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Abstract: We studied the traditional convolutional neural networks and developed a new model that used double layers 
instead of only one. In our example of this model, we used five convolutional layers and four fully connected 
layers. The dataset has four thousand human face images of two classes, one of them being open eyes and the 
other closed eyes. In this project, we dissected the original source code of the standard package into several 
components and changed some of the core parts to improve accuracy. In addition to using both the current 
layer and the prior layer to compute the next layer, we also explored whether to skip the current layer. We 
changed the original convolution window formula. A multiplication bias instead of originally adding bias to 
the linear combination was also proposed. Though it is hard to explain the rationale, the results of 
multiplication bias are better in our example. For our new double layer model, our simulation results showed 
that the accuracy was increased from 60% to 95%. 

1 INTRODUCTION 

For many years, Convolutional Neural Networks 
(CNN) has long been the main classification 
algorithm for image processing. Their accuracy can 
be further improved. To this end, we dissected the 
CNN source code from the famous Pytorch Python 
package. We then greatly changed some core parts of 
the algorithm by applying multiple connected layers, 
skip layers, generating the input from the prior layer 
and observing whether the newly developed 
algorithms can improve the accuracy over the original 
algorithm. 

In our research we have modified and 
implemented a new CNN classifier called DL-CNN 
(Double Layer CNN) which computed the current 
layers from previous two layers. As experiments 
show, our model’s performance is significantly better 
in the test cases in terms of classification accuracy. 

The remaining of the paper is structured as 
follows. Next section presents related work, 
implementation of a convolutional neural network, 
and recent developments. Section 3 deals with the 
architecture, various parameters, activation functions, 
FC layers, propagations (forward and backward) 
topology of the convolutional neural networks. 
Section 4 explains our network implementation with 
our new methods. Section 5 covers simulations and 
results including our models and original model. 

Section 6 gives a conclusion and suggests the future 
improvements. 

2 RELATED WORKS 

The earlies neural model was proposed by Walter 
Pitts, Warren McCulloch proposed in their seminal 
paper (McCulloch, 1943). They gave a concept of a 
set of neurons and synapses. Then, Frank Rosenblatt 
invented a single layer Neural Network called 
“perceptron” which uses a simple step function as an 
activation function (Rosenblatt, 1957). In 1986, 
David Rumelhart, Geoffrey Hinton, and Ronald 
Williams published a paper on “backpropagation” 
(Rumelhart, 1986). This started the training of a 
multi-layered network. Yann LeCun et.al. proposed 
Convolutional Neural Network (CNN)  (Lecun, 
1989). 

In the field of computer vision convolutional 
neural networks is being widely used. The structure 
of convolutional neural nets consists of hidden layers 
– convolutional layers, pooling layers, fully 
connected layers, normalization layers. In 
convolutional neural networks we use pooling and 
convolution functions as an activation function. 

In the field of Natural Language processing 
Recurrent Neural Networks also called RNN's are 
being used. RNN are widely applied to hand-writing 
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recognition (Graves A. e., 2009) and speech 
recognition (Graves A. M., 2013). A typical neural 
network has several layers through which an input 
needs to be processed and finally an output is 
generated. Earlier there was also an assumption that 
in the network successive layers are computed from 
only the immediate previous layers. 

Convolutional Neural Networks play a major role 
in reducing the images to a form for easier processing. 
This is done by guarding the actual features of the 
image which plays a key role for the model generating 
a better prediction. CNN uses sliding windows to 
filter the input. Types of architecture include VGG 
(Simonyan, 2015) and ResNet (He, 2016). A 
comparison of accuracy between SVM and CNN 
show that for small datasets SVM is better but for 
large datasets CNN is better (Wang, 2021) . 

The Alex Network (Krizhevsky, 2012) is 
designed with eight layers having weights. Out of 
eight layers, the first five are convolutional layers and 
the next three are fully connected layers. 

