm is performed on a single message; b indicates that the algorithm is performed on N messages where N = 100
for computation times; |G1| (resp. |G2|, |G3| and |Zn|) indicates the size of an element in G1 (resp. G2, G3 and Zn); γG
is the cost of the cyclic group generation; γM1,2 and γM3 are the costs of multiplication in resp. G1/G2 and G3; γE1,2 and γE3

are the costs of exponentiation in resp. G1/G2 and G3; γP is the cost of a pairing function; N.A. is the abbreviation for Not
Applicable.

of bandwidth. In fact, it includes the Set params
and Setup SGr algorithms that output the system
and group public parameters shared with other en-
tities. The SETUP phase also includes the interac-
tive Join SGr algorithm that introduces communica-
tion overheads of 8|G1|+2|G2| and 7(|G1|+ |G2|) to
respectively send the signer’s keys to the G and give
back G’s signature over the keys of S . The communi-
cation cost introduced by the SETUP phase must be
put into perspective as both algorithms Set params
and Setup SGr are executed once, and the Join SGr
algorithm is performed only when a new signer wants
to join the group. The SIGNING phase, including only
the G Sign algorithm repeatedly performed by sign-
ers, has an acceptable communication overhead due
to the size of the NIWI proof.

7.4 Benefit of SEVIL Aggregated
Verification over GSIG Naive
Verification

In this section, we focus on the VERIFYING phase.
We consider 100 messages signed with the G Sign al-
gorithm. The resulting proofs are given as input to
both GSIG.Verify and Batch Verify algorithms. The
GSIG.Verify algorithm is executed 100 times as it al-
lows to verify only one proof at a time, while the
Batch Verify algorithm performs the verification of
all proofs at a time. Thus, we compare the computa-
tion time required by the two algorithms when being
executed over 100 messages.

Figure 5 shows that the aggregated verification is
more efficient than the naive one. Indeed, the ag-
gregation reduces the computation time, for verify-
ing 100 messages, by approximately 37%, for pairing
type A for the two security levels. The computation
time moves from 356 seconds (resp. 777 seconds)
with the naive signature verification to 223 seconds
(resp. 485 seconds) with SEVIL aggregated verifica-
tion. For pairing type F, the gain reaches 50% for

Figure 5: Computation time of aggregated verification vs
naive verification over 100 messages.

the two security levels. The computation time moves
from 2048 seconds (resp. 2642 seconds) to 1018 sec-
onds (resp. 1313 seconds).

The gain obtained through the aggregating veri-
fication is substantiated by the decrease in the num-
ber of pairings. To verify N messages (i.e., 6 NIWI
proofs are verified per messages), the GSIG.Verify al-
gorithm requires 30N pairings (according to Equation
1), while the Batch Verify algorithm only requires
6N + 9 pairings. Thus, we expect to obtain a gain
of approximately 80%, but experimental results show
smaller gains than expected. These results are jus-
tified by the number of additions introduced while
aggregating the verification equations (i.e., 14N ad-
ditions). As mentioned before, the elementary addi-
tion operations are more consuming for pairing type
A than for pairing type F. Hence, the gain is more
significant with asymmetric pairing settings.

7.5 Impact of Messages’ Volume on the
Verification

Referring to equations (2) and (3), depicted in Fig-
ure 3, it is clear that the number N of messages (resp.
proofs) to be verified, influences the time computation
of the Batch Verify algorithm. Indeed, the greater

SECRYPT 2022 - 19th International Conference on Security and Cryptography

22

the number of messages, the greater the number of
pairing functions. For this objective, we evaluate the
computation time of the Batch Verify algorithm when
varying the number of messages from 5 to 1000. Note
that all messages are signed with the G Sign algo-
rithm.

Figure 6: Influence of messages’ volume on Batch Verify
computation time.

The curves depicted in Figure 6 show that the
computation time of the Batch Verify algorithm is
a rising affine function of the messages number, for
the two types of pairings and the two security lev-
els. When varying the number of messages from 5
to 1000, the computation time varies from 15 to 2602
seconds (resp. from 59 to 10677) for the pairing type
A (resp. pairing type F), for 112-bits level. For the
128-bits security, the computation time varies from
26 to 4817 (resp. 72 to 12978) for the pairing type A
(resp. pairing type F).

