
Scoring-based DOM Content Selection with Discrete Periodicity Analysis

Thomas Osterland1,2 and Thomas Rose1,2

1Fraunhofer FIT, Schloss Birlinghoven 1, Sankt Augustin, Germany
2RWTH Aachen University, Ahornstr. 55, Aachen, Germany

Keywords: Web Scraping, Periodicity Analysis, Content Extraction.

Abstract: The comprehensive analysis of large data volumes forms the shape of the future. It enables decision-making
based on empiric evidence instead of expert experience and its utilization for the training of machine learning
models enables new use cases in image recognition, speech analysis or regression and classification. One
problem with data is, that it is often not readily available in aggregated form. Instead, it is necessary to search
the web for information and elaborately mine websites for specific data. This is known as web scraping. In
this paper we present an interactive, scoring based approach for the scraping of specific information from
websites. We propose a scoring function, that enables the adaption of threshold values to select specific sets of
data. We combine the scoring of paths in a web pages DOM with periodicity analysis to enable the selection
of complex patterns in structured data. This allows non-expert users to train content selection models and to
label classification data for supervised learning.

1 INTRODUCTION

The substantial advances in data analytics, machine
learning and stochastic modeling are only a few ex-
amples, that demonstrate the importance of data for
use cases and applications of the future. The world
wide web makes data provision efficient and easily
available almost everywhere and also enables the col-
lection of new data on a large scale.

Often data is not readily available in a format, that
is easily accessible by computer systems. Web pages
are often optimized to improve the visual appeal to
humans. The document object model (DOM) struc-
tures the content of websites. Thereby, a substantial
part of the DOM is not concerned with the direct pre-
sentation of information, but with the layout and look
to present the information pleasantly, i.e., to improve
the presentation such that a human reader can quickly
and efficiently identify and extract the most important
parts.

Although, this approach is beneficial for human
readers, it obfuscates the presentation for computer
systems, since those mostly do not understand the
data on a semantic level and thus, are not capable to
distinguish presentation related data from actual data.

Web scraping or more general screen scraping de-
scribes the automated extraction of information from
the computer screen or in our case websites. For

many applications it is an important pre-processing
step before applying machine learning and data an-
alytics (Glez-Peña et al., 2014; Mahto and Singh,
2016).

The usual process of web scraping involves users,
that decide what data to extract from websites. The
extraction is determined by models given as regex or
selector languages like XPath. Then in consecutive
execution steps scrapers use these models to extract
data from websites. This can be done in certain in-
tervals and also throughout a large set of structurally
equal websites, that contain different data. If a web-
site changes, for instance if an owner of a website ap-
plies A/B testing to compare different websites de-
signs, new models must be fitted. Although, the ac-
tual scraping step is executed automatically without
user interaction, the model generation is done by a
user, who must be an expert or specifically trained if
the model fit requires programming.

Besides, scraping large amounts of data from
equally structured websites another use case, that mo-
tivates our approach comes in the form of browser
plugins, web automation (Leshed et al., 2008) or gen-
eral software, that directly interacts with specific data
from websites. If the websites changes a fixed model
(as, for instance an XPath expression), that was spec-
ified by a programmer might not longer be able to ex-
tract the important information. Then a new software

280
Osterland, T. and Rose, T.
Scoring-based DOM Content Selection with Discrete Periodicity Analysis.
DOI: 10.5220/0011116300003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 2, pages 280-289
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



version is necessary. However, if the model gener-
ation is as simple as clicking on an element on the
website, we can let the user update the model. In par-
ticular, if the model is transferable, such an updated
model can be shared among all users of a software
and some users might not even notice, that the web-
site changed.

A third use case, that benefits from the proposed
selector is supervised machine learning. To train
models large data sets needs to be prepared and la-
beled or categorized. Since the data sets are often
large, the combined work of many people is required.
In this case, it is an advantage if these people do not
need to be experts in programming, that are capa-
ble of creating regular expressions or XPath defini-
tions. This enables the utilization of crowd worker
platforms, as Amazon’s Mechanical Turk. Our ap-
proach allows the identification of complex selection
patterns based on mouse clicks of a user. This makes
our approach particularly accessible to untrained per-
sonnel.

The general idea of our approach is to weight dif-
ferent paths in the websites DOM tree depending on
the user inputs. Thereby, the user inputs are evaluated
to obtain a model, that can be used to assess whether
a given path is likely to be a selected one. The nov-
elty of our approach is the idea to combine the path
scoring with discrete periodicity analysis to identify
specific patterns selected by a user. For instance, se-
lecting every second or third row of a table or two
consecutive rows followed by one row that is not se-
lected. These are often properties, that can be easily
expressed in scripting-based selectors as XPath, but
are difficult or elaborate to obtain with click events.

