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Abstract: This paper proposes a Human Robot Interaction (HRI) framework for a service robot capable of understanding 
common interactive human activities. The human activity recognition (HAR) algorithm is based on end to 
end deep Convolutional Neutral Network architecture. It uses as an input a view invariant 3D data of the 
skeleton joints, which is recorded from a single Microsoft Kinect camera to create a specific dataset of six 
interactive activities. In addition, an analysis of the most informative joint is made in order to optimize the 
recognition process. The system framework is built on Robot Operating System (ROS), and the real-life 
activity interaction between our service robot and the user is conducted for demonstrating the effectiveness 
of the developed HRI system. The trained model is evaluated on an experimental dataset created for this work 
and also the publicly available datasets Cornell Activity Dataset (CAD-60), and KARD HAR datasets. The 
performance of the proposed algorithm is proved when compared to other approaches and the results confirm 
its efficiency.  

1 INTRODUCTION 

Social robots must be able to interact efficiently with 
humans, to understand their needs, to interpret their 
orders and to predict their intentions. This can be 
achieved by translating the sensed human 
behavioural signals and context descriptors into an 
encoded behaviour. However, it stills a challenge 
because of the complex nature of the human actions. 
Even if many researches related to human-robot 
interaction (HRI) were announced, there were not so 
many reports of its successful application to robotic 
service task. 

Limin in (Limin, M., & Peiyi, Z., 2017) used a 
Kinect camera to capture human actions in real time. 
They used this information to send commands to the 
robot through the Bluetooth communication and 
make some movements as turning and forward. Borja 
in (Borja et al., 2017) presented an algorithm, which 
used depth images from Kinect to control the speed 
and angular position of a mobile robot. The algorithm 
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used the previous frame for the segmentation of the 
current one, thus, a user should extend the hand in 
front of the camera and leaves it for a while until the 
program recognizes the hand. They also designed a 
PID to control the wheel speed of the robot. 

In the context of robot assisted living, Zhao in 
(Zhao et al., 2014) proposed a gesture recognition 
algorithm for taking order service of an elderly care 
robot. It was designed mainly for helping non-expert 
users like elderly to call a service robot. Faria in 
(Faria et al., 2015), designed a skeleton-based 
features model, and used it on mobile robot in a home 
environment, to recognize daily and risky activities in 
real-time and to react for assisting the person. 

For Human Action Recognition task, the early 
well-known approaches are hand-crafted based 
features. In these approaches researchers extract 
features such as global or local image features like 
texture, edge or other attributes from the frames and 
use them within different machine learning 
algorithms (Yang, X., & Tian, Y., 2014), (Suriani 
2018) and (Kahlouche, S., & Belhocine, 2019). 
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However, hand-crafting features require significant 
domain knowledge and careful parameter tuning, 
which makes it not robust to various situations.  

Recently, with the emergence and successful 
deployment of deep learning techniques for image 
classification, researchers have migrated from 
traditional handcrafting to deep learning techniques 
for HAR. Several works employed Convolutional 
Neural network CNN, due to its spectacular progress 
in extracting spatial correlation characteristics in 
image classification tasks (Simonyan, K., & 
Zisserman, 2014) and (Hascoet, 2019).  

We presented in previous works (Bellarbi, A et 
al., 2016), and (Kahlouche, S et al. 2016), ROS based 
framework for B21r service robot, including a social 
navigation approach where the robot was able to 
navigate in indoor environment while detecting and 
avoiding humans using several social rules, which are 
computed according to its skeleton pose orientations. 
Additionally, a Guide User Interface (GUI) has been 
designed to control the robot through its screen touch 
which displays some functionality such as Call the 
Robot, Follow Me and Guide Me. 

In this works, we aim to make the Human-Robot 
interaction more natural and more intuitive, by 
integrating HAR module to our framework. This is an 
alternative solution to the GUI use. We proposed a 
deep learning architecture for activity recognition to 
help the robot to recognize which service is requested 
by the user, and react consequently. 

For this purpose, we investigate the usefulness of 
using only 3D skeleton coordinates of human body in 
end-to-end deep CNN to learn the spatial correlation 
characteristics of human activities. Hence, the mains 
considered contributions are: 

- Data transformations in the pre-processing 
step applied on the 3D skeleton data, in order 
to reduce observation variations caused by 
viewpoint changes. 

- An analysis of the Most Informative Joints has 
been done to evaluate the informativeness of 
each joint in the dataset, which leads to feature 
dimensionality reduction when training the 
CNN on relevant data.  

2 HRI SYSTEM OVERVIEW 

Figure 1 shows our proposed architecture block 
diagram, it uses mainly offline and online process.  

 
Figure 1: The framework of a human-robot interaction. 

