
DL-CNN: Double Layered Convolutional Neural Networks

Lixin Fu and Rohith Rangineni
Department of Computer Science, University of North Carolina at Greensboro, Greensboro, NC 27401, U.S.A.

Keywords: The Convolutional Layers, Double Layers, Neural Networks, Classification, Image Processing.

Abstract: We studied the traditional convolutional neural networks and developed a new model that used double layers
instead of only one. In our example of this model, we used five convolutional layers and four fully connected
layers. The dataset has four thousand human face images of two classes, one of them being open eyes and the
other closed eyes. In this project, we dissected the original source code of the standard package into several
components and changed some of the core parts to improve accuracy. In addition to using both the current
layer and the prior layer to compute the next layer, we also explored whether to skip the current layer. We
changed the original convolution window formula. A multiplication bias instead of originally adding bias to
the linear combination was also proposed. Though it is hard to explain the rationale, the results of
multiplication bias are better in our example. For our new double layer model, our simulation results showed
that the accuracy was increased from 60% to 95%.

1 INTRODUCTION

For many years, Convolutional Neural Networks
(CNN) has long been the main classification
algorithm for image processing. Their accuracy can
be further improved. To this end, we dissected the
CNN source code from the famous Pytorch Python
package. We then greatly changed some core parts of
the algorithm by applying multiple connected layers,
skip layers, generating the input from the prior layer
and observing whether the newly developed
algorithms can improve the accuracy over the original
algorithm.

In our research we have modified and
implemented a new CNN classifier called DL-CNN
(Double Layer CNN) which computed the current
layers from previous two layers. As experiments
show, our model’s performance is significantly better
in the test cases in terms of classification accuracy.

The remaining of the paper is structured as
follows. Next section presents related work,
implementation of a convolutional neural network,
and recent developments. Section 3 deals with the
architecture, various parameters, activation functions,
FC layers, propagations (forward and backward)
topology of the convolutional neural networks.
Section 4 explains our network implementation with
our new methods. Section 5 covers simulations and
results including our models and original model.

Section 6 gives a conclusion and suggests the future
improvements.

2 RELATED WORKS

The earlies neural model was proposed by Walter
Pitts, Warren McCulloch proposed in their seminal
paper (McCulloch, 1943). They gave a concept of a
set of neurons and synapses. Then, Frank Rosenblatt
invented a single layer Neural Network called
“perceptron” which uses a simple step function as an
activation function (Rosenblatt, 1957). In 1986,
David Rumelhart, Geoffrey Hinton, and Ronald
Williams published a paper on “backpropagation”
(Rumelhart, 1986). This started the training of a
multi-layered network. Yann LeCun et.al. proposed
Convolutional Neural Network (CNN) (Lecun,
1989).

In the field of computer vision convolutional
neural networks is being widely used. The structure
of convolutional neural nets consists of hidden layers
– convolutional layers, pooling layers, fully
connected layers, normalization layers. In
convolutional neural networks we use pooling and
convolution functions as an activation function.

In the field of Natural Language processing
Recurrent Neural Networks also called RNN's are
being used. RNN are widely applied to hand-writing

Fu, L. and Rangineni, R.
DL-CNN: Double Layered Convolutional Neural Networks.
DOI: 10.5220/0011117000003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 1, pages 281-286
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

281

recognition (Graves A. e., 2009) and speech
recognition (Graves A. M., 2013). A typical neural
network has several layers through which an input
needs to be processed and finally an output is
generated. Earlier there was also an assumption that
in the network successive layers are computed from
only the immediate previous layers.

Convolutional Neural Networks play a major role
in reducing the images to a form for easier processing.
This is done by guarding the actual features of the
image which plays a key role for the model generating
a better prediction. CNN uses sliding windows to
filter the input. Types of architecture include VGG
(Simonyan, 2015) and ResNet (He, 2016). A
comparison of accuracy between SVM and CNN
show that for small datasets SVM is better but for
large datasets CNN is better (Wang, 2021) .

The Alex Network (Krizhevsky, 2012) is
designed with eight layers having weights. Out of
eight layers, the first five are convolutional layers and
the next three are fully connected layers.

3 ARCHITECTURES,
ACTIVATION, AND
PROPOGATIONS

3.1 Architecture

The architecture of convolutional neural networks
consists of the following layers (see Figure 1):

Convolution Layer
In the CNN architecture the purpose of extracting a
feature is done by a convolutional layer which has
two sets of operations (linear and nonlinear) defined
as activation function and convolutional operation.