The paper is structured as follows. In Section 2,
we review related work, that discusses web scraping
and technical approaches to extract specific informa-
tion. We then start in Section 3 with the introduction
of the path scoring approach, that is based on anal-
yses of CSS classes and HTML tag names mapped
to states of the DOM tree. We introduce periodicity
analysis in Section 3.1 and a bisimulation relation to
asses the similarity of subtrees in Section 3.2, which
further improves the selection results of our approach.
We evaluate the model sizes and the time complexity
of our approach in Section 4 and also discuss experi-
mental results. The results of this paper and potential
future work are discussed in Section 5.

2 RELATED WORK

Glez-Peña et al. differentiate three different classes
of web scraping approaches “(i) libraries for general

purpose programming languages, (ii) frameworks and
(iii) desktop-based environments“ (Glez-Peña et al.,
2014). Thereby, the first category supports in the uti-
lization of programming languages as Perl or Python
to extract information from websites. Glez-Peña et al.
also count commandline tools, as curl or wget to this
category, what softens the clear separation of the three
categories. The second category entails frameworks,
as Scrapy or jARVEST and demarcates itself from the
other categories by containing approaches, that are a
“more integrative solution“ (Glez-Peña et al., 2014).
The final category, enables layman programmers to
fathom web scraping.

Thereby, the proposed categorization demon-
strates the fundamental paradigms: On the one hand
approaches, that can be in practice only used by
trained personnel, since they require programming
and those, that support users with elaborate interfaces.
However, the categorization appears partially incon-
sistent in the sense, that there exists overlaps between
categories (some frameworks can be also used as a li-
brary (for instance Scrapy)) and we further argue, that
tools as curl or wget are independent programs. It is
possible to call these programs within program code,
but it stretches the concept of program code libraries.

A different family of approaches to extract infor-
mation from web pages is based on semantic infor-
mation. Thereby, DOM elements are enriched with
ontological information. The World Wide Web Con-
sortium (W3C)1 proposes a language, called Web On-
tology Language (OWL), that provides different ex-
pressions to define relationsships and affiliations be-
tween content. Lamy (Lamy, 2017) presents how
this additional information can be used to automat-
ically classify data. Fernández et al. present a se-
mantic web scraping approach based on resource de-
scription framework (RDF) models, that are used to
map DOM elements to “semantic web resources“
(Fernández Villamor et al., 2011). One problem of
these approaches is that often semantic annotations
are not available for websites.

Mahto et al. discuss in their paper the ethics of
web scraping and provide web scraping examples
written in Python with BeautifulSoup (Mahto and
Singh, 2016), which is categorized by Glez-Peña et
al. as a library (Glez-Peña et al., 2014).

Krosnick and Oney (Krosnick and Oney, 2021)
discuss the potential use of scripting based scraping
techniques for web automation and end-to-end user
interface testing. They conduct two studies to assess
usual challenges, that users face when they implement
web automation scripts. In the first study all users
needed to develop selection scripts in a simple editor,

1https://www.w3.org/

Scoring-based DOM Content Selection with Discrete Periodicity Analysis

281



while in the second there was a simple IDE that pro-
vided visual feedback during development. All test
participants were programmers with varying degrees
of experience.

Munoz et al. present in their paper µRaptor, which
is a tool designed to extract hCard information from
webpages (Munoz et al., 2014). They use a training
set of DOMs to extract a set of rules in the form of
CSS selectors. The rules are then used to identify
DOM subtrees, that represent hCards.

The layman category of web scraping tools intro-
duced by Glez-Peña et al. is not primarily targeted
by Krosnick and Oney. However, they discuss in
their related work tools that use Programming-by-
Demonstration (PbD) approaches for the model cre-
ation. One major motivation of PbD is to empower
non-experts to handle complex tasks. Frank (Frank,
1995) demonstrates this for interactive systems by
comparing snapshots before and after a user interac-
tion. Barman et al. (Barman et al., 2016) use this ap-
proach for the selection of DOM elements and similar
to our approach they use similarity measures. How-
ever, they do not apply periodicity analysis to identify
complex selection patterns.

Rousillon developed by Chasins et al. (Chasins
et al., 2018) is a tool that uses PbD for web scrap-
ing. It allows a user to record actions, that can be
replayed for automation. Similar functionality is pro-
vided by the academic tools CoScripter of Leshed et
al. (Leshed et al., 2008) and SUGILITE from Li et al.
(Li et al., 2017). Additionally, there exists a variety
of commercial tools, as Selenium2, iMacros3 and Cy-
press Studio4.

