
Comparison of FaaS Platform Performance in Private Clouds

Marcelo Augusto Da Cruz Motta a, Leonardo Reboucas De Carvalho b,
Michel Junio Ferreira Rosa c and Aleteia Patricia Favacho De Araujo d

Department of Computing Science, University of Brasilia, Brasilia, Brazil

Keywords: FaaS, Function-as-a-Service, Private Cloud, OpenWhisk, Fission, OpenFaaS.

Abstract: Since its appearance in mid-2014, there has been notable growth in the adoption of cloud services via the
Function-as-a-Service (FaaS) model, with several public cloud providers offering this model in their catalog.
Various papers have mostly evaluated the performance of these models in public cloud environments. How-
ever, the implementation of this model in a private cloud environment has not been explored enough by the
academic community. This article presents a two-level factorial design-based assessment of the main open-
source operating platforms (Such as OpenWhisk, Fission, and OpenFaaS) currently available to serve as a
comparative tool that can be used in decision-making processes. Results showed that regarding the stress test
the OpenWhisk platform has greater reliability. On the other hand, regarding the processing of the Matrix,
Factors, and Filesystem functions, Fission remains at similar behavior at all concurrency levels.

1 INTRODUCTION

Since the launch of the Function-as-a-service (FaaS)
(Schleier-Smith et al., 2021) cloud service model
in 2014 by AWS (Amazon Web Services) as AWS
Lambda (Amazon Web Services, 2021), several
providers have also added FaaS products to their cat-
alogs. Initially used in tasks of low complexity, the
model is quite lenient and soon came to expand its
range of applicability. From this point on, the growth
of this cloud service model has been quite represen-
tative, and it has been appointed as a candidate to be-
come the predominant model adopted by users.

In this context, some academic papers such as
(Carvalho and Araújo, 2019), (Garcı́a López et al.,
2018), (Malawski et al., 2020), have evaluated the
performance and behavior of this model, using dif-
ferent types of metrics. However, a greater interest
in the literature for the implementation of this ser-
vice model in public clouds have been noticed, even
considering the possibility of using FaaS technolo-
gies in private clouds. Given this scenario, this paper
presents a performance analysis based on a factorial
design considering the main open-source FaaS plat-
forms currently available, which are: Fission (Fission,

a https://orcid.org/0000-0002-4114-4735
b https://orcid.org/0000-0001-7459-281X
c https://orcid.org/0000-0002-0860-1834
d https://orcid.org/0000-0003-4645-6700

2021), OpenFaaS (OpenFaaS, 2021) and OpenWhisk
(Apache OpenWhisk, 2021) in order to identify the
best performing and lowest cost tool, aiming its use
in real world operations in private clouds.

An equivalent environment containing these tools
were provisioned in Dataprev’s 1 private cloud in-
frastructure to allow a comprehensive analysis on the
quality and on the efficiency. To achieve this goal,
corresponding workloads were planned and executed
on each platform using the Apache JMeter (Halili,
2008) tool and some metrics were collected from
them, allowing comparative analysis under different
conditions. Results showed that the OpenFaaS plat-
form obtained a more consistent response level in
several tests regarding the network-bound function.
When processing the Matrix function, The Open-
Whisk platform reached a more consistent level at the
beginning, being outperformed by Fission in large ac-
tivations.

This paper is divided into six sections, this being
an introductory section. Section 2 presents the con-
cepts regarding Function-as-a-Service and the main
platforms of this model. In Section 3, related papers
are presented. Section 4 presents the methodology
used in this paper, while Section 5 presents the re-
sults. Finally, Section 6 presents a conclusion and fu-
ture work.

1Social Security Data Processing Company, a Brazilian
state-owned company. https://www.dataprev.gov.br/

Motta, M., Reboucas De Carvalho, L., Rosa, M. and Favacho De Araujo, A.
Comparison of FaaS Platform Performance in Private Clouds.
DOI: 10.5220/0011116700003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 109-120
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

109



2 FUNCTION-AS-A-SERVICE

Also called Serverless (Chapin and Roberts, 2017),
or Backend-as-a-Service, (BaaS) (Castro et al., 2019)
when used specifically to act as APIs, the Function-
as-a-Service (FaaS) model suppliers give the users in-
terfaces (graphical or command line) to allow the in-
put and the manipulation of source code written in any
of the supported programming languages, supervis-
ing the application processing using pre-configured
triggers. These triggers can originate eighter from
the provider’s services, or through an API (Schleier-
Smith et al., 2021).

Even if the fluctuation in the load exerted on the
service is considered, it is expected that the provider
guarantees that it can respond to the triggers de-
mands, eventually making available more computa-
tional resources to contemplate the effective process-
ing promptly, even in overload situations. Likewise,
in situations of a low load, the provider must deallo-
cate additional resources to minimize the operational
cost of the platform transparently for its users.

Normally, the charging part in this service model
is carried out through a policy based on the number
of resources that the function has allocated, consider-
ing its execution time, thus making it possible to not
charge for inactivity as occurs in traditional models of
cloud services. Additionally, given its elastic charac-
teristic, FaaS deals with the application’s operational
overloads without the need for user intervention. Be-
cause they do not share resources at runtime, FaaS
services usually have limitations related to allocable
resources per function (RAM, CPU, etc.) and maxi-
mum execution time. In scenarios where maintaining
state is needed, it will also be necessary to use other
resources from the provider for storage purposes.