2.1 Dataset Creation  

Our dataset has been created using OpenNI tracker 
framework, which allows the skeleton tracking at30 
fps, providing 3D Euclidean coordinates and three 
Euler angles of rotation in the 3D space for each joint 
with respect to the sensor. The dataset contains six 
interactive activities performed by four different 
individuals. Among the activities, four are static, 
where the user does not move from the camera view 
field (Hello, Stop, Call, Pointing), and two dynamic 
activities where the user can leave the camera view 
field (Going, Coming). A seventh class named "No 
Activity" has been added, it is realized with 
sequences where the user is immobile or when he 
does not express any interaction gestures. 

Figure 2 shows some examples of our dataset: 

 
 
 

Hello 

 
 
 

Stop 

Figure 2: Examples of our dataset. 

2.2 Features Extraction 

In most activities, many joints contribute very little 
changes and are not significant for action recognition. 
Hence, an analysis is performed to concentrate only 
on significant joints which highly contribute to 
human activity. According to (Ofli et al., 2014) works 
called Sequence of Most Informative Joints (SMIJ) 
reported that Shannon entropy represents the higher 
entropy related to a maximum contribution of relative 
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joints. Additionally, for Gaussian distribution with 

variance 
2σ the entropy can be calculated by the 

formula of Equation (1). 

)12(log
2
1)( 2 += πσIH

                    (1)

With: N
II 2)( −=σ

                       (2)

I : joint position,  
I :  the average joint position  

N:  the number of significant implications of joint I 
in a given temporal sequence. 

Figure 3 represents the histogram of the most 
informative joints for six (6) types of activities in our 
dataset. Therefore, we have selected five significant 
joints in the human skeleton and applied suitable 
weight on them. On the other hand, we have ignored 
the remainder by setting the joints to zero, since they 
introduce more noise than useful information to 
distinguish activities. 

 
Figure 3: Most Informative Joints of our dataset. 

2.2.1 Construction of Feature Vectors 

Using the above information, we can compute a set of 
features as follows: 

- 3D coordinates of the 5 selected joints: (x,y,z) 
which are all relative to the torso; 

- 3D rotation angles in the space: Ψ ,Ɵ and Φ a 
sequence of three rotations according to the three 
axes X, Y and Z respectively.  

Therefore, the feature vector has the following form: 

 

2.2.2 Feature Pre-Processing 

A pre-processing step is applied on the 3D skeleton 
data in order, not only to attenuate noise introduced 

by the sensor, but also to normalize the data to 
accommodate for different users’ heights, limb 
lengths, orientations and positions. It consists of the 
following steps: 

- Translation: to guarantee the same origin of the 
coordinates system for all acquired frames, the 
reference is set to the torso of the human skeleton; 

- Normalization: to reduce the influence of 
different users’ heights and limb lengths, first, the 
height of the subject is determined; then all 
skeleton 3D coordinates are normalized according 
to the value of eq.3; 
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- Symmetrization: To disambiguate between 
mirrored versions of the same activity (e.g. 
gestures performed by right and left-handed 
people), it is required for activities such as Hello, 
Call and pointing. It is just necessary to consider 
a new sample based on a mirrored version of the 
original 3D skeleton data. 

2.3 Model Training 

We have used CNN algorithm Network for training 
with17 layers. Figure 4 presents the overall structure 
of this pipeline. 

Input Layer: It is a vector representing sub video 
sequences of the 3D skeleton data:  

Nattributes × Njoint × Nframes .Where Nattributesis a vector 
composed of x×y×z×Ɵ×Φ×Ψ. While Njoint is the 
number of joints associated with each configuration 
in the video sequence of the dataset and it is equal to 
5. Nframes which is the total number of frames in batch 
sequences and it is equal to 30; Zero padding is added 
to this layer. 

Convolutional Layer1: The input layer is scanned 
using 32filters of size 3x3. Batch normalization is 
used to accelerate the training of the networks; it 
consists of performing the normalization for each 
training mini-batch. The used activation is Rectified 
Linear Unit (ReLU). 

Max Pooling1:  It is useful to capture the most 
important features and reduce the computation in 
advanced layer, we have used (2,1) pooling and zero 
padding. 

Convolutional Layer2: 64 filters of size 5x5, ReLU 
function and batch normalisation are used; 

Coming

Going

Pointing

Hello

Call

Stop

Time  X Y Z Ɵ  
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Convolutional Layer3: 128 filters of size (3,3), with 
batch normalization and ReLU; 

Convolutional Layer4: 256 filters of size (3,3), with 
batch normalization and ReLU; 

Max Pooling Layer2: We have used 2x2 kernels and 
0 padding; 

Convolutional Layer5: 256 filters of size (3, 3), batch 
normalization, and Elastic-Net (1e-4) regularization 
which help for lessening over fitting. 