Kadam and Pakle present DEUDS (Kadam and
Pakle, 2014) an approach to learn extraction rules
from training data. They describe a three step pro-
cedure: In the first step a user can interactively select
the important information, then the approach will ex-
tract semantic tokens in the second and hierarchical
information in the third step to build a selector model,
that allows the page wise extraction of information.

However, most existing approaches, either rely
on existing technologies, as CSS selectors or XPath
statements or provide their own domain-specific lan-
guage. In particular for the use case of web automa-
tion PbD is used to record user interactions. Our ap-
proach employs discrete periodicity analysis to en-
able the selection of complex patterns. Hence, we
target the third category of Glez-Peña et al. that en-
ables layman programmers or web users in general to
train models and thus, allow the methodical extraction

2https://www.selenium.dev
3https://www.imacros.net
4https://www.cypress.io/

html

head

body

0
1

0
1
2
3
4

body

class1

class2

class3

class2

class3

div

div

div

div

div

Figure 1: Example of DOM (abstract representation). The
CSS classes assigned to the HTML elements are displayed
in gray. The index of an element in the child array of the
parent, which is important for the periodicity analysis is dis-
played in dark gray.

of dedicated information from websites. We develop
the approach focusing on two applications: For once
machine learning requires a lot of carefully reviewed
information, that often can only be provided by hu-
mans. Clickworkers or crowdworkers on platforms as
for instance Amazon’s Mechanical Turk are a com-
mon solution. However, these workers are rarely pro-
gramming experts and the quality of their work of-
ten depends on the usability of the data processing.
The second use case are for instance browser plugins
that work with the data of specific websites. Com-
panies and organizations frequently update their web-
sites, for instance when applying A/B testing to find
more efficient presentations or in case of regular up-
dates. Often this will break existing selectors spec-
ified as regular expressions or XPath code. In such
cases an update of the browser plugin is necessary,
but in particular in case of A/B testing it is not en-
sured that the developer will obtain the same website
version as the plugin user. An adaption of the content
selector is difficult. Instead, our approach empowers
the user of a browser plugin to retrain the model if she
notices, that the existing selection logic is not longer
able to extract the important data from a website.

3 PATH SCORING

Figure 1 shows an abstract representation of a doc-
ument object model (DOM). A DOM structures the
HTML (or XHTML) elements of a web page in a tree
structure. The root node of a DOM is the document
that is usually followed by an HTML tag. In the exam-
ple in Figure 1, we start with the HTML tag.

In the following we present a DOM as a directed
acyclic graph (or labeled transition system (LTS))

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

282



G = (S,→,root,TAG,CSS,L), with S a set of states,
→⊆ S× S a relation, that represents the child-parent
relationship between elements of different levels in
the DOM tree, root ∈ S the root node, which has
no incoming transitions, i.e., {(v,root) | ∀v ∈ S}*→,
TAG is a set of HTML tag names and CSS a set of
CSS classes. L : S→ 2CSS∪HTML is a labeling func-
tion, that assigns CSS classes and HTML tag names
to states of the graph. Note, that the mapping L can
assign an arbitrary number of CSS classes to a state,
but only one HTML tag name. G is the set of all DOM
DAGs.

We further define the set of siblings siblings(s) =
{s′ | ∃ q ∈ S : (q,s) ∈→⇒ (q,s′) ∈→}. Note, that q
is unambiguous due to the tree structure of the DOM.
Since, the order of elements in the DOM is impor-
tant for the presentation, we define the natural total
order < on a set of siblings, according to their appear-
ance in the DOM. For example in Figure 1 the order
on the set of siblings siblings(BODY) = {HEAD,BODY}
with HEAD< BODY.

We use this graph structure together with the →
relation to define a path semantic on the DOM. In
early experiments, we tested Markov chains for the
classification of selected elements. Thereby, we mod-
eled different elements of the DOM as states in the
Markov chain, that was weighted in accordance to
the training data provided by the user, as for instance
by selecting some elements. However, a usual DOM
contains a substantial number of equal HTML ele-
ments and CSS classes. The redundancies within the
graph together with the Markov property (memory-
less) of the model lead to poor classification results.
Better results can be obtained, when we increase the
order of the Markov chain. If we increase the order to
the path length of the largest training path, we obtain
the best classification results, but hardly benefit from
the locality of the Markov property anymore.