3 ARCHITECTURES, 
ACTIVATION, AND 
PROPOGATIONS 

3.1 Architecture 

The architecture of convolutional neural networks 
consists of the following layers (see Figure 1):  

Convolution Layer 
In the CNN architecture the purpose of extracting a 
feature is done by a convolutional layer which has 
two sets of operations (linear and nonlinear) defined 
as activation function and convolutional operation.  

Pooling Layer 
In the CNN architecture, a feature map consists of 
various number of dimensions to learn and perform 
computation. The concept of pooling layer helps in 
reduction of the dimensions of the feature maps so 
minimal computation can be performed on the final 
feature map. 

Fully Connected Layer 
Fully connected layers are known for connecting all 
the inputs from upper layer to the activation units of 
the lower layer. In each network the last few layers 
will be fully connected layers so the extracted data 
from all the upper layers will be compiled, and final 
output is generated.  

 

Figure 1: Update weights (Back Propagation). 

3.2 Activation Functions 

Activation functions are one of the most crucial parts 
in the concept and design of neural networks. When the 
activation function is chosen for a model, it defines the 
model’s capability of learning the training datasets, 
based on which the output predictions are made. 

We have several types of activation functions are 
below: 

ReLu is known as Rectified Linear Activation 
calculated by max (0.0, x). Here x is considered as an 
input value, if x is negative then the activated function 
returns an output of 0.0. In the case of x being positive 
the output value is x. 

Sigmoid is known as Sigmoid function calculated 
by 1.0 / (1.0 + e-x). Outputs are in the range of [0, 1]. If 
the input value is more towards the positive, then the 
output is closer to 1.0 else the output is closer to 0.0. 

Tanh known as Hyperbolic Tangent calculated by 
(ex – e-x) / (ex + e-x). Outputs are in the range of -1 to 
+ 1. If the input value is more towards the positive, 
then the output is closer to +1.0 else the output is 
closer to -1.0. 

Fully Connected layers (FC) are placed at the end 
of the architecture. They often function on an input 
which is flattened and connected to all the neurons in 
the network. To create a single feature vector, the 
output generated by the convolutional layer is 
flattened.  

3.3 Forward and Backward 
Propagations 

In the forward propagation, starting with the input, 
the computation goes through different hidden layers 
and gets processed based on its activation function. 
Once the input is processed, it is then passed to the 
next consecutive layer in the forward direction. 

Similarly backward propagation is performed. 
Error calculations and weights adjustments are 
propagated backwards to the previous layers. We 
have output_vector and target_output_vector as an 
input to backward propagation and 
adjusted_weight_vector as an output. 
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4 DOUBLE LAYER CNN 

 

Figure 2: Skip layers implemented in architecture. 

 

Figure 3: Code snippet for two linear functions. 

# Model Avg loss 
#Correct 
prediction 

Avg 
Accuracy 

1 0.693697 403/800 50.375 

2 0.693474 403/800 50.375 

3 0.693151 396/800 49.500 

4 0.117733 780/800 97.500 

5 0.018077 799/800 99.875 

6 0.695256 401/800 50.125 

7 0.015770 795/800 99.375 

8 0.015053 798/800 99.750 

Fig. 2 is the architecture diagram where the input is 
directly sent to the 3rd convolutional layer, skipping 
first two layers. In the FC layers the data coming from 
the FC1 layer is sent to the FC3 layer by skipping the 
FC2 layer. 

As the name says, we have developed 2 individual 
layers linear 1, linear 2 and implemented these 2 
different linear layers in the same model. We have 
implemented 8 models: model 1 through model 8 as 
follows. 

Model 1 uses the inbuilt functions of the torch and 
we have implemented the network using 5 
convolutional layers and 4 fully connected layers. 
After implementing the model, we have trained our 
pre-processed dataset in the built model. After 
training we tested the model with the test dataset. And 
got the accuracy. 