Pooling Layer
In the CNN architecture, a feature map consists of
various number of dimensions to learn and perform
computation. The concept of pooling layer helps in
reduction of the dimensions of the feature maps so
minimal computation can be performed on the final
feature map.

Fully Connected Layer
Fully connected layers are known for connecting all
the inputs from upper layer to the activation units of
the lower layer. In each network the last few layers
will be fully connected layers so the extracted data
from all the upper layers will be compiled, and final
output is generated.

Figure 1: Update weights (Back Propagation).

3.2 Activation Functions

Activation functions are one of the most crucial parts
in the concept and design of neural networks. When the
activation function is chosen for a model, it defines the
model’s capability of learning the training datasets,
based on which the output predictions are made.

We have several types of activation functions are
below:

ReLu is known as Rectified Linear Activation
calculated by max (0.0, x). Here x is considered as an
input value, if x is negative then the activated function
returns an output of 0.0. In the case of x being positive
the output value is x.

Sigmoid is known as Sigmoid function calculated
by 1.0 / (1.0 + e-x). Outputs are in the range of [0, 1]. If
the input value is more towards the positive, then the
output is closer to 1.0 else the output is closer to 0.0.

Tanh known as Hyperbolic Tangent calculated by
(ex – e-x) / (ex + e-x). Outputs are in the range of -1 to
+ 1. If the input value is more towards the positive,
then the output is closer to +1.0 else the output is
closer to -1.0.

Fully Connected layers (FC) are placed at the end
of the architecture. They often function on an input
which is flattened and connected to all the neurons in
the network. To create a single feature vector, the
output generated by the convolutional layer is
flattened.

3.3 Forward and Backward
Propagations

In the forward propagation, starting with the input,
the computation goes through different hidden layers
and gets processed based on its activation function.
Once the input is processed, it is then passed to the
next consecutive layer in the forward direction.

Similarly backward propagation is performed.
Error calculations and weights adjustments are
propagated backwards to the previous layers. We
have output_vector and target_output_vector as an
input to backward propagation and
adjusted_weight_vector as an output.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

282

4 DOUBLE LAYER CNN

Figure 2: Skip layers implemented in architecture.

Figure 3: Code snippet for two linear functions.

Model Avg loss
#Correct
prediction

Avg
Accuracy

1 0.693697 403/800 50.375

2 0.693474 403/800 50.375

3 0.693151 396/800 49.500

4 0.117733 780/800 97.500

5 0.018077 799/800 99.875

6 0.695256 401/800 50.125

7 0.015770 795/800 99.375

8 0.015053 798/800 99.750

Fig. 2 is the architecture diagram where the input is
directly sent to the 3rd convolutional layer, skipping
first two layers. In the FC layers the data coming from
the FC1 layer is sent to the FC3 layer by skipping the
FC2 layer.

As the name says, we have developed 2 individual
layers linear 1, linear 2 and implemented these 2
different linear layers in the same model. We have
implemented 8 models: model 1 through model 8 as
follows.

Model 1 uses the inbuilt functions of the torch and
we have implemented the network using 5
convolutional layers and 4 fully connected layers.
After implementing the model, we have trained our
pre-processed dataset in the built model. After
training we tested the model with the test dataset. And
got the accuracy.

Here in model 2 we are skipped some of the layers
in convolutional and in the linear as well to see if
there is any improvement in the accuracy of the
model.

After implementing the model, we have trained
our pre-processed dataset in the built model. After
training we tested the model with the test dataset and
computed the accuracy.

Model 3 is implemented using the developed
functions; it hasn't used any inbuilt functions like in
model 1 and model 2. Here we have taken the source
code and changed the formula used in the linear
model and we used the changed formula in our model
3 and model 4 to see if there is any improvement in
the accuracy or not. We have developed the model
with 5 convolutional layers and 4 fully connected
layers. The data is sent to all the included layers i.e.,
data is passed to all 5 convolutional layers and 4 fully
connected layers. After implementing the model, we
have trained our pre-processed dataset in the built
model. After training we tested the model with the
test dataset.

DL-CNN: Double Layered Convolutional Neural Networks

283

Here in model 4, we are skipping some of the
layers in convolutional and in the linear as well to see
if there is any improvement in the accuracy of the
model. After implementing the model, we have
trained our pre-processed dataset in the built model.
After training we tested the model with the test
dataset. Finally, we have observed that model 4 has
better performance compared to other models. And
the model 3 also got better performance compared to
model 1 and model 2.