A path is an ordered sequence of states ω =
s1 · · ·sn with n ∈ N and ∀ i ∈ {1, · · · ,n− 1} it holds,
that (si,si+1) ∈→. The length of a path ω is |ω| = n.
We use | · | also to denote the cardinality of sets. The
set of all paths over an LTS G ∈ G is denoted as PG.
For two states s,s′ in a path we write s < s′, if s ap-
pears earlier in the path than s′. We call a path ω a root
path if s1 = root and a leaf path, if @ x∈ S : (sn,x)∈→.
A path, that is a root path and a leaf path is called
complete. In Figure 1 paths, that contain the div tags
are leaf paths and a non-rigorously written example
for a complete path is ω = html body div.

The training set T is a set of root paths. In prac-
tice, we can obtain this set by adding a click event lis-
tener to a website and then construct the path by iter-
ating through the parents of the selected element until

we reach the document root. Our model (see Equation
2) evaluates the sizes of training paths and thus, we
are not limited to leaf paths in the training set. How-
ever, it is often desired, since the goal is the extraction
of information, which is often the text attribute of a
leaf HTML element. Note, that when we use the click
event listener approach to obtain the training samples
it is easy for a user to hit the wrong element. So for in-
stance instead of hitting a span element, that directly
contains the desired information the surrounding div
element is chosen. This is a challenge that must be
considered, when collecting the training samples with
this approach.

In the following, we define the set of training tags
TTAG = {L(s)∩ TAG | ∀ s ∈ ω ∀ ω ∈ T} and the set
of training CSS classes TCSS = {L(s)∩CSS | ∀ s ∈
ω ∀ ω ∈ T}. This allows us to define the scoring
functions, that measures the overlap of TAGs and CSS
classes in the training set and a given path ω:

pQ(ω) =
|{s | ({L(s)}∩Q 6= /0∧ s ∈ ω}|

|ω|
(1)

In the equation Q ∈ {TCSS,TTAG}, i.e., we use the
same scoring function to measure the overlap in CSS
classes and HTML tags. Note, that in case of perfect
overlap, that means in case a path ω ∈ P is part of
the training set pQ(ω) = 1. Generally it holds, that
pQ(ω) ∈ [0,1],∀ ω ∈ P.

We gradually penalize deviations from path
lengths, that are present in the training set.

pk(ω) = 1− |k−|ω||
max(k, |ω|)

(2)

We determine k by evaluating the expression
mink=|ωt |,ωt∈T ||ω|−k|. That means, k is the length of
a path in the training set, that is closest in length to the
path ω. Again pk(ω) ∈ [0,1],∀ ω ∈ P and pk(ω) = 1
if the scored path ω ∈ P is present in the training set.

3.1 Discrete Periodicity Analysis

The most distinctive feature of our approach com-
pared to other approaches is based on the utilization
of discrete periodicity analysis to make assumptions
about the intended selection pattern of a user. For ex-
ample often data on websites is provided as tables. If
only every second row or even a more complex pat-
tern, as two consecutive rows followed by three ir-
relevant rows need to be selected most mouse-based
approaches cannot provide this functionality.

Scripting based approaches, as XPath or CSS se-
lectors have an advantage in these situations, but are
not equally accessible by uneducated workers. Of

Scoring-based DOM Content Selection with Discrete Periodicity Analysis

283



course, the approach is not limited to table rows, but
can be also used to extract patterns from arbitrary
HTML elements, as for instance float or CSS grid
screen layouts.

The discrete periodicity analysis, that we employ
originates in approaches to mine association rules
(Agrawal and Srikant, 1994), which are probably best
known for the association example of diapers and
beer, which is best placed next to each other in stores.

Agrawal and Srikant present in their paper
(Agrawal and Srikant, 1994) the A priori property,
which uses subsets of potential patterns to analyze the
frequency of occurrence of larger patterns. This can
then be used to derive a confidence score, that a cer-
tain pattern appears periodically. The challenge dur-
ing the mining process is that, we assume noisy data,
which means that the pattern will not match exactly at
certain periods.

Hang et al. (Han et al., 1999) define the problem
of periodicity mining as follows: For a time series of
features S = D1,D2, · · · ,Dn, where Di, i ∈ {1, · · · ,n}
are sets generated from a sequence of chronologi-
cally ordered database entries, we try to mine pat-
terns s = s1 · · · ,sp with si ∈ L, i ∈ {1, · · · , p} with
L = ((D1 ∪ ·· · ∪Dn)− /0)∪ {∗}. Hang et al. use ∗
as a don’t care character. If this appears in a pattern
it indicates, that we are not interested in the charac-
ter at this position, but only on the periodicity of the
surrounding elements.

