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Abstract: The high failure rate is a major concern in distance online education. In recent years, Performance Prediction
Systems (PPS) based on different analytical methods have been proposed to predict at-risk of failure learners.
One of the main studied characteristics of these systems is its ability to provide accurate early predictions.
However, these systems are usually assessed using a set of evaluation measures (e.g. accuracy, precision) that
do not reflect the precocity, continuity and evolution of the predictions over time. In this paper, we propose
to enrich the existing indicators with time-dependent ones including earliness and stability. Further, we use
the Harmonic Mean to illustrate the trade-off between the predictions earliness and the accuracy. In order to
validate the relevance of our indicators, we used them to compare four different PPS for predicting at-risk
of failure learners. These systems are applied on real data of K-12 learners enrolled in an online physics-
chemistry module.

1 INTRODUCTION

The use of distance online education has evolved over
the last few years, and has exploded further with the
recent covid-19 pandemic. It presents an effective
way to maintain the continuity of the learning pro-
cess by allowing access to school from anywhere at
any time.

However, the major concern of this learning mode
is the high failure rate among its learners. In order
to meet this issue, Performance Prediction Systems
(PPS) based on Machine Learning (ML) models have
been proposed (Wang et al., 2017; Iqbal et al., 2017;
Zhang et al., 2017; Chui et al., 2020). The main ob-
jective of this type of systems is to predict accurately
and at the earliest at-risk of failure learners using real-
time flow data.

The data generated by online education platforms
are available progressively over time, as they are
highly dependent on the time at which learners inter-
act with the educational content. Thus, these data are
called time series, as they consist of a set of sequences
of events that occur over time. The time reference can
be a timestamp or any other finite-grain time interval
(e.g week). To assess the effectiveness of the PPS in
fulfilling their objectives, common indicators are be-
ing used. On the one hand, performance measures are
used to assess the temporal and space complexity of
the systems in respect to the used data. On the other

hand, ML indicators such as precision, recall and F1
measure are used to qualify the ability of the system
to predict correctly. Despite the diversity of existing
evaluation indicators, none of them is dedicated to as-
sess the precocity, continuity and evolution of predic-
tions over time. However, time is an important di-
mension that needs to be considered while assessing
a PPS as both learning and prediction evolve.

In this paper, we focus on assessing PPS based on
time-series classifiers. To overcome the limitations
of existing common indicators, we focus on provid-
ing new time-dependent ones that can be used to as-
sess these systems over time. Two indicators includ-
ing earliness and stability are proposed. Indeed, the
temporal stability is the ability of a PPS to provide
the longest sequences of correct predictions over the
prediction times. Whereas, the earliness indicates the
first time that the PPS correctly predicted a given class
label. A PPS is said to be effective if it predicts accu-
rately and as early as possible. To this end, we used
the Harmonic Mean (HM) to study the trade-off be-
tween the accuracy and earliness indicators since they
are proportionally inverted.

To validate the relevance of these indicators, we
applied them to assess four different PPS for pre-
dicting at-risk of failure learners. These systems
use real data of k-12 learners enrolled in a physics-
chemistry module within a French distance learning
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center (CNED 1).
To summarize, our contribution is twofold: 1) new

indicators including earliness and stability
; and 2) a real case study to support the use of our

indicators.
The rest of the paper is organized as follows: the

Section 2 presents the related work and discusses our
contribution with respect to the state of the art. The
Section 3 introduces the problem formalization as
well as the definitions of the proposed indicators. The
Section 4 describes our context and the used PPS. The
Section 5 presents the conducted experiments and the
results. The Section 7 concludes on the results and
introduces the work’s perspectives.

2 RELATED WORK

ML-based education systems and especially the de-
tection of learners at-risk of failure and dropout are
gaining momentum in recent years.

Static ML precision indicators are the most used to
evaluate the performance of these systems (Hu et al.,
2014). (Bañeres et al., 2020) proposed a model based
on students’ grades to predict the likelihood to fail a
course. Authors of this paper evaluated the perfor-
mance of the model using the accuracy metric. The
main goal of (Lee and Chung, 2019) was to improve
the performance of a dropout early warning system.
For this aim, the trained classifiers, including Ran-
dom Forest and boosted Decision Tree, were evalu-
ated with both the Receiver Operating Characteristic
(ROC) and Precision-Recall (PR) curves. Based on an
ensemble model using a combination of relevant ML
algorithms, (Karalar et al., 2021) aimed to identify
students at-risk of academic failure during the pan-
demic. In order to make a classification in which stu-
dents with academic risks can be predicted more ac-
curately, authors of this paper relied on the results of
the specificity measure to evaluate the performance
of the ensemble method. The goal of (Adnan et al.,
2021) was to identify the best model that analyzes the
problems faced by at-risk learners enrolled in online
university. The performance of the various trained
ML algorithms was evaluated by using accuracy, pre-
cision, recall, support and f-score metrics. The Ran-
dom Forest was the model with the best results.