8 COMPARISON WITH
RELATED WORK

Data-centric applications, e.g., cloud-based technolo-
gies (di Vimercati et al., 2019), recommendation sys-
tems (Kaaniche et al., 2020b; Rahali et al., 2021) and
IoT applications (Alamer, 2020; Zhang et al., 2021;
Belguith et al., 2018), have raised several concerns
regarding the massive collection, processing and ac-
cess to data from different users with different priv-
ileges (Kaaniche et al., 2020a). Several works have
been proposed, in the literature, to efficiently verify
a large number of signatures, referred to as signature
schemes with batch verification. This method helps
to solve the resource constraints’ problems in many
applications. Batch verification for signatures was
first proposed by Naccache et. al (Naccache et al.,
1994) for DSA-type signatures. Since then, several
batch verification methods have been proposed for
other digital signature schemes, namely for group sig-

natures. Indeed, batch verification over group signa-
tures was introduced by Ferrara et. al (Ferrara et al.,
2009). Wasef and Shen proposed to use batch verifi-
cation. Vehicular ad hoc networks (Wasef and Shen,
2010). In (Kim et al., 2011), authors exploited Fer-
rara et. al scheme to build a new batch vertification
scheme that supports invalid signatures identification.
They rely on the divide-and-conquer approach (Pas-
tuszak et al., 2004). In (Feng et al., 2017), authors
presented a group signature scheme with batch verifi-
cation that allows to deal with the excessive need for
signatures verification in pervasive social networking.
The proposed scheme do not support bad signatures
identification, i.e., if the batch verification fails, all
the signatures are rejected. Recently, Alamer pro-
posed a secure and privacy-preserving group signa-
ture scheme supporting batch verification. It aims at
mitigating the increasing computation delay in IoT
systems (Alamer, 2020). In (Zhang et al., 2021), au-
thors designed a novel group signature scheme with
batch verification for IoT consortium blockchain. It
suggests two types of verification, i.e., a naive veri-
fication for urgent transactions and batch verification
for ordinary ones.

Table 2 illustrates differences between SEVIL and
closely related schemes in terms of security and pri-
vacy properties and supported functionalities.

From Table 2, it is worth stating that SEVIL satis-
fies several properties of interest, compared to closely
related proposals. It leverages the trade-off between
security, privacy and utility. Indeed, as all others
schemes, SEVIL fulfills the unforgeability require-
ment. Unlike (Wasef and Shen, 2010), (Kim et al.,
2011), (Alamer, 2020) and (Zhang et al., 2021), the
proposed scheme adds security features, referred to
as trust on signers. SEVIL also addresses a criti-
cal privacy concern which is unlinkability. In terms
of utility, we note that, unlike (Wasef and Shen,
2010), (Feng et al., 2017), (Alamer, 2020) and (Zhang
et al., 2021) which only support batch verification, the
SEVIL system is designed to support identification of
invalid signatures, which is very relevant for informa-
tion accuracy.

9 CONCLUSION

In this paper, we introduce a concrete construction
of a novel secure and privacy-preserving Groth-Sahai
NIWI proof-based signature. The proposed scheme
enables the efficient verification of multiple signa-
tures, i.e. allowing verifiers to check the correctness
of multiple proof-based group signatures, at once.
Our contribution is proven to support security and

SEVIL: Secure and Efficient VerifIcation over Massive Proofs of KnowLedge

23

Table 2: Comparison of SEVIL and related works.
SEVIL (Wasef and Shen, 2010) (Kim et al., 2011) (Feng et al., 2017) (Alamer, 2020) (Zhang et al., 2021)

Security and
privacy properties

Unforgeability ✓ ✓ ✓ ✓ ✓ ✓
Trust on signers ✓ ✗ ✗ ✓ ✗ ✗

Unlinkability ✓ ✓ ✗ ✗ ✓ ✓

Functional properties Batch verification ✓ ✓ ✓ ✓ ✓ ✓
Invalid signatures identification ✓ ✗ ✓ ✗ ✗ ✗

privacy properties, through a comprehensive security
analysis. Thanks to SEVIL’s proof of concept that
fully implement the different algorithms, we show
that the aggregated verification achieves a gain of up
to 50% with regard to the naive verification of group
signatures. This gain proves the efficiency of SEVIL
and must be put into perspective as in real world
applications, verifiers are assumed to have advanced
hardware features.