Today’s largest public cloud providers offer ser-
vice options oriented to the FaaS model. AWS, a pio-
neer in this segment, offers the AWS Lambda (Ama-
zon Web Services, 2021). The Google Cloud Plat-
form also offers a FaaS service, Google Cloud Func-
tion (Google, 2021). Microsoft has Azure Functions
(Microsoft, 2021) as its product and other providers
like Oracle, IBM and Alibaba also have their FaaS
model solutions. Each provider has its own strategy
to operationally sustain these FaaS-based services.
Google uses the Borg (Verma et al., 2015) container
orchestrator to render its cloud services, including
Cloud Functions. Borg was the basis for the develop-
ment of Kubernetes2 (Burns et al., 2016). AWS uses
the Firecracker platform (Amazon, 2021) to orches-

2Kubernetes is an open-source container orchestrator
used to automate the deployment, sizing and management
of applications

trate the microVms consumed by AWS Lambda. Mi-
crosoft Azure has adopted their own solution to man-
age the virtual machines that process the executions
of its FaaS solution in Azure Functions.

However, there are cases when it is not possible to
use public cloud solutions, such as the case of several
agencies of the Brazilian government, which, for se-
curity reasons, need to house all the data and services
they manage within their own infrastructure. There-
fore, this study used open-source FaaS platforms in
Dataprev’s private cloud infrastructure, a Brazilian
state-owned technology company that has Datacen-
ters located in three large urban centers in Brazil
(Brası́lia, Rio de Janeiro, and São Paulo).

2.1 Open-source FaaS Platforms

There are currently several open-source tools for
FaaS. To describe the FaaS tools studied in this paper,
we consider some fundamental criteria in a FaaS envi-
ronment to analyze the degree of maturity of each one
of the criteria such as scalability, language support,
large-scale operation, community support and docu-
mentation.

In some cases, public providers choose to use
open-source FaaS tools. An example would be
IBM, which uses OpenWhisk (Djemame et al., 2020).
Apache OpenWhisk is an open-source distributed
serverless platform that executes functions in re-
sponse to events, at any scale. OpenWhisk man-
ages infrastructure, servers, and scaling using Docker
containers. This platform supports the processing of
several programming languages, which can be dy-
namically scheduled and executed in response to as-
sociated events (via triggers) from external sources
(Feeds) or HTTP requests. The project also includes
a REST API-based command-line interface (CLI)
along with other tools to support packages, catalog
services, and many popular container deployment op-
tions.

Oracle uses the Fn (Fn Project, 2021) for oper-
ational support of the Oracle Cloud Functions ser-
vice. The Fn (Fn Project, 2021) project is an open-
source container-native serverless platform that runs
on public and private clouds. It supports all program-
ming languages, it is extensible and has a high per-
formance. Considering that Fn and OpenWhisk can
operate in a large public provider, both currently have
a considerable degree of maturity.

The Texas Advanced Computing Center - TACC
uses Abaco (Stubbs et al., 2017) as its FaaS solution.
TACC is a niche provider, focused on academic re-
search. Abaco uses the Docker-compose orchestra-
tor, which is not cluster-aware and therefore operates

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

110



Table 1: Open-source FaaS Tools.

Tool Environments Private provider Supported
Languages

Support -
GitHub/Slack

Documen-
tation Maturity

Fission (Fission,
2021) Kubernetes

NodeJS, Python, Go,
Java, Ruby, Binary,
PHP, .NET, .NET 2.0
and Perl

N/A Yes High High

Fn (Fn Project,
2021) Kubernetes Numerous (Docker

images) Oracle Yes High High

Knative (Knative,
2021) Kubernetes Numerous (Docker

images) N/A Yes High High

OpenFaaS
(Kaewkasi, 2018) Kubernetes Numerous (Docker

images) N/A Yes High High

OpenWhisk (Dje-
mame et al., 2020)

Kubernetes,
OpenShift
and Docker-
compose

Go, Java, NodeJS,
.NET, PHP, Python,
Ruby, Rust,
Scala,Swift, Bal-
lerina and Deno

IBM Yes High High

Kubeless (Kube-
less, 2019) Kubernetes Java, NodeJS and

VertX N/A No Medium Medium

Knix (Knix, 2021) Kubernetes Python and Java N/A Yes Low Medium
Abaco (Stubbs
et al., 2017)

Docker-
compose

Numerous (Docker
images) TACC Yes Low Low

FuncX (Chard
et al., 2019)

Specific Appli-
cation Python N/A Yes Low Low

TinyFaaS
(Pfandzelter and
Bermbach, 2020)

Docker NodeJS N/A Yes Low Low

with scale constraints. Considering the characteristics
of Abaco, especially its limited scale, it is possible to
determine its maturity level as low for a scenario like
FaaS.

In addition to the solutions used by public
providers, there are other open-source tools avail-
able for the FaaS. KNIX MicroFunctions (formerly
SAND) (Knix, 2021) is a high-performance open
source serverless computing platform designed to
minimize startup delays for function execution. This
tool aims to provide support for persistent functions
and optimize the use of resources. It has limited sup-
port for languages (Python and Java) and therefore its
maturity level was considered medium.

Kubeless (Kubeless, 2019) is a tool that uses Ku-
bernetes features to provide automatic scaling, API
routing, monitoring, troubleshooting and more. It
also has limited language support (Java, NodeJS and
VertX) and therefore its maturity level will be consid-
ered medium in this paper.

FuncX (Chard et al., 2019) is a distributed FaaS
platform that enables the execution of flexible, scal-
able, and high-performance remote functions. Un-
like centralized FaaS platforms, FuncX allows users
to perform functions on remote heterogeneous com-
puters, from laptops to campus clusters, clouds, and
supercomputers (Chard et al., 2019). The heterogene-
ity characteristic of FuncX is its great advantage over
other tools. However, it only supports Python, mak-

ing it limited in the general context of FaaS, and its
maturity level was considered low.