Predicting at-risk learners at the earliest is one of
the main topics in the Learning Analytics (LA) field.
(Hlosta et al., 2017) introduced a novel approach,
based on the importance of the first assessment, for
the early identification of at-risk learners. The key

1Centre National d’Enseignement à Distance

idea of this approach is that the learning patterns can
be extracted from the behavior of learners who have
submitted their assessment earlier. For the earliest
possible identification of students who are at-risk of
dropout during a course, (Adnan et al., 2021) divided
the course into 6 periods and then trained and tested
the performance of ML algorithms at different per-
centages of the course length. Results showed that
at 20% of the course length, the RF model was pro-
ducing promising results with 79% average precision
score. At 60% of the course length, the performance
of RF improved significantly. (Figueroa-Cañas and
Sancho-Vinuesa, 2020) present a study for a simple
and interpretable procedure to identify dropout-prone
and fail-prone students before the halfway point of the
semester. The results showed that the main factor to
the final exam performance is continued learning ac-
quired during at least the first half of the course. The
work conducted within the Open University (OU) by
(Wolff et al., 2014) has proven that the first assess-
ment is a good predictor of a student’s final outcome.

To summarize, the existing research works rely
mainly on ML precision indicators to evaluate the per-
formance of PPS. Although the results given by these
indicators are important to obtain an overall assess-
ment of ML projects, their use alone is not sufficient
for evolving systems over time. In fact, the common
indicators do not consider the importance of the tem-
poral evolution of the predictions. When dealing with
a time-continuous process, such as learning, the reg-
ular tracking of prediction results reveals the need for
other time-dependent indicators. Thus, in this work,
we consider earliness and stability indicators to pro-
vide a deeper evaluation of the PPS. Further, we pro-
pose to use the HM measure to establish a compro-
mise between both time-dependent and precision in-
dicators.

3 TIME-DEPENDENT
INDICATORS

In this section, we formally present the problem of
time series classification (Section 3.1) as well as the
new proposed indicators, including earliness (Sec-
tion 3.2) and stability (Section 3.3).

3.1 Problem Formalization

The objective is to predict the class of the students as
early and accurate as possible.

Assume Y={C1, C2, .., Cm} is the set of predefined
class labels that is determined using an existing train-
ing data. Let S=(S1,S2,...,Sk) be the set of the students
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Figure 1: An Example of a Regular tracking prediction.

in the test dataset Dtest and T={t1,t2,..,tc} be the set of
the prediction times.

Each student Sp ∈ S, at a prediction time ti ∈ T , is
presented by a vector Xti={ f1, f2,..., fn, C j} where the
fk ∈ R presents the kth feature, and C j ∈ Y is the jth

class label. The main objective is to determine at each
prediction time ti the right class for the student.

As shown in Fig. 1, on each ti ∈ T , each learner
Sp ∈ S is predicted to belong to a class C j ∈ Y .

The Fig. 1 presents an example of a regular track-
ing prediction of a set of students S = (S1,S2,S3) over
a time interval T={t1,t2, t3,t4,t5}. Each student is as-
signed a single class label in Y={C1, C2,C3}.

The quality of PPS based on classifiers can be
measured by different indicators, but none of them
determines their effectiveness with respect to the tem-
poral dimension. Indeed, the regular tracking of pre-
diction results is at the origin of identifying new time-
dependent indicators including earliness and stability.
Further, we need an additional measure that shows the
trade-off between our time-dependent indicators and
the accuracy. Indeed, the assignment of a class label
should be as early and accurate as possible.

3.2 Earliness

The objective of PPS has always been the early pre-
diction of the less performing learners. Early predic-
tion is commonly defined as the adequate and relevant
time allowing both an accurate prediction of learners
performances and effective tutor interventions with
at-risk learners (Bañeres et al., 2020).