To evaluate the quality of an extracted pattern,
they define a confidence score, that is based on the
occurrence frequency of a pattern s:

frequency count(s) = |{i | 0≤ i≤ m,s holds in
Di|s|+1 · · ·Di|s|+|s|}| (3)

The confidence is then the frequency divided by
m, which is the number of times the pattern fits into
the analyzed sequence.

conf(s) =
frequency count(s)

m
(4)

Note that we can control the minimal required
number of pattern repetitions with the confidence
value. If for instance a pattern needs to be at least
two times present in the sequence, we can derive a
minimal bound and only work with patterns that have
at least this confidence. With regard to our content
selection use case, we use this minimal bound (of two
present repetitions), since one occurrence cannot be
identified as periodic and more than two are too much
work for a user to train. Although, the confidence
will increase if the user further selects elements, that
fit the pattern. For instance our model must respond,
if a user selects two alternating rows in a table.

However, not every selection of a user constitutes
a pattern repetition. Depending on the pattern mul-
tiple selections represent one pattern and therefore,
more selections from the users are necessary to reach
the confidence level of at least two. For instance in
Figure 1, if the user wants to select the first and the
second div, but not the third div, she needs to click
on the first, the second, the fourth and the fifth div to
reach the required confidence.

Hang et al. present in their paper (Han et al.,
1999) a more efficient adaption of the association rule
mining algorithm presented by Agrawal and Srikant,
which they call max-subpattern hit-set. They in-
troduce a sophisticated tree datastructure, the max-
subpattern tree, which efficiently organizes scanned
patterns and their variations. In a consecutive step we
can evaluate the datastructure, to derive the patterns
with the highest confidence. For an explanation of the
algorithm, we refer the reader to the paper of Hang et
al. (Han et al., 1999).

In the following, we refer to the max-subpattern
hit-set algorithm as a function max hit set : LN×R×
N→ 2LN×N, that maps from a sequence (LN) a mini-
mal confidence threshold (R) and a pattern length (N)
to a set of patterns (LN) and the number of their oc-
currences (N). We further use the restricted feature set
L = {1,∗}. Equation 5 shows, how we encode the el-
ements of a training sample as a sequence LN, that we
can feed into the max-subpattern hit-set algorithm.

pattern : s 7→ (xs1 , · · · ,xsm),with{
xsi = 1 ∃ ω′ ∈ T : si ∈ ω′

xsi = ∗ otherwise
(5)

with si ∈ siblings(s), s1 < · · · < sm and 1 ≤ i ≤
|siblings(s)| = m ∈ N. We use superscript indices to
indicate, that we iterate over the siblings of a state and
not over the states of a path.

The idea of Equation 5 is to encode DOM ele-
ments of one level, that are part of the training set
as 1 and all the remaining elements as ∗ (don’t care).
For an element we look at all its siblings, whether it is
also part of the training set. For example if in Figure
1 a user wants to select every other DIV element and
selects the first and the third DIV element. Then we
construct an input sequence 1 ∗ 1 ∗ ∗ and the pattern
1∗ occurs two times in the sequence.

The pseudocode in Algorithm 1 describes how we
interface the periodicity algorithm. For a given state
s of a training path s ∈ ω, we derive the input pattern
with the function of Equation 5. For sequences of
length |p|= 1, we directly return the considered state
s if it is part of the training set, since there is no sense

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

284



Input: s ∈ ω

Output: period(s) = R
p← pattern(s);
if |p|= 1 then

if ∃ ω′ ∈ T : s ∈ ω′ then
return {s};

else
return /0;

end
end
U ← /0;
while i ∈ {2, · · · , |p|} do

U ←U ∪{max hit set(p,2i/|p|, i)};
end
M←{(p,q) | (p,q) ∈U : max |p|∧maxq};
if |M|> 1 then

// request additional training data
else

r←M[0];
end
R←= {s′ | s′ ∈ siblings(s) : p′[< (s′)
mod |p′|] = 1∨ p[< (s′)
mod |p|] = 1,(p′,q) = r};

Algorithm 1: Identify the periods.

analyzing the periodicity in sequences of length one
and if it is part of the training set it is translated into a
1 in the input pattern. For sequences of length |p|> 1
we apply the max hit set function for every period
length 2 ≤ i ≤ |p|. From the unified result set, we
choose the detected pattern, that is largest and has
the highest frequency of occurrences. If the set M
of selected patterns contains more than one element
we require additional training data, otherwise we will
choose the pattern. We use this selected pattern to
derive those siblings, that match the extrapolated pat-
tern. Note, that we use < (s) = i as a loose syntactic
expression to denote the index of s in the order of its
siblings s1 < · · ·< si−1 < s < si+1 < · · ·< sl and p[i]
to access the i’th element of the pattern. We also se-
lect an element if it is one in the input sequence, i.e.,
we force the inclusion of states, that are part of the
training set, since those are provided by the user and
even if they do not belong to a pattern the user wants
those elements to be selected.