Fission (Fission, 2021) is an open-source frame-
work that runs on Kubernetes and is extensible to any
programming language. In Fission, the core is writ-
ten in the Go language and the specific parts of the
languages are isolated in something called the lower
environment. This platform maintains a pool of “hot”
containers, each one with a small dynamic loader.
When a function is called for the first time, that is,
cold-initialized, a running container is chosen, and the
function is loaded. This pool is what makes Fission
fast, achieving cold start latencies of around 100 mil-
liseconds. Thus, we can consider that Fission has a
high degree of maturity.

Knative (Knative, 2021) allows developers to use
an event-driven architecture. An event-driven archi-
tecture is based on the concept of decoupled rela-
tionships between event producers - that create events
- and event consumers, or collectors, - that receive
events. Knative’s support platform is Kubernetes, on
which container image deployments are made. Due to
its characteristics, Knative can be classified as having
a high degree of maturity.

OpenFaaS (Kaewkasi, 2018) is an open-source
tool that runs on Kubernetes and aims to make it eas-
ier for developers to implement event-driven func-
tions and microservices. It provides a highly scalable
endpoint with elasticity and automatic metrics. Con-

Comparison of FaaS Platform Performance in Private Clouds

111



sidering that it works with container images, it can po-
tentially work with all programming languages. This
along with the support in Kubernetes, which is highly
scalable, gives OpenFaaS a high degree of maturity.

TinyFaaS (Pfandzelter and Bermbach, 2020) is a
lightweight FaaS platform for the edge environment
with a focus on performance in constrained environ-
ments. Once a role is deployed to TinyFaaS, role han-
dlers are created automatically. Additionally, Tiny-
FaaS works on Docker containers. Considering that
TinyFaaS only works with functions written in the
NodeJS language and given its specific applicability,
in this paper its maturity level was considered low.

Table 1 presents the main characteristics of open-
source FaaS tools that can be considered for deploy-
ment in private cloud environments. Considering Ta-
ble 1, five of them presented a high degree of maturity
according to the established criteria, which are: Fis-
sion, Fn, Knative, OpenFaaS and OpenWhisk. How-
ever, other criteria such as dimensioning strategies,
resource consumption, configurability, among others,
can impact on the performance of solutions operated
on this type of platform.

Therefore, this paper carried out an experiment to
allow an evaluation of these characteristics in a real
operational situation. The adopted methodology will
be presented in Section 4.

3 RELATED WORKS

Going through the literature, the majority of papers
are predominantly focused on the evaluation of FaaS
platforms used in Public clouds. In (Copik et al.,
2021) the authors propose the Serverless Benchmark
Suite - SEBS, which consists of specifying represen-
tative workloads, monitoring the implementation, and
evaluating the infrastructure. The abstract model of a
FaaS implementation ensures the benchmark’s appli-
cability to various commercial vendors such as AWS,
Azure, and Google Cloud. This paper evaluates as-
pects such as time, CPU, memory, I/O, code size, and
cost based on the performed test cases. However, it
does not support testing on open-source platforms that
can be deployed in a private cloud environment.

The paper (Grambow et al., 2021) presents an
application-centric benchmark framework for FaaS
environments with a focus on evaluatiing realistic and
typical use cases for FaaS applications. It has two
built-in benchmarks (e-commerce and IoT), which are
extensible for new workload profiles and new plat-
forms. In addition, it supports federated benchmark
testing, in which the benchmark application is dis-
tributed across multiple vendors and supports fine-

grained analytics. The authors compare three public
providers and analyze the characteristics of a feder-
ated fog configuration, and this is their main contribu-
tion. However, the extension of the sample spectrum
of tests carried out between public providers and the
cutting-edge approach used by the authors is limited,
given the use of only one of the supported platforms
(TinyFaaS) as an example of a federation, rather than
the other two platforms (OpenFaaS and OpenWhisk),
which are considerably more robust.

In the paper (Jindal et al., 2021), an extension
of the concept of FaaS as a programming interface
for heterogeneous clusters and to support heteroge-
neous functions with diverse computational and data
requirements is presented. This extension is a net-
work of distributed heterogeneous destination plat-
forms equivalent to content delivery networks, widely
used in other computational cloud models. In this pro-
posal, a target platform is a combination of a cluster
of homogeneous nodes and a FaaS platform on top of
it. In this context, metrics such as requests, CPU, acti-
vations, and response times are evaluated from func-
tions adapted from the FaaSprofiler (Shahrad et al.,
2019) benchmark. Despite using an open-source plat-
form suitable for deployment in a private cloud envi-
ronment, the study was limited to just two represen-
tatives of these tools, although there are others whose
level of maturity would allow them to be part of the
list of FaaS operating platforms adopted by the tool.

In (Wen et al., 2021), the authors perform a de-
tailed evaluation of FaaS services: AWS, Azure, GCP,
and Alibaba, running a test flow using microbench-
marks (CPU, memory, I/O, and network) and macro
benchmarks (multimedia, map- Reduce and machine
learning). The tests used specific functions written in
Python, NojeJS, and Java that explored the properties
involved in the benchmark to assess startup latency
and resource usage efficiency. However, all platforms
evaluated are deployed in public clouds and as the un-
derlying infrastructure in these services remains un-
clear to the customer, the evaluation is restricted to
the overall approach taken by the provider. Thus, the
assessment of the architectural strategy does not con-
sider the platform in isolation.

vHive (Ustiugov et al., 2021) aims to enable FaaS
researchers to innovate in the deeply distributed soft-
ware stacks of a modern FaaS platform. vHive is
designed to support leading FaaS vendors by inte-
grating the same production-grade components used
by vendors, including the AWS Firecracker hyper-
visor, Cloud Native Computing Foundation Contain-
erd, and Kubernetes. vHive adopts the Knative plat-
form, allowing researchers to quickly deploy and test
any serverless application that can include many func-

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

112



Table 2: Related Works.