Indeed, learners’ behavior is not stable and may
vary continuously over time, therefore the perfor-
mance of the model may change and evolve from one
prediction time to another. For these reasons, the ear-
liness measurement is significant in the evaluation of
an educational PPS as both learning and prediction
are time-evolving.

We propose the following Algorithm (see
Algorithm.1) to compute the earliness by class label.
It takes as input the list of the students (S), the set
of class labels (Y ) as well as the test data (Dtest ) and
provides as output the earliness measures by class

label (EY ). The Algorithm starts by iterating over
the class labels (C j ∈ Y ) (Line 1). For each C j, it
initializes two variables (Earlytot and countS), which
will respectively contain the sum of the first correct
prediction times and the number of students who
were assigned at least once to the class C j (Lines
2-3). Then, the Algorithm iterates over the set of
students (Sk ∈ S) (Line 4). It verifies first if Sk has
been assigned at least once to the class C j in question
(line 5). If so, the Algorithm searches for the first
time Sk has been in C j (Line 6) as well as the first
time Sk is predicted correctly in C j (Line 7). The
first correct prediction time is then calculated (Line
8) and both (Earlytot and countS) are updated (Lines
9-10). The earliness (EarlyC j ) that corresponds to
the class label C j is determined at line 13. Then
before iterating on the next class label, the measured
earliness for the C j in question is saved in Ey (Line
14).

As an example of calculation of earliness, we refer
to the Fig. 1. The set S is composed of three students
S1, S2 and S3. At each ti, a student belongs to a class
label (li) and has a predicted label (pi). Assume ti rep-
resents a week, and we need to calculate the earliness
with respect to class C1. The first predicted right la-
bel for each of the three students is represented by the
green box. The student S3 is not considered, since
he/she never been labeled as C1. By applying the
Algorithm.1, the earliness measures for S1 and S2 are
equal respectively to 2 and 1. Thus, the earliness for
class label C1 = 1.5 (3/2). In other words, the system
is able to predict correctly the class label C1 after 1.5
weeks a student is labeled as C1.

For a PPS, the earlier the predictions are correct,
the better the system is.

However, while improving the earliness indicator
outcomes, the results of ML precision indicators in-
cluding the accuracy have to remain high enough to
provide stakeholders with as accurate predictions as
possible. For this aim, we propose to follow, along
with the earliness indicator, the HM, which is a mea-
sure of central tendency and used when an average
ratio is needed. The HM highlights the reverse pro-
portionality between two variables. This measure has
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Algorithm 1: Earliness Algorithm.

Require: S,Y , Dtest
Ensure: EY

1: for each C j in Y do
2: Earlytot ← 0
3: countS← 0
4: for each Sk in S do
5: if (assigned(Sk,C j) ==True) then
6: t0← First Labeled(Sk,C j)
7: t1← First Predicted(Sk,C j)
8: EarlySkC j ← t1− t0 +1
9: Earlytot ← Earlytot +EarlySkC j

10: countS← countS +1
11: end if
12: end for
13: EarlyC j ← Earlytot/countS
14: EY ← put(C j,EarlyC j)
15: end for

been already used in (Schäfer and Leser, 2020) to
investigate the relation between accuracy and earli-
ness for early classification of electronic signals. Like
them, we used the same HM measure but this time to
determine the relationship between earliness and ac-
curacy in a completely different domain. To the best
of our knowledge, the HM has never been used in the
education domain to express the ability of PPS to pro-
vide accurate predictions at the earliest. The applica-
tion of the HM measure is as follows:

HM =
2∗ (1− earliness)∗accuracy
(1− earliness)+accuracy

(1)

The higher HM is, the more the system is qualified
to be able to provide accurate early predictions.

3.3 Stability

Evaluating the performance of PPS based on the earli-
ness and stability indicators is of high interest to show
the evolution of predictions.
Given the changes of learners behaviors through the
learning period, the model could have at each pre-
diction time a different performance which makes the
system unstable.

In the state of the art, stability is usually related
to small changes in system output when changing the
training set (Philipp et al., 2018). However, in our
context, we are more interested in temporal stabil-
ity which refers to the capacity of a model to give
the correct output over time when training the same
dataset (Teinemaa et al., 2018). The temporal stability
characterizes the ability of the system to maintain the
same performance throughout the prediction times.

In the frame of this work, we define the temporal
stability as the average of the longest sequences of

successive correct predictions over time. The stability
is calculated using equation 2.