ACKNOWLEDGEMENTS

Authors are thankful to Mr. Fadel Radji for im-
plementing SEVIL’s algorithms and for providing
valuable suggestions to improve the system’s perfor-
mances.

REFERENCES

Jpbc library: Bilinear pairing parameters generators. http:
//gas.dia.unisa.it/projects/jpbc/docs/ecpg.html.

Alamer, A. (2020). An efficient group signcryption scheme
supporting batch verification for securing transmitted
data in the internet of things. Journal of Ambient In-
telligence and Humanized Computing.

Belguith, S., Kaaniche, N., Mohamed, M., and Russello,
G. (2018). Coop-daab: Cooperative attribute based
data aggregation for internet of things applications.
In OTM Confederated International Conferences” On
the Move to Meaningful Internet Systems”, pages
498–515. Springer.

Bellare, M., Micciancio, D., and Warinschi, B. (2003).
Foundations of group signatures: Formal definitions,
simplified requirements, and a construction based on
general assumptions. In Biham, E., editor, Advances
in Cryptology — EUROCRYPT 2003, pages 614–629,
Berlin, Heidelberg. Springer Berlin Heidelberg.

di Vimercati, S. D. C., Foresti, S., Livraga, G., and Sama-
rati, P. (2019). Data security and privacy in the cloud.
In Agaian, S. S., Asari, V. K., and DelMarco, S. P., ed-
itors, Mobile Multimedia/Image Processing, Security,
and Applications 2019, pages 84 – 96. SPIE.

Feng, W., Yan, Z., and Xie, H. (2017). Anonymous authen-
tication on trust in pervasive social networking based
on group signature. IEEE Access, 5:6236–6246.

Ferrara, A., Green, M., Hohenberger, S., and Pedersen, M.
(2009). Practical short signature batch verification.
pages 309–324.

Groth, J. and Sahai, A. (2008). Efficient non-interactive
proof systems for bilinear groups. In Smart, N., editor,
Advances in Cryptology – EUROCRYPT 2008, pages
415–432, Berlin, Heidelberg. Springer Berlin Heidel-
berg.

Kaaniche, N., Laurent, M., and Belguith, S. (2020a). Pri-
vacy enhancing technologies for solving the privacy-
personalization paradox: Taxonomy and survey. Jour-
nal of Network and Computer Applications, page
102807.

Kaaniche, N., Masmoudi, S., Znina, S., Laurent, M., and
Demir, L. (2020b). Privacy preserving cooperative
computation for personalized web search applications.
In Proceedings of the 35th Annual ACM Symposium
on Applied Computing, page 250–258.

Kim, K., Yie, I., Lim, S., and Nyang, D. (2011). Batch
verification and finding invalid signatures in a group
signature scheme. International Journal of Network
Security, 12:229–238.

Naccache, D., M’Raı̈hi, D., Vaudenay, S., and Raphaeli, D.
(1994). Can d.s.a. be improved? complexity trade-
offs with the digital signature standard. In Advances in
Cryptology - EUROCRYPT ’94, Workshop on the The-
ory and Application of Cryptographic Techniques, Pe-
rugia, Italy, May 9-12, 1994, Lecture Notes in Com-
puter Science, pages 77–85. Springer.

Pastuszak, J., Michałek, D., Pieprzyk, J., and Seberry, J.
(2004). Identification of bad signatures in batches.
pages 28–45.

Rahali, S., Laurent, M., Masmoudi, S., Roux, C., and
Mazeau, B. (2021). A validated privacy-utility pre-
serving recommendation system with local differen-
tial privacy.

Wasef, A. and Shen, X. (2010). Efficient group signature
scheme supporting batch verification for securing ve-
hicular networks. In 2010 IEEE International Confer-
ence on Communications, pages 1–5.

Zhang, A., Zhang, P., Wang, H., and Lin, X. (2021).
Application-oriented block generation for consortium
blockchain-based iot systems with dynamic device
management. IEEE Internet of Things Journal,
8(10):7874–7888.

SECRYPT 2022 - 19th International Conference on Security and Cryptography

24