Study Year Private
provider

Maturity
analysis Approach Metrics Languages

(Maissen et al., 2020) 2020 No No
Specific func-
tions with
multilingual

Time and latency
Python,
NodeJS, Go
and .NET

(Copik et al., 2021) 2020 No No
Specific func-
tions with
multilingual

Time, CPU,
memory, I/O,
code size and
cost

Python and
NodeJS

(Wen et al., 2021) 2020 No No
Specific func-
tions with
multilingual

Startup latency
and resource
efficiency

Python, NojeJS
and Java

(Grambow et al.,
2021) 2021

OpenFaaS,
OpenWhisk
and TinyFaaS

No Realistic func-
tions Network traffic JavaScript

(Ustiugov et al., 2021) 2021 Firecracker No
Specific func-
tions and use of
snapshots

Delay on cold
start Python

(Jindal et al., 2021) 2021
OpenWhisk
and Open-
FaaS

No

FaaSprofiler
adapted func-
tions and
heterogeneous
multicenter
platforms

Requests, CPU,
activations and
time

Python

This paper 2022
OpenWhisk,
OpenFaaS
and Fission

Yes Specific func-
tions

Time, CPU, I/O
and Latency Python

tions, running on secure Firecracker microVMs, as
well as full server services. Both stateful functions
and services can be deployed using OCI / Docker im-
ages. vHive empowers system researchers to innovate
on key serverless features, including automatic role
sizing and cold boot delay optimization with multiple
snapshot engines.

The article (Maissen et al., 2020), introduces
FaaS-dom, a modular and extensible set of bench-
marks for evaluating serverless computing that in-
cludes a range of workloads and natively supports the
leading FaaS providers (AWS, Azure, Google, and
IBM). The great contribution of FaaS-dom consists of
the functions developed for execution during the tests,
serving as a basis for conducting this paper. Although
it allows the evaluation of the IBM solution, which in-
ternally uses an open-source platform, the evaluation
in FaaS-dom suppresses equity aspects between the
environments and, ends up focusing only on the eval-
uation of the provider, and not on the strategies used
by the platform.

Table 2 presents the main characteristics identified
in each related work described above. This paper, on
the other hand, explores tools that currently have a
high degree of maturity as FaaS solutions which are
available to deploy in private clouds, analyzing their
behavior by applying workloads from the benchmark
FaaSDom (Maissen et al., 2020), to identify the best

performing platform for the following cases: the sce-
nario of CPU-bound, I/O-bound and Network-bound
functions.

4 METHODOLOGY

The open-source FaaS platforms which were previ-
ously classified as having a high degree of maturity
were implemented in a private cloud environment.
Although Fn and Knative were classified in this list,
due to difficulties arising from the on-premise envi-
ronment, it was not possible to reach their ideal con-
figuration for a fair comparison with other platforms,
leaving only OpenFaaS, Fission, and OpenWhisk as
the focus of this paper. In OpenWhisk’s case, all it
took was a subtle increase in the pre-configured de-
fault limits on the platform.

The Kubernetes platform was chosen to define all
the tools to be compared. This allows the experi-
ment to focus on the strategies adopted by the tool,
preventing platform differences from interfering with
the results. Platform installations followed the man-
uals offered by the vendors and it was necessary to
increase the timeout of functions in the OpenFaaS
and OpenWhisk’s cases. Their activation limits per
minute were increased in order to equalize the three
analyzed platforms. No changes were made in default

Comparison of FaaS Platform Performance in Private Clouds

113



configuration of Fission.
The infrastructure used in this experiment was de-

ployed on Dataprev’s private cloud solution. In this
cloud it is possible to provide customized configura-
tions of memory, CPU, disk, among others. Table 3
shows the values for each resource that was used to
provision the Kubernetes clusters which support each
platform applied in this experiment. After the plat-
forms were implemented, four functions were pub-
lished in each of them, that have already been refer-
enced in the literature as source codes that perform
operations that allow evaluating the behavior of the
environments.

Table 3: Clusters Parameters.

Number of servers 3
Operational system RHEL 8.3
Storage 30GB
RAM memory 4GB
CPU 4 (2.5Ghz)

Physical machine Power Egde R900 - Intel
Xeon E7 4870

Hypervisor VMware ESXi 6
Docker v20.10.7
Kubernetes v1.21.3
Apache JMeter v5.4.1

For this paper, the Python functions proposed by
FaaS-dom (Maissen et al., 2020) selected were: La-
tency (Network-bound), Matrix (CPU-bound), Fac-
tors (CPU-bound) and Filesystem (I/O-bound). Ac-
cording to its documentation, the Latency function
measures the latency of a simple function, while the
Factors function calculates the factors of a number
iteratively to assess CPU performance. The Matrix
function multiplies two NxN matrices iteratively also
to assess CPU performance and the Filesystem func-
tion writes and reads n times a x kB file to the filesys-
tem.