Stability =
∑

k
p=1 |h(Sp)|
|D|

(2)

Where h : S→ T n is a function that associates to each
student in D ⊆ Dtest the longest sequence of succes-
sive correct predictions. The given equation allows
to calculate the stability on a class label or on the
whole Dtest at a given time interval. As an example
of calculation of stability, we refer to the Fig. 1. For
each student, the longest correct prediction sequence
is presented by a red line.

The overall stability value till the time prediction
t3 is calculated as follows:

Stability =
2+3

3
= 1.66 (3)

Whereas, the stability value at the time prediction
t5 is calculated as follows:

Stability =
2+5+2

3
= 3 (4)

Thus, the evaluated PPS shows an ascending sta-
bility over time, which allows it to be qualified as a
stable system.

4 PROOF OF CONCEPT:
COMPARISON OF FOUR PPS

To prove the effectiveness of our temporal indicators,
we used them to compare four existing PPS. The same
dataset has been used for the four systems. This sec-
tion presents the case study and introduces the evalu-
ated PPS.

4.1 Context and Dataset Description

Our case study is the k-12 learners enrolled in
the physics-chemistry module during the 2017-2018
school year within the French largest center for dis-
tance education (CNED 2). CNED offers multiple
fully distance courses to a large number of physically
dispersed learners. In addition to the heterogeneity
of learners, learning is also quite specific as the reg-
istration remains open during the school year. Sub-
sequently, the start activity date t0 could be different
from one learner to another.
The objective is to track students performance on a
weekly basis to identify those at-risk of failure. Thus,
the prediction time ti ∈ T corresponds to a week.

2https://www.cned.fr/
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Our dataset is composed of learning traces of 647
learners who followed the physics-chemistry module
for 37 weeks.
Learners are classified into three classes based on the
obtained grades average: Y={C1, C2, C3}
• Success (C1): when the marks average is strictly

superior to 12.

• Medium risk of failure (C2): when the marks av-
erage is between 8 and 12.

• High risk of failure (C3): when the marks average
is strictly inferior to 8.

Each week, a student is represented by a set of
learning features and a class label. Based on a pre-
vious work (Ben Soussia et al., 2021), these learning
features include performance, engagement, regularity
and reactivity.

The systems are compared using accuracy and sta-
bility over the entire learning period. However, for
earliness, it is evaluated in relation to the first 12
weeks. The choice of this period is not arbitrary. Ac-
cording to the existing work on earliness (Figueroa-
Cañas and Sancho-Vinuesa, 2020), it can be deduced
that earliness is always targeted on the first weeks.

4.2 Overview of the Evaluated PPS

To provide an example of application of the pro-
posed time-dependent indicators, we used them to
compare four different PPS (PPS1, PPS2 , PPS3,
PPS4). The first two systems (PPS1, PPS2) are based
on the Random Forest (RF) model, while the last
two (PPS3, PPS4) use the Artificial Neural Network
(ANN) model.

PPS1 and PPS3 use all the learning features in-
cluding performance, engagement, regularity and re-
activity, in addition to demographic data to make
weekly basis predictions. While, PPS2 and PPS4 use
only the engagement features to define students at-
risk of failure. An additional difference between the
systems is presented by the way the class is assigned
in time. Indeed, for PPS1 and PPS2, the predictions
are made with respect to the learner final class at the
end of the year. In other words, each learner belongs
to one single class over the year and the model tries to
predict that final class as early as possible. Whereas,
for PPS3 and PPS4, the class label is dynamic and
may change based on the student performance. For
example, a student may be in the successful class for
3 successive weeks, but in the 4th week he/she may
be assigned to a different class label due to fluctua-
tions in performance. The model must therefore cap-
ture these changes from one week to another to pre-
dict correctly the student’s class label.

Figure 2: PPS1 VS PPS2 VS PPS3 in terms of accuracy.

The Fig. 2 presents the accuracy of the four sys-
tems PPS1, PPS2, PPS3 and PPS4 over the whole
learning weeks. As shown, PPS1 and PPS3 that
use all the features perform much better in terms of
weekly accuracy than PPS2 and PPS4 that use only
the engagement features. Indeed, PPS4 has almost
≈ 91% of accuracy at t1. From week 1 to 6, the accu-
racy of this system decreases, then, it increases again
starting from week 7 to reach a value of ≈ 72% by
the end. While, the accuracy of PPS2 does not present
variations and it is almost stable over the weeks and it
reaches a max value of≈ 73%. The accuracy of these
systems (PPS2, PPS4) is not poor and shows that it
performs quite well in general.