We use Algorithm 1 to score paths as follows:

pp(ω) =
|{s | s ∈ ω∧ s ∈ period(s)}|

|ω|
(6)

Every state of a path s ∈ ω is checked, whether it
is part of a detected periodic pattern. We count the
number of states at which this is the case and divide
it by the number of total states in the path. For train-

ing samples the score will be pp(ω) = 1,ω ∈ T and
pp(ω) ∈ [0,1],∀ ω ∈ P.

We combine the introduced individual scoring
functions into a combined score in Equation 7 and
further introduce parameters aTAG,aCSS,ak,ap with
aTAG+aCSS+ak+ap = 1 to weight certain scores dif-
ferently if required.

ppath(ω) =
1
4
(aTAG pTTAG(ω)+

aCSS pTCSS(ω)+ak pk(ω)+ap pp(ω)) (7)

An example of a situation in which different
weights become useful is if a websites colors alternat-
ing rows of a table differently by assigning different
CSS classes. In this case we can reduce the weight
of the CSS scoring function to make sure, that it does
not weight the rows of the table too differently.

3.2 (Bi)Simulation to Identify Similar
Subtrees

For the example presented in Figure 1, the periodicity
analysis will work in the sense, that it selects those
div elements, that are part of the identified pattern.
However, this will not directly work if the div ele-
ment is again the root element of a subtree. This is
demonstrated in the example in Figure 2.

If a user selects sub-elements of the first and the
third div the fifth div will be identified by the peri-
odicity analysis, but this will not influence the scores
of the leaf elements in the subtree. That means, we
cannot decide whether to select the first or the second
span.

We use a bisimulation relation to compare the
branching structure of different subtrees in the DOM.
Baier and Katoen present a definition of bisimulation
equivalence on labeled transition systems (Baier and
Katoen, 2008), which we use in a slightly adapted
form.

For two labeled transition systems Gi = (Si,→i
,rooti,TAGi,CSSi,Li), i ∈ {1,2} a bisimulation for
(G1,G2) is a binary relation R ⊆ S1×S2 with:

1. For s ∈ S1 ∧ s = root1 : ∃ s′ ∈ S2 ∧ s′ = root2 :
(s,s′) ∈ R and for s ∈ S2 ∧ s = root2 : ∃ s′ ∈
S1∧ s′ = root1 : (s,s′) ∈ R

2. ∀ (s1,s2) ∈ R :

(a) L1(s1) = L2(s2)

(b) ∀s ∈ S1 with (s1,s) ∈→1: ∃ s′ ∈ S2 with
(s2,s′) ∈→2 and (s,s′) ∈ R

(c) ∀s ∈ S2 with (s2,s) ∈→2: ∃ s′ ∈ S1 with
(s1,s′) ∈→1 and (s,s′) ∈ R

Scoring-based DOM Content Selection with Discrete Periodicity Analysis

285



We write G1 ∼ G2 for two labeled transition sys-
tems G1,G2, that are bisimilar.

Note, that we deviate from the definition of Baier
and Katoen in particular on the first item, since transi-
tion systems are usually not limited to directed acyclic
graphs (DAGs). Hence, there exists a set of initial
states. Since our transition systems represents a DOM
tree or a subset of it, we always have the case, that the
initial set is a single state, that we designate as root.

The first item of the second property 2 − 1 :
L1(s1) = L2(s2) allows us to decide the equality of
states. We defined the labeling function L based on
the TAG and assigned CSS classes. States that share
these properties are considered as equal by our algo-
rithm. The second and the third property enforce the
same branching structure on the tree.