In order to avoid any confusion with the nomen-
clature of tests with the Latency function adapted
from (Maissen et al., 2020), in this paper we will re-
fer to it as the Delay function. After each function
is published on each platform, URLs are made avail-
able and used to activate them. It was used five com-
mon concurrencies: 1, 2, 4, 8 and 16 simultaneous
requests. The tests were performed using the JMeter
(Halili, 2008) tool, which runs test batteries, collects
the metrics, and generates the results for analysis.

Figure 1 shows the architecture used in the experi-
ment. It is possible to see the individualization of each
platform with its Kubernetes cluster using the same
number of computational resources and the same con-
figuration for all FaaS tools. Each test was repeated
10 times. However, due to the cold start effect inher-

ent in the FaaS platforms, the three platforms were
previously triggered in each of the functions.

Figure 1: Experiment architecture.

A full factorial design utilizes every possible com-
bination at all levels of all factors. A performance
study with k factors, with the ith factor having ni lev-
els, requires n experiments (Jain, 1991). The advan-
tage of a full factorial design is that every possible
combination of configuration and workload is exam-
ined. It is possible to find the effect of every factor
including the secondary factors and their interactions.
The main problem is the cost of the study. It would
take too much time and money to conduct these many
experiments, especially when considering the possi-
bility that each of these experiments may have to be
repeated several times (Jain, 1991). Through the exe-
cution of a factorial design, it is possible to obtain the
percentage portions of the effects of each factor in the
result of the experiment, allowing the identification of
the effects with a greater degree of interference in the
results and thus helping decision-making processes.
In factorial designs with several repetitions, it is pos-
sible to obtain the sampling error effect. High sam-
pling error rates indicate the existence of factors not
mapped in the factorial design and this is a major as-
pect that helps in the decision-making process.

In order to identify which of the factors exerted
the greatest influence on the results after perform-
ing the tests, the factorial design 2k was used to start
the analysis of each comparison scenario between the
platforms used. In each factorial design, the factors
analyzed were: provider, concurrency, and function.
Factorial design factors and their levels are shown in
Table 4.

In order to observe the behavior of platforms in
extreme situations, a stress test was designed using
the Matrix function. In this test, platforms are sub-
jected to exponential levels of Matrix function con-
currency until they are unable to respond. The results
of factorial designs 2k, as well as the other results of
the experiment, are discussed in detail in Section 5.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

114



Table 4: Factorial Design Factors. Openwhisk (1),
OpenFaaS (2) and Fission (3).

Factor
(concurrence) Function Platforms

Lower (1) Matrix 1 1 2
Upper (16) Delay 3 2 3
Lower (1) Delay 1 1 2
Upper (16) Factors 3 2 3
Lower (1) Delay 1 1 2
Upper (16) Filesystem 3 2 3
Lower (1) Factors 1 1 2
Upper (16) Filesystem 3 2 3
Lower (1) Matrix 1 1 2
Upper (16) Factors 3 2 3
Lower (1) Matrix 1 1 2
Upper (16) Filesystem 3 2 3

5 RESULTS

This section was structured according to the analyzes
carried out in the tests performed on each platform.

5.1 Latency Analysis

Through the records obtained by the JMeter tool dur-
ing the tests, latency values were generated for all
levels of concurrence. In the execution without con-
currency (with the request only), ten result values
were generated for each function on each platform,
for concurrency level two, 20 result values, for con-
currency level four, 40, for concurrency level eigth,
80, and concurrency sixteen, 160 latency values for
each function.

Figure 2: Quantil-quantil plot for Fission under 16 of con-
currence.

In order to adequately represent the samples in
each execution block and allow a consolidated anal-
ysis of the data, it was necessary, using the analysis
of quantile-quantile graphs, to define a value for this
representation. Figure 2 represents all executions of
one of the Fission functions in 16 simultaneities (160
latency values), as well as Figure 3 for OpenFaaS, and
Figure 4 for OpenWhisk.

Figure 3: Quantil-quantil plot for OpenFaaS under 16 of
concurrence.

Figure 4: Quantil-quantil plot for OpenWhisk under 16 of
concurrence.

In all cases, it is found that the latency values do
not completely follow a normal distribution, as the
shape of the graphs does not look like a straight line
following a trendline. Thus, the average was adopted
as a representative metric of the samples in each con-
current run, better representing the data with disper-
sion characteristics.

After determining the best representative metric
for the latency records, we calculated the average
of all simultaneous executions according to Table 5,
where it is also possible to verify the Log10 values
calculated by the average obtained in every run. Thus,
the metric chosen to represent the runs was once again
the average, as shown in Table 5, and they were used
to build the graphs with the evolution of the execution
of each function on each platform.

Figure 5 shows the evolution of Matrix function
execution at each level of competition on both plat-
forms. It is noteworthy that Figure 5 shows the aver-
ages after undergoing a logarithmic transformation to
provide a better view of the information. It is possi-
ble to observe that, without concurrency, all platforms
present equivalent results for latency. However, as the
concurrency level increases, while Fission maintains
the latency results stable, OpenFaaS make a notice-
able upscale with concurrency of two and OpenWhisk

Comparison of FaaS Platform Performance in Private Clouds

115



Table 5: Consolidated Delay X Matrix X Factors X Filesystem results.