However, the precision indicators do not reflect
the earliness of systems with respect to all the classes
and particularly the high and medium risk.

Thus, in the Section.5, the four systems are as-
sessed beyond the use of precision indicators by using
the time-dependent ones defined in Section.3.

5 EXPERIMENTAL RESULTS

In this section, we interpret the earliness, HM and sta-
bility results for the four systems PPS1, PPS2, PPS3
and PPS4.

5.1 Earliness and HM Results

Earliness is relevant, especially for detecting high and
medium risk students (C2 and C3 classes). Thus, we
present the results of earliness and HM by class label
(See Table 1, and Table 2 ).

Comparing PPS1 and PPS2: For both systems
PPS1 and PPS2, the dominant class is C1 (success),
which is predicted respectively at 9.5% (≈ 1.14 week)
and 8.83% (≈ 1 week) of the fixed prediction time
interval (12 weeks). The earliness and accuracy are
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Table 1: Earliness and HM measurements-PPS1 VS PPS2.

PPS1 PPS2
Earliness Accuracy HM Earliness Accuracy HM

C1 9.5% 92.63% 90.95% 8.83% 91% 91.29%
C2 26.6% 9% 16.03% 0% 0% 0%
C3 44.1% 46% 50.46% 0% 0% 0%

Table 2: Earliness and HM measurements-PPS3 VS PPS4.

PPS3 PPS4
Earliness Accuracy HM Earliness Accuracy HM

C1 10.75% 78.94% 83.83% 37.85% 21.62% 25%
C2 17.66% 55.75% 66.52% 0% 0% 0%
C3 9.33% 100% 95.12% 8.5% 92.37% 90.65%

slightly different. By referring to the HM measure the
PPS2 is better in predicting at the earliest the learn-
ers at success class. However, PPS2 is worst when it
comes to detecting both classes C2 and C3. Indeed,
over the 12 first weeks the system has 0% HM mea-
sures for C2 and C3.

Comparing PPS3 and PPS4: For both systems
PPS3 and PPS4, the dominant class, at the beginning
of the school year, is C3 which is predicted respec-
tively at 9.33% (≈ 1.11 week) and 8.5% (≈ 1 week).
The earliness values are slightly different, but PPS3
has higher accuracy and higher HM measures. Con-
ventionally, for a good model, the accuracy increases
with time. However, PPS4 predicted C1 latter and
less accurately than PPS3. Further, despite of pre-
dicting C3 accurately and quite early, PPS4 has never
predicted learners belonging to C2 during the first 12
weeks. According to the HM measures, PPS3 outper-
forms PPS4 in predicting accurately at the earliest all
of the three classes.

To summarize, for the four systems, the dominant
class is always predicted at the earliest with respect to
the rest of the class labels. If we interpret, for exam-
ple, the earliness rate in relation with the class label
C2 for PPS2 and PPS4, one can think that the system
was able to predict the class at the earliest. Theoreti-
cally 0% is the best earliness value with an accuracy
of 100%. However, this is not true since the accuracy
and the HM are equal to zero. Thus, 0% does not
explain anything unless we investigate accuracy and
consequently the HM measure. These results prove
the importance of feature selection in predicting at the
earliest students at risk of failure. PPS2 and PPS4,
which use only engagement features, are the best ex-
amples, where one or two of the medium and high
risk classes are not detected. These results prove also
that evaluating a PPS based on either accuracy or ear-
liness is not pertinent enough to conclude on the per-
formance of a classifier. The trade-off between both
indicators through the measurement of HM gives a

more precise insight about the PPS performance.
The earliness and HM can be used also to evaluate

PPS adopting different classification approaches such
as PPS1 and PPS3. The first one performs the predic-
tions with respect to the final class at the end of the
school year. While the second one performs the pre-
dictions at a time t with respect to the class label at the
time t+1. As shown in Tables 1 and 2, the HM mea-
sures show that PPS1 is less early and less accurate
than PPS3 in predicting C2 and C3, knowing that they
use the same test data. Determining which system is
better than the other is beyond the scope of this paper,
but we can conclude that the prediction approach can
have an impact on the earliness of the system.