We write Gsub(s) ⊆ G = (S,→
,root,TAG,CSS,L) : s ∈ S for a subtree induced
by choosing a state s ∈ S as its root and only
keep states and transitions, that are connected in
a successor relationship. Gsub : G × S → G with
(G,s) 7→ (S′,→′,s,TAG′,CSS′,L′):

• S′ := S∩{s′ | ∃ ω ∈ PG : s ∈ ω∧ s′ ∈ ω∧ s < s′}
• →′:= {(s,s′) | (s,s′) ∈→∧ s,s′ ∈ S′}
• TAG′ := TAG∩{q | ∃ s′ ∈ S′ : L(s′) = (A,q),A ∈

2CSS}
• CSS′ := CSS∩{x | ∃ s′ ∈ S′,∃ A ∈ 2CSS : L(s′) =
(A,q)∧ x ∈ A,q ∈ TAG}

• L′ := L|S′
L|S′ denotes the restriction of the labeling function

to the preimage set, that only contains states of the
subtree. Consequently, we obtain a subtree, that only
comprises the restricted labeling function with corre-
sponding CSS classes and tags that are still present in
the remaining states.

For a path ω and a state s ∈ ω =
(s1, · · · ,s j−1,s,s j+1, · · · ,sl) and @ ω′ ∈ T : s ∈ ω′,
i.e., the state s is not part of a training path and
s ∈ period(s) is part of an identified pattern we search
for bisimilar subtrees induced by the siblings of s,
that are part of a training path and construct a path
ω′′ that is used in the scoring function pp(ω

′′) with
the following method:

∀s′ ∈ siblings(s) : (s′ 6= s∧
∃ ω
′ = (s′1, · · · ,s′i−1,s

′,s′i+1, · · · ,s′k) ∈ T : s′ ∈ ω
′∧

s′ ∈ pattern(s)∧Gsub(s)∼Gsub(s′))⇒
(s1, · · · ,s j−1,s,s′i+1, · · · ,s′k) = ω

′′ (8)

Equation 8 describes our method to apply the pe-
riodicity scoring on paths selected by the periodicity
analysis. For selected paths we search in the train-

ing set for a path that is most similar to the selected
one and then combine the periodicity data from these
two paths by joining the state sequences. This allows
us to transfer the periodicity analysis model from the
training set to paths, that are not directly part of the
training set, but are identified by the periodicity anal-
ysis.

Of course, if the training set is large there are mul-
tiple states s′ in different training paths, that might fit
the target state. However, since all these eligible state
induce bisimilar subtrees, we can select an arbitrary
training state and obtain the same result.

Note, that the bisimulation relation is strict, since
it requests that transition steps can be replayed in both
systems, i.e., a specific move in one system must be
repeatable in the other and vicit versa. For our ap-
proach it is often sufficient if we can find a training
path, that is capable of repeating every transition step
of the target system. That means in contrast to de-
manding an equivalence relationship, we just demand
it in one direction. This can be achieved with the help
of a simulation relation, which is basically a one-sided
bisimulation relation.

4 EVALUATION

For the evaluation of our approach we analyze the
computational complexity of the scoring and also the
space, that is required to store the models derived
from the training data. This is important, since those
will be stored for the extraction of specific content
and it might be necessary to update this model if a
webpage changes. In case of an application, as for
instance a browser plugin, the model must be shared
among all the users of the application.

We are also interested in the performance of our
scoring approach with respect to accuracy and preci-
sion. That means, we measure the elements that the
approach extracts correctly and those, that it extracts,
but are not intended, i.e., true positives and false pos-
itives.

For this we conduct an experiment. Our method-
ology is to randomly select leaf DOM elements,
that contain text content, i.e., ASCII characters,
from the seven most popular websites google.com,
youtube.com, facebook.com, wikipedia.org, ya-
hoo.co.jp, amazon.com, instagram.com as listed by
statista.com5. These randomly selected elements
simulate the user input and thus our training data.
We derive models from these elements and then in
a second step evaluate the scores of the paths on the

5https://www.statista.com/statistics/1201880/most-
visited-websites-worldwide/

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

286



· · ·

div div div div div

span span span span span span span span span span
?

Figure 2: Example to showcase the necessity of evaluating the bisimilarity of subtrees in case of identified periodicity. The
red lines represent the training paths and the blue path is selected by the periodicity analysis. The question mark indicates the
problem, that a selection path for the subtree cannot be directly deduced from the periodicity analysis of the parent elements.

DOM for the model. We measure execution time and
the correctness of selected elements.

4.1 Model Size and Runtime
Complexity

The model size depends directly on the training set.
For a path ω∈ T we need to store for every state s∈ω

the corresponding tag TAGs, the assigned CSS classes
CSSs and a pair of (p,q) ∈ {0,1}N×N, that contains
the evaluated pattern and its period.