Max Pooling3: Kernel size (2,2), and stride of (2,2), 
0 padding; 

Convolutional Layer6: 256 filters of size (3,3), 10% 
Dropout, and ReLU is applied as activation function; 

Max Pooling4: Kernel size (2, 2) and 10% Dropout 
are applied; 

Convolutional Layer7: 256 filters of size (3,3), zero 
padding, 10% Dropout, Elastic-Net (1e-4) 
regularization and ReLU is applied as activation 
function; 

Flattened Layer: Concatenation of 256 feature vectors 
into vector of one dimension containing 1024 
features. 

Fully Connected Layer1: it produces 256 neurons 
from the last layer, batch normalization, 30% 
Dropout, Regularization Elastic-Net (1e-4) and ReLU 
are used; 

Fully Connected Layer2: 128 neurons with batch 
normalization, ReLU and 30% Dropout are used; 

Fully Connected Layer3: 64 neurons, with batch 
normalization, ReLU, 30% Dropoutand Elastic-Net 
(1e-3) regularization are used; 

Output Layer: At the end, it has7 classes with 
Softmax  

We have used, for training, the Keras deep 
learning framework with a Tensor Flow backend on a 
laptop with an i5-2320 (3.00GHz) CPU. The network 
has been trained using Adam optimizer, and 
Categorical Cross Entropy as loss function. After 
several attempts of parameter tuning, the best results 
are obtained at epoch 2000 using a learning rate of 10-
5 with an initial training rate set to 0.001, a batch size 
of 30, 0 padding and stride (1, 1) for all convolution 
layers. 

 
Figure 4: The overall structure of the pipeline. 

2.3.1 Performance on Collected Dataset 

Our dataset is challenging because of the following 
reasons: 

(i) High interclass similarity: some actions are 
very similar to each other, for example, 
Coming/Going, and Hello/Call.  

(ii) High intra-class variability: the same action is 
performed in different ways by the same 
subject. For example, using left, right, or both 
hands differently.  

(iii) The activity sequences are registered from 
different views. 

Our dataset has been divided into two parts; 75% 
for training and 25% for testing.  

The performance of HAR has been evaluated 
based on the accuracy percentage of activities that are 
correctly recognized. The result shown in the 
confusion matrix achieves accuracy of 97.42% 
(Figure5).  

 
Figure 5: Confusion matrix. 

2.4 The Online Processing 

- Human Activity Prediction package: The developed 
HAR module has been implemented under Robot 
Operating System (ROS), to recognize the performed 
activity by the service robot. 
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- Autonomous Social Navigation package: This is 
built from ROS navigation stack, given the current 
locations of obstacles; it uses the global planner to 
find a path to a desired destination. It then uses a local 
planner to compute linear and angular velocities that 
need to be executed by the robot to approximately 
follow the global path while avoiding obstacles and 
humans differently respecting some social rules 
(Bellarbi , A, et al., 2016). 
- Simultaneous Localization and Mapping (SLAM): 
we used Hector Slam package, which provides robot 
position and an environment map, for self- 
localization. 

Once the activity is recognized by the prior step, 
the appropriate reaction is taken from the look-up 
table to be executed by the mobile robot in real 
interaction scenarios (Table1). 

The robot can perform motion or voice reaction; 
for the voice reaction, we have used a speech 
synthesis module to play sound from a given input 
text. 

Table 1: Six common types of interaction. 

Activity Robot  reaction 

Hello Voice reaction : Hello welcome to CDTA 

Call 
Voice reaction : Please wait, I am coming 
Motion reaction: Approaching user and start 
interaction. 

Stop Voice reaction: Ok, I will stop here. 
Motion: Stop moving. 

Pointing Voice reaction: Ok, I will go there. 
Motion reaction: Go to the pointed position.

Coming 
Voice reaction: How can I help you? 
Motion reaction: Step back and prepare to begin 
interaction. 

Going Voice reaction: Good-bye, thank you for your visit. 
Motion: turn back and stop interaction  

3 RESULTS AND DISCUSSIONS 

3.1 Performance on Public Datasets 

We present a comparative performance evaluation on 
two public datasets: the CAD-60 and KARD HAR 
datasets.  

The CAD-60 dataset (Sung, J, et al. 2012) is 
performed by 12 different activities, typical of indoor 
environments that are performed by four different 
people: two males and two females. 

The KARD dataset (Gaglio, S. et al. 2014) consists 
of 18 activities. This dataset has been captured in a 
controlled environment, that is, an office with a static 
background, and a Kinect device placed at a distance 

of 2-3m from the subject. The activities have been 
performed by 10 young people (nine males and one 
female), aged from 20 to 30 years, and from 150 to 
185cm tall. Each person repeated each activity 3 
times in order to create 540 sequences. The dataset is 
composed of RGB and depth frames. Additionally, 15 
joints of the skeleton in world and screen coordinates 
are provided. 