5.2 Stability Results

Stability is complementary to HM. The Table. 3
presents the stability measures for the four systems
over the first 12 weeks. The stability per class is more
pertinent for PPS1 and PPS2 than for PPS3 and PPS4.
This can be explained by the fact that the former pre-
dict with respect to the final class labels while the lat-
ter predict with respect to the t+1 class labels. For
this reason, we consider to follow also the predictions
stability on the entire test dataset Dtest . The results
of Dtest stability are more coherent with the HM ones
and the overall stability is more pertinent as it reflects
the true stability of the PPS. As shown in Table 3, un-
til week 12, PPS1 is more stable than PPS2 in terms
of class stability and overall stability. Indeed, PPS1
succeeded in predicting the class labels correctly and
build longer sequences of correct predictions. While,
when it comes to PPS3 and PPS4, the overall stabil-
ity is more relevant, and it shows that PPS3 is more
stable.

Unlike earliness, the stability of PPS is more in-
teresting when it is tracked throughout the learning
period. The Figure. 3 shows the Dtest stability evolu-
tion of the four systems throughout the school year.
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Figure 3: Comparing PPS1 V, PPS2 , PPS3 and PPS4 in
terms of temporal stability.

The stability of PPS1 increases slightly over time. It
is at ≈ 70% and ≈ 76% respectively at the first and
last prediction weeks. While the stability of PPS2 is
decreasing over the weeks. It started with a value of
≈ 64% and ended with ≈ 59%.

Both systems PPS3 and PPS4 start with high sta-
bility values (≈ 100% and≈ 92% respectively). This
can be explained by the dominance of the class C3,
since at the beginning all learners are assigned to this
class by default. However, these high values decrease
rapidly over the following weeks. For PPS3, around
the week 4, it starts to correctly assign each learner to
the suitable class among C1, C2 and C3. Then, from
week 5, the stability of PPS3 increases continuously
and reaches a rate of ≈ 96% at the last prediction
time. For PPS4, the shape of the curve is identical
to this of PPS3 with a downward shift. Until week
13, the overall stability decreases, then from week 14,
it starts to increase again to reach ≈ 57%. We notice
either a partial or a total drop in stability for the sys-
tems PPS2, PPS3 and PPS4. Although the stability
of PPS1 has never decreased over time, PPS3 remains
the most stable.

Table 3: Stability Measurements.

PPS1 PPS2 PPS3 PPS4
C1 92.26% 89.12% 58.79% 18.24%
C2 11.36% 0% 35.85% 0%
C3 27.56% 0% 47.70% 39.86%
Dtest 72.72% 65.12% 88.10% 48.48%

Yet, stability and accuracy are proportional, how-
ever, from the accuracy graphs of PPS2 and PPS4, we
cannot conclude on the effectiveness of the systems in
maintaining correct prediction sequences over time.

6 THREATS TO VALIDITY

The current work presents some limitations that we
tried to mitigate when possible: i) the earliness algo-
rithm returns a single value which corresponds to the
mean of the first correct predictions. However, a high
associated HM is partially reliable as the accuracy of
the system may decrease after the identified earliness.
We intend to consider several earliness points with
respect to the one returned by our algorithm. The
objective is to study the variations of the HM mea-
sures between these earliness points. ii) in this work,
we have adopted a weekly-basis prediction approach.
However, we believe that the proposed indicators can
be also used to define the appropriate temporal gran-
ularity that provides better prediction results. iii) in
the frame of this work, we only considered classifica-
tion problems. To prove the generic use of our indica-
tors, we aim to apply them on other systems that use
regression-based analytical models.

7 CONCLUSION AND
PERSPECTIVES

In this paper, we introduced time-dependent indica-
tors, namely the earliness and stability to assess PPS
used in online distance education. Further, a trade-off
between the earliness and accuracy is important to as-
sess the ability of a PPS to predict learners at-risk of
failure. The use of HM measure serves to illustrate
this balance. The new indicators along with the accu-
racy are used to compare four different PPS. The ex-
perimental results prove that the accuracy is not suffi-
cient to evaluate a PPS within a context of time-series
data. The experimental results show that the HM mea-
sure is relevant in identifying the earliest and accurate
system and that the stability is more pertinent when
the whole test dataset is considered. Further, a system
is considered better when its stability increases over
time.

As perspectives for this work, we intend to im-
prove the proposed earliness algorithm so that it re-
turns a set of different earliness values. Such a re-
sult will enable us to study more deeply the behavior
of the PPS. In addition, our next goal is to study the
trade-off between the stability and earliness indicators
and conclude on the relation between both of them.
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