Platform Concur.
Function

Delay Matrix Factors Filesystem
Run Avg. Log10 Run Avg. Log10 Run Avg. Log10 Run Avg. Log10

Fission

16 30,68 1,49 889,91 2,95 17589,30 4,25 27677,16 4,44
8 26,39 1,42 547,56 2,74 14820,28 4,17 9001,76 3,95
4 23,80 1,38 443,53 2,65 13414,83 4,13 5332,23 3,73
2 34,65 1,54 423,50 2,63 12781,80 4,11 4785,10 3,68
1 80,50 1,91 1,00 446,30 12762,50 4,11 4788,40 3,68

OpenFaaS

16 10,63 1,03 3518,90 3,55 30479,75 4,48 27124,71 4,43
8 11,84 1,07 1907,26 3,28 33404,96 4,52 24423,61 4,39
4 10,85 1,04 896,65 2,95 38854,73 4,59 26730,43 4,43
2 11,50 1,06 371,55 2,57 18433,90 4,27 9373,70 3,97
1 14,10 1,15 393,00 2,59 9084,00 3,96 4617,00 3,66

OpenWhisk

16 2951,51 3,47 3974,74 3,60 23349,06 4,37 12842,34 4,11
8 128,29 2,11 448,53 2,65 13465,26 4,13 10784,60 4,03
4 34,90 1,54 391,60 2,59 9582,50 3,98 4573,18 3,66
2 52,80 1,72 500,90 2,70 8890,80 3,95 5074,35 3,71
1 71,10 1,85 332,70 2,52 8963,00 3,95 3950,80 3,60

with concurrency of eight. This demonstrates that Fis-
sion was able to process the Matrix function more ef-
ficiently than OpenWhisk and OpenFaaS.

Figure 5: Matrix function results.

With the averages also logarithmically trans-
formed, Figure 6 demonstrates the evolution of la-
tency in the execution of the Delay function on each
platform over each level of concurrency.

Figure 6: Delay function results.

Here we can see that when running without con-
currency, OpenFaaS obtained a much lower latency

result than the value obtained by Fission, followed
slightly by OpenWhisk, and, as the concurrency
level increases, OpenWhisk increase the distance for
Fission and OpenFaaS. After superior levels, how-
ever, Fission experiences a slight decrease in latency,
whereas OpenWhisk has a considerable growth. It is
possible to infer that OpenFaaS was more efficient
than the other platforms in processing the Latency
function at all concurrency levels.

The results have shown that regarding Delay func-
tion, OpenFaaS stands out in efficiency, followed by
Fission and then by OpenWhisk, whereas as to Ma-
trix function (which requires more processing), Open-
Whisk in executions with concurrency up to eight
shows lower efficiency concerning latency, being sur-
passed by Fission after executions with concurrence
ten. OpenFaaS, on the other hand, decreases its effi-
ciency under concurrence of four.

Figure 7 demonstrates the evolution of latency in
the execution of the Factors function on each platform
over each level of concurrency.

Figure 7: Factors function results.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

116



OpenWhisk has the lowest latency record with-
out concurrency, followed by OpenFaaS and Fission.
However, as the number of concurrencies increase,
OpenWhisk and Fission demonstrate consistency in
their latency levels. On the other hand, OpenFaaS
demonstrates an increase from tests with concurrency
of two.

Also logarithmically transformed, Figure 8
demonstrates the evolution of latency in the execu-
tion of the Filesystem function on each platform at all
concurrency levels.

Figure 8: Filesystem function results.

When disk-related resources are used, we can see
that OpenWhisk has the lowest latency record in the
first test (no concurrency), followed by OpenFaaS and
Fission with slightly higher latency and showing ex-
treme similarity in the initial tests. Given the increase
in concurrency, OpenFaaS experiences greater growth
than other platforms already with two and four con-
currency, remaining constant at eight and 16. Fis-
sion and OpenWhisk maintain their latency levels up
to the competition of four concurrencies, achieving
slight growth in both cases. With concurrency level
16, Openwhisk demonstrated the best records among
the analyzed platforms.

However, to identify which factor has the great-
est influence on the results, a factor analysis was per-
formed using six factorial designs 2k.

5.2 Factorial Designs

Table 6 presents the factorial planning used in both
cases, and it is possible to observe the eight tests per-
formed, as well as the effects and their interrelation-
ships. Lower levels are denoted by -1, while upper
levels are denoted by 1. All data used for average ex-
tractions according to the effects of each experiment
performed in each of the ten repetitions considered in
this experiment, as well as the sum of the difference
between each average and the mean square and the
partial calculating the sum of squared errors in this
experiment for every test (on every row) are available

Table 6: Factorial Design Planning.

Test P C F PxC PxF CxF PxFxC
1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1

on GitHub.3

In each case, platforms, functions and concur-
rency were classified according to Tables 6 and 4, thus
calculating the effects, variations, the RSS - Residual
Sum of Squares, SSY - Sum of the square of Y and
SST - Sum of the Total Square, allowing to obtain the
value of the fractions of each factor and their relations
in each result.

5.3 Factorial Design Delay-matrix

Figure 9 shows that, in the comparison between
OpenFaaS and Fission platforms, the effect of the
function factor is 26.35% on the results of the exper-
iments, in relation to the concurrency factor, in the
case of OpenWhisk and OpenFaaS it reaches 20% and
in the case of OpenWhisk and Fission the Function
factors 81.35%. Considering the scenario of the De-
lay and Matrix functions, it is possible to conclude
that, in this case, the Function factor has the greatest
effect on the results of the tests performed.

Figure 9: Factorial design results - Delay X Matrix.

5.4 Factorial Design Delay-factors

Analyzing Figure 10, regarding the Delay and Fac-
tors functions, all three comparisons between the plat-
forms analyzed present high levels of fraction for the
Function factor. OpenWhisk and Fission 76.14%,
OpenWhisk and OpenFaaS 72.73% and OpenWhisk
and Fission 96.25%.

3https://github.com/unb-faas/private-platform-bench
mark

Comparison of FaaS Platform Performance in Private Clouds

117



Figure 10: Factorial design results - Delay X Factors.