Table2 lists the results of the proposed method, 
which are applied on the above mentioned datasets. 
Despite its simplicity, it is able to achieve good 
results when applied to publicly available datasets 

Table 2: Comparison of our method on different dataset. 

Dataset Accuracy 
KARD 95.0% 

CAD60 83.19% 

Our dataset 97.42%  

Table 3 shows a comparison of the proposed 
method with other state of the art approaches on 
CAD-60. It can be seen from Table3 that despite very 
good accuracy obtained with different methods in the 
last decade, accuracy of the proposed activity 
recognition approach outperforms existing 
approaches. The proposed system achieved an 
accuracy of 83.19 %.  

Table 3: Comparison of accuracy on CAD60 dataset. 

Algorithm proposed by Accuracy 
Zhu et al. (2014)  62.5%  

Yang et al.(2014) 71.9 % 

Rahmani et al. (2014) 73.5%  

Zhang et al.(2012) 81.8 % 

Wang et al.(2013) 74.7% 

Gaglio et al.  (2014) 77.3% 

Koppula et al.(2013) 80.8% 

Nunes et al. (2017) 81.8 % 

Proposed approach 83.19% 

3.2 Performance on Mobile Robot 

In order to properly test the system in real scenarios, 
we have used the B21r mobile robot, which is able to 
map the indoor environment and to self-localizing 
and autonomously navigating while avoiding 
obstacles and humans. The developed HRI system 
has been implemented under Robot Operating System 
(ROS). For real time prediction, we used the last 
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recorded sequence during one second, according to 
the sensor's refresh rate (30 fps) after being pre- 
processed. After that, a final decision is made for 
activity recognition and a robot reaction is performed.  

 
Figure 6: Older scenario with GUI. 

Figure 6 shows the older scenario of HRI:  
a) To call the robot, the user has to scan using his 

Smartphone, the QR code associated to its real 
word position.  

b) The real world map, where some predefined 
positions in the environment are predefined such 
as: Conference room, Library, Entrance, Robot 
room. Hence, the robot must generate an 
appropriate collision free trajectory and 
navigate until reaching its goal. 

c) The Guide User Interface GUI to control the 
robot through its screen touch which displays 
some functionality such us: Call the robot, 
Follow Me, Guide Me.  

Figure 7 shows the new scenario where a person 
attempts to interact with a service robot: 

a) First, the person Calls the robot from its distant 
initial position (robot room) by scanning the QR 
code associated to its position using its smart 
phone. 

b) The robot navigate until the user position, detect 
the person and start interaction with him, the 
user salutes the robot, ‘Hello’ action is 
recognized and the robot react with voice mode 
and say: ‘Hello, welcome to our Center’.  

c) The user is pointing to a specific position; the 
activity is recognized as “pointing”, and the 
voice reaction of the robot is: “Ok, I will go 
there”, and the robot move to the pointed 
position. 

The proposed framework was capable of 
recognizing different interactive activities that 
happen sequentially in case of a person transits from 
one activity to another. 

 
(a) 

 
(b) 

 
c) 

Figure 7: Natural interaction scenario: Distant Call – Hello- 
Pointing. 

Figure 8 shows a second natural interaction scenario 
where:  

i) The person is calling the robot in its proximity, 
and the activity is recognized as “Call” and 
then the robot interacts with voice mode, and 
say: “Please wait, I am coming”, while 
approaching the user. 

ii) The user decides to stop the robot; the activity 
is recognized as “Stop”, and the robot stop 
moving, and say:  “ok, I will stop here”. 

iii) The user decides to go away, the activity 
“Going” is recognized and the robot react with 
voice: “Good- bye, thank you for your visit”, 
and turn back and stop interaction. 
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(i) 

 
(ii) 

 
(iii) 

Figure 8: Scenario b) Proximity Call – Stop – Going. 

4 CONCLUSION 

We presented a Human Robot Interaction system for 
a service robot, able to recognize the performed 
activity and to successfully react according to the 
situations. In the pre-processing step, we have 
proposed a view invariant transformation applied to 
the data, captured by a Microsoft Kinect camera to 
guarantee view invariant features. To achieve features 
dimensionality reduction, an analysis of the most 
informative joints has been performed while 
concentrating on significant joints which highly 
contribute to the human activity. Therefore, five 
significant joints in the human skeleton have been 
selected and used as input layer of a deep CNN. This 
model has been tested in real time successfully, 

hence, it presents a promising approach to social 
robotics field where natural and intuitive human robot 
interaction is needed. However, some further 
developments are needed before the system can be 
used in a real life. Therefore in the future, we want to 
consider the use of other sensor modalities such as 
depth maps and RGB sequences in order to add 
additional contextual information and see what the 
best architecture to fuse all these modalities is. This 
should improve the activity recognition accuracy and 
consequently will improve the interactivity of our 
service robot. 
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