Here in model 2 we are skipped some of the layers 
in convolutional and in the linear as well to see if 
there is any improvement in the accuracy of the 
model. 

After implementing the model, we have trained 
our pre-processed dataset in the built model. After 
training we tested the model with the test dataset and 
computed the accuracy. 

Model 3 is implemented using the developed 
functions; it hasn't used any inbuilt functions like in 
model 1 and model 2. Here we have taken the source 
code and changed the formula used in the linear 
model and we used the changed formula in our model 
3 and model 4 to see if there is any improvement in 
the accuracy or not. We have developed the model 
with 5 convolutional layers and 4 fully connected 
layers. The data is sent to all the included layers i.e., 
data is passed to all 5 convolutional layers and 4 fully 
connected layers. After implementing the model, we 
have trained our pre-processed dataset in the built 
model. After training we tested the model with the 
test dataset.  
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Here in model 4, we are skipping some of the 
layers in convolutional and in the linear as well to see 
if there is any improvement in the accuracy of the 
model. After implementing the model, we have 
trained our pre-processed dataset in the built model. 
After training we tested the model with the test 
dataset. Finally, we have observed that model 4 has 
better performance compared to other models. And 
the model 3 also got better performance compared to 
model 1 and model 2.  

In model 5 we added multiple weights and 
multiple bias values to each layer instead of addition 
biases and we have sent this updates values of new 
weights and bias to the next layers. We have trained 
our pre-processed dataset in the built model and 
tested the model with the test dataset.  

Model 6 is implemented using the developed 
functions; it hasn't used any inbuilt functions like in 
model 1 and model 2. Here we have modified the 
source code and changed the formula used in the 
linear. The formula we used here is we added multiple 
weights and multiple bias values to each layer and we 
have sent this updates values of new weights and bias 
to the next layers.  

Model 7 we used separate functions and 2 separate 
linear functions i.e., linear 1 and linear 2 and used 
these 2 different linear functions in fully connected 
layers. We have developed the model with 5 
convolutional layers and 4 fully connected layers.  

Model 8 is implemented using the developed 
functions; it hasn't used any inbuilt functions like in 
model 1 and model 2. 

5 SIMULATIONS AND RESULTS 

5.1 Datasets and Computer 

The data set we used here is the 2 classes dataset that 
has 4000 images of eyes open and closed of different 
peoples and we extracted the data from online 
resources (Patil, 2022). The computer used here is the 
Alienware M17R3. It has an i7 processor,16GB 
Ram,6GB Nvidia GeForce rtx2070 and has a storage 
of 1TB SSD. 

5.2 Results and Comparison 

We ran our model with the data and the accuracy and 
average loss of the model is observed. We can have 
the loss for each batch of images is observed. You can 
see the accuracy value i.e., (number of correct 
images/total number of test images). Fig.  

MODEL 1: - Accuracy 
Graphical representation of the Loss value of batch 
for the given epoch.  

 

Figure 4: Loss Graph of Model 1. 

 

Figure 5: Loss Graph of Model 2. 

 

Figure 6: Loss Graph of Model 3. 
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Figure 7: Loss Graph of Model 4. 

 

Figure 8: Loss Graph of Model 5. 

 
Figure 9: Loss Graph of Model 6. 

 

Figure 10: Loss Graph of Model 7. 

 

Figure 11: Loss Graph of Model 8. 

6 CONCLUSIONS AND FUTURE 
WORK 

In the paper we proposed several new algorithms or 
variations of CNN, including skipping layers, double 
layers, multiplication biases, etc.  Using the facial 
datasets for classification, simulation results show 
various degrees of improvements of the new 
algorithms on the prediction accuracy over original 
CNN algorithm. 

In the future work we plan to change the padding 
formula and stride values to check whether we can 
further improve the performance and accuracy. 
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Overall Comparison of All the 8 Models 

 

Figure 12: Accuracy Comparison of 8 models. 
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