Like previous analysis, when we correlate the De-
lay and Matrix functions, the function factor has the
largest representation in the results, with some dis-
tance to the second larger.

5.5 Factorial Design Delay-filesystem

The correlation between the Delay and Matrix func-
tions calculated via the factorial plane again shows
that the Function factor was predominant in this phase
of the analysis, with correlation of OpenFaaS and Fis-
sion obtaining the fraction of 68.90%, OpenWhisk
and OpenFaaS with 68.84% followed by OpenWhisk
and Fission with 93.18%. In the competition factor,
the three platforms also show similar behavior, with
fractions under 10%. Again, like the two previous
analyses, the function factor has a greater representa-
tion in the results in all three Platforms.

Figure 11: Factorial design results - Delay X Filesystem.

5.6 Factorial Design Factors-filesystem

At this stage, representative results were found us-
ing other functions. When analyzing the correlation
between the Matrix and Factors functions in Figure
12, the Factor function is no longer as representative
as seen before, reaching only the fraction of 5.21%
in OpenFaaS and Fission, in OpenWhisk and Open-
FaaS 6.84%, and in OpenWhisk and Fission 13.5%.
In this new scenario, it is possible to see the predom-
inance of the concurrence factor on the three plat-

forms, with OpenFaaS and Fission 62.37%, Open-
Whisk and OpenFaaS 84.95% and OpenWhisk and
Fission 76.58%.

Figure 12: Factorial design results - Factors X Filesystem.

Considering the use that functions related to CPU
consumption and I/O, we realized that concurrence
has the predominant fraction in the results of the three
correlated platforms.

5.7 Factorial Design Matrix-factors

In the analysis of the correlation between the Matrix
and Factors functions, the most representative factor
was again the Function. In the Figure 13 it is possible
to see the fractions of 78.89% between OpenWhisk
with Fission, 66.66% between OpenFaaS and Fission,
and 80.77% between OpenWhisk with OpenFaaS.

Figure 13: Factorial design results - Matrix X Factors.

Regarding concurrency, in all three scenarios an-
alyzed for the two functions on the three platforms,
its factor fraction values average from 10% to 28.8%.
Considering the correlation of the functions analyzed
in this case, the results again allow to infer that the
function factor predominates in the of the results.

5.8 Factorial Design Matrix-filesystem

As to the correlation of the Matrix and Filesystem
functions, they obtained two factors with consider-
able representativeness. The Function and Concur-
rency factors, in this case, have representative values.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

118



In the function factor for the OpenFaaS and Fission
correlation the fraction of 63.95% influences the re-
sults, whereas for the concurrency factor is 24.49%.
In the case of OpenWhisk and OpenFaaS correla-
tion, 50.71% for Function and 44.49% for concur-
rency. Considering OpenWhisk and Fission, 68.09%
for function and 24.18% for concurrency.

Figure 14: Factorial design results - Matrix X Filesystem.

Considering the average sampling error of only
1.19% in the 18 scenarios calculated in the experi-
ment, it is possible to have a more detailed view of
the factors that influence the results.

5.9 Factorial Design Results

In the studied cases, the influence of the Function and
Concurrency factors was predominantly representa-
tive of the latency results obtained through the tests
performed in the functions on each platform.

5.10 Reliability

In the stress test performed with the Matrix function,
only Openwhisk was able to reach the limit of 16,384
simultaneous requests before starting to fail, followed
by OpenFaas with approximately 1024 requests and
Fission, with 512 requests. Figure 15 shows the de-
gree of reliability of each platform calculated based
on the percentage of satisfied requests.

Figure 15: Reliability.

It is possible to observe that up to 128 simultane-
ous requests, the three platforms maintain the maxi-
mum level of reliability, fulfilling 100% of requests.
At near 512 simultaneous requests, OpenFaaS starts
to suffer a gradual drop in its reliability rate and, at
this concurrency, Fission also shows a drop in the suc-
cess percentage. Although OpenFaaS registers some
level of reliability between 512 and 1024 concurrent
requests, its reliability is very low and can be con-
sidered irrelevant. OpenWhisk, on the other hand,
demonstrates greater reliability among the three plat-
forms, showing an error in aproximately 10% of the
requests only after a load greater than 1024 simulta-
neous requests.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, an experiment carried out in a pri-
vate cloud environment to evaluate the FaaS Fission,
OpenFaaS and OpenWhisk platforms under different
concurrency conditions.

In case of the Delay function with a concurrency
of 16, the results showed that the OpenFaaS platform
performed better in comparison to latency during the
tests, managing to keep its latency results at simi-
lar levels even under the first five concurrency levels,
while Fission and OpenWhisk experienced linear la-
tency variation in the tests. However, when the Ma-
trix function was also analyzed under simultaneity of
16, the Fission platform kept its latency levels con-
stant, while OpenFaaS and OpenWhisk showed slight
growth in latency due to increased concurrency.

In the best factorial design applied to the results
of the experiment, it was verified that the results ob-
tained were influenced by 96.25% by the function fac-
tor, while the other factors were around 0.85%, and
the relationships between the factors influenced be-
tween 0.01% and 1.13% each.

In future papers, considering the relevance of this
factor in the results presented, other functions should
be included in this experiment to provide a more re-
alistic analysis, using real case examples in systems
with micro-services architecture eligible for Dataprev.
This experiment can also be carried out on Kubernetes
platforms that have a greater number of resources. It
would also be possible to add other solutions such as
Fn (Fn Project, 2021) and KNative (Knative, 2021),
establishing a customized configuration in each plat-
form that offers equal conditions between the tools
that allow an adequate comparison.