In model 5 we added multiple weights and
multiple bias values to each layer instead of addition
biases and we have sent this updates values of new
weights and bias to the next layers. We have trained
our pre-processed dataset in the built model and
tested the model with the test dataset.

Model 6 is implemented using the developed
functions; it hasn't used any inbuilt functions like in
model 1 and model 2. Here we have modified the
source code and changed the formula used in the
linear. The formula we used here is we added multiple
weights and multiple bias values to each layer and we
have sent this updates values of new weights and bias
to the next layers.

Model 7 we used separate functions and 2 separate
linear functions i.e., linear 1 and linear 2 and used
these 2 different linear functions in fully connected
layers. We have developed the model with 5
convolutional layers and 4 fully connected layers.

Model 8 is implemented using the developed
functions; it hasn't used any inbuilt functions like in
model 1 and model 2.

5 SIMULATIONS AND RESULTS

5.1 Datasets and Computer

The data set we used here is the 2 classes dataset that
has 4000 images of eyes open and closed of different
peoples and we extracted the data from online
resources (Patil, 2022). The computer used here is the
Alienware M17R3. It has an i7 processor,16GB
Ram,6GB Nvidia GeForce rtx2070 and has a storage
of 1TB SSD.

5.2 Results and Comparison

We ran our model with the data and the accuracy and
average loss of the model is observed. We can have
the loss for each batch of images is observed. You can
see the accuracy value i.e., (number of correct
images/total number of test images). Fig.

MODEL 1: - Accuracy
Graphical representation of the Loss value of batch
for the given epoch.

Figure 4: Loss Graph of Model 1.

Figure 5: Loss Graph of Model 2.

Figure 6: Loss Graph of Model 3.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

284

Figure 7: Loss Graph of Model 4.

Figure 8: Loss Graph of Model 5.

Figure 9: Loss Graph of Model 6.

Figure 10: Loss Graph of Model 7.

Figure 11: Loss Graph of Model 8.

6 CONCLUSIONS AND FUTURE
WORK

In the paper we proposed several new algorithms or
variations of CNN, including skipping layers, double
layers, multiplication biases, etc. Using the facial
datasets for classification, simulation results show
various degrees of improvements of the new
algorithms on the prediction accuracy over original
CNN algorithm.

In the future work we plan to change the padding
formula and stride values to check whether we can
further improve the performance and accuracy.

DL-CNN: Double Layered Convolutional Neural Networks

285

Overall Comparison of All the 8 Models

Figure 12: Accuracy Comparison of 8 models.

REFERENCES

Graves, A. e. (2009). A Novel Connectionist System for
Improved Unconstrained Handwriting Recognition.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31 (5), 855–868.

Graves, A. M. (2013). Speech recognition with deep
recurrent neural networks. IEEE international
conference on acoustics, speech and signal processing,
(pp. 6645-6649).

He, K. e. (2016). Deep residual learning for image
recognition. Proceedings of the IEEE conference on
computer vision and pattern recognition.

Krizhevsky, A. (2012). ImageNet Classification with Deep
Convolutional Neural Networks. Advances in Neural
Information Processing Systems 25(2).

Lecun, Y. e. (1989). Backpropogation Applied to
Handwritten Zip Code Recognition. Neural
Computation 1, 541-551.

McCulloch, W. P. (1943). A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical
Biophysics 5, 115–133.

Patil, P. (2022). Retrieved from
https://www.kaggle.com/prasadvpatil/mrl-dataset

Rosenblatt, F. (1957). The Perceptron - A Perceving and
Recognizing Automaton. Buffalo: Cornell.

Rumelhart, D. H. (1986). Learning representations by back-
propagating errors. Nature 323, 533–536.

Simonyan, K. a. (2015). Very Deep Convolutional
Networks for Large-Scale Image Recognition. The 3rd
International Conference on Learning Representations
(ICLR2015), (pp. 1409-1556).

Tripathi, M. (2021). Analysis of convolutional neural
network based image classification techniques. Journal
of Innovative Image Processing (JIIP), 3(02), 100-117.

Wang, P. F. (2021). Comparative analysis of image
classification algorithms based on traditional machine
learning and deep learning. Pattern Recognition
Letters, 141,., 61-67.

Williams, R. J. (n.d.). .; Hinton, Geoffrey E.; Rumelhart,
David E. (October 1986). "Learning representations by
back-propagating errors". Nature. 323 (6088): 533–
536.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

286