Comparison of FaaS Platform Performance in Private Clouds

119



REFERENCES

Amazon (2021). Firecracker. https://firecracker-microvm
.github.io/. [Online; accessed 10-August-2021].

Amazon Web Services (2021). AWS lambda.
Apache OpenWhisk (2021). Open source serverless cloud

platform.
Burns, B., Grant, B., Oppenheimer, D., Brewer, E., and

Wilkes, J. (2016). Borg, omega, and kubernetes. Com-
munications of the ACM, 59(5):50–57.

Carvalho, L. and Araújo, A. P. F. (2019). Framework
node2faas: Automatic nodejs application converter
for function as a service. In Proceedings of the 9th In-
ternational Conference on Cloud Computing and Ser-
vices Science - Volume 1: CLOSER,, pages 271–278.
INSTICC, SciTePress.

Castro, P., Ishakian, V., Muthusamy, V., and Slominski, A.
(2019). The rise of serverless computing. Commun.
ACM, 62(12):44–54.

Chapin, J. and Roberts, M. (2017). What is Serverless. Or-
eilly.

Chard, R., Skluzacek, T. J., Li, Z., Babuji, Y., Woodard,
A., Blaiszik, B., Tuecke, S., Foster, I., and Chard,
K. (2019). Serverless supercomputing: High perfor-
mance function as a service for science.

Copik, M., Kwasniewski, G., Besta, M., Podstawski, M.,
and Hoefler, T. (2021). Sebs: A serverless benchmark
suite for function-as-a-service computing.

Djemame, K., Parker, M., and Datsev, D. (2020). Open-
source serverless architectures: an evaluation of
apache openwhisk. In 2020 IEEE/ACM 13th Inter-
national Conference on Utility and Cloud Computing
(UCC), pages 329–335.

Fission (2021). Open source, kubernetes-native serverless
framework.

Fn Project (2021). Open source. container-native. serverless
platform.

Garcı́a López, P., Sánchez-Artigas, M., Parı́s, G.,
Barcelona Pons, D., Ruiz Ollobarren, A., and Ar-
royo Pinto, D. (2018). Comparison of faas orchestra-
tion systems. In 2018 IEEE/ACM International Con-
ference on Utility and Cloud Computing Companion
(UCC Companion), pages 148–153.

Google (2021). Cloud functions. https://cloud.google.com
/functions/. [Online; accessed 10-August-2021].

Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C.,
Zhao, M., and Bermbach, D. (2021). Befaas: An
application-centric benchmarking framework for faas
platforms.

Halili, E. H. (2008). Apache JMeter. Packt Publishing
Birmingham.

Jain, R. (1991). The art of computer systems: Tech-
niques for experimental design, measurement, simu-
lation, and modeling. John Wiley & Sons,.

Jindal, A., Gerndt, M., Chadha, M., Podolskiy, V., and
Chen, P. (2021). Function delivery network: Extend-
ing serverless computing for heterogeneous platforms.
Software: Practice and Experience.

Kaewkasi, C. (2018). Docker for Serverless Applications:
Containerize and Orchestrate Functions Using Open-
Faas, OpenWhisk, and Fn. Packt Publishing.

Knative (2021). Knative - enterprise-grade serverless on
your own terms.

Knix (2021). Knix: A high-performance, open-source
serverless computing platform.

Kubeless (2019). Kubeless - the kubernetes native server-
less framework: Build advanced applications with
faas on top of kubernetes.

Maissen, P., Felber, P., Kropf, P., and Schiavoni, V. (2020).
Faasdom. Proceedings of the 14th ACM International
Conference on Distributed and Event-based Systems.

Malawski, M., Gajek, A., Zima, A., Balis, B., and Figiela,
K. (2020). Serverless execution of scientific work-
flows: Experiments with hyperflow, aws lambda and
google cloud functions. Future Generation Computer
Systems, 110:502–514.

Microsoft (2021). Azure functions.
OpenFaaS (2021). Serverless functions, made simple.
Pfandzelter, T. and Bermbach, D. (2020). tinyfaas: A

lightweight faas platform for edge environments. In
2020 IEEE International Conference on Fog Comput-
ing (ICFC), pages 17–24.

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira,
J., Yadwadkar, N. J., Popa, R. A., Gonzalez, J. E., Sto-
ica, I., and Patterson, D. A. (2021). What serverless
computing is and should become: The next phase of
cloud computing. Commun. ACM, 64(5):76–84.

Shahrad, M., Balkind, J., and Wentzlaff, D. (2019). Archi-
tectural implications of function-as-a-service comput-
ing. In Proceedings of the 52nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO
’52, page 1063–1075, New York, NY, USA. Associa-
tion for Computing Machinery.

Stubbs, J., Dooley, R., and Vaughn, M. (2017). Containers-
as-a-service via the Actor Model. In Gateways 2016
proceedings.

Ustiugov, D., Petrov, P., Kogias, M., Bugnion, E., and Grot,
B. (2021). Benchmarking, analysis, and optimization
of serverless function snapshots. Proceedings of the
26th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems.

Verma, A., Pedrosa, L., Korupolu, M., Oppenheimer, D.,
Tune, E., and Wilkes, J. (2015). Large-scale cluster
management at google with borg. In Proceedings of
the Tenth European Conference on Computer Systems,
EuroSys ’15, New York, NY, USA. Association for
Computing Machinery.

Wen, J., Liu, Y., Chen, Z., Ma, Y., Wang, H., and Liu, X.
(2021). Understanding characteristics of commodity
serverless computing platforms.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

120