In worst case every path of a DOM is a path in the
training set, and we use the number of states in the
DOM |S| as an upper bound for the pattern. Thus,
we have a complexity of O(|S||CSS|+ |S|+ |S|2),
where the first term assumes, that every available CSS
class is assigned to every state in the DOM. The sec-
ond term presents, that every state is unambiguously
mapped to a tag and the third term assumes, that we
need to store for every state a pattern consisting of
all the other states in the DOM. Of course, in prac-
tice the worst case model size is not realistically ob-
tained. CSS classes are usually assigned to only a
very small number of states and the number of sib-
lings of most states are by a large margin smaller than
the total number of states in the DOM. In Figure 3,
we analyzed the number of elements in the DOM, the
average CSS classes assigned to a state and the aver-
age number of siblings of a state collected from the
popular websites mentioned above.

Note in particular, that the average number of
classes and siblings are much smaller than the total
number of DOM elements. Also, the number of CSS
classes assigned to a single DOM element is below
20. Hence, in practice we can expect much smaller
models, than suggested by the worst case analysis.

To determine the time complexity of the proposed
approach we need to distinguish the evaluation phase
and the training phase. For the evaluation we only
need to traverse the DOM tree, what can be done with
a tree traversal algorithm in O(|S|) with S the states
in the tree. During traversal, we iteratively extend the
paths and apply the scoring. The counts of the earlier
scoring can be cached, such that we are not forced to

0 1000 2000 3000 4000 5000

0.0000

0.0001

0.0002

0.0003
Total nodes

0 20 40 60 80 100 120

0.00

0.02

0.04

0.06
CSS classes

Siblings

Figure 3: Total number of DOM elements, average number
of classes assigned to DOM states and the average number
of siblings collected from the most popular websites.

traverse the entire path for every additional state with
which the path is extended. We can use the index of
a state to determine, whether it is part of a pattern to
evaluate the periodicity score.

The time complexity will deteriorate if we use
bisimulation to compare subtrees of identified pat-
terns. Baier and Katoen give the complexity of check-
ing the equivalence of two labeled transition sys-
tems LTS1,LTS2 as O((|S1|+ |S2|) ∗ |AP|+ (M1 +
M2) log(|S1|+ |S2|) (Baier and Katoen, 2008). S1,S2
represent the set of states, AP the sets of labels, which
are in our case composed by CSS and TAG and M1,M2
is the number of edges in the corresponding transition
systems.

The training phase requires in worst case O(|S|3)
operations. This is since in worst case every path and
thus, every state in the DOM is part of the training
set. Jiawei et al. (Han et al., 1999) specify the run-
time complexity of the max-subpattern hit-set algo-
rithm with O(M), where M is the length of the se-
quence, that need to be scanned for detecting patterns.
We call the max-subpattern hit-set algorithm for ev-
ery periodicity p ∈ {1, · · · ,M}, which means that the
complexity will be O(M2). Since, the input sequence
is generated by the siblings of a state, and S is the set
of all states, we can use |S| = M as an upper bound.
With the necessary traversal through the DOM tree,
i.e., the training set (remember in worst case every
path in the DOM is a training path) we obtain the
complexity of O(|S|3).

Scoring-based DOM Content Selection with Discrete Periodicity Analysis

287



0 200 400 600 800

0.0000

0.0005

0.0010

0.0015 Selection time

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

Training time

Figure 4: Total number of DOM elements, average number
of classes assigned to DOM states and the average number
of siblings collected from the most popular websites.

Since, we randomly select a single leaf path for
training in our experiment, we do not need to identify
selection patterns, which is difficult to test automat-
ically. The approach identified in 100% of the test
cases the correct DOM element, which is explained
by the periodicity analysis, that favors element in-
dices, that are part of the training set. That means,
even if there is only a single training path and thus,
it is not possible to derive a sequence for periodic-
ity analysis, that contains more than one 1, this single
one is stronger weighted than all the siblings of the
element.

Figure 4 particularly emphasizes the expensive
costs of the periodicity analysis of O(|S|3). In our
implementation, we applied the periodicity analysis
during the selection phase. Of course, in a production
implementation this should be done during training
and then the results of the analysis must be stored in
the model, as described above. The numbers of the
abscissa represent time in milliseconds. For websites
with large DOMs trees the selection training required
almost a full second, although the majority requires
around 200 milliseconds. Please note, that we focused
in our implementation on experimenting and correct-
ness and less on computational complexity. Hence,
there is much room for improvement. Both, with re-
gard to efficient execution and to compact storing of
trained models.

5 CONCLUSIONS

In this paper we demonstrated how periodicity analy-
sis can be used as an approach to empower non-expert
users to extract specific information from websites.
Our approach represents an extension of existing ap-
proaches, since it allows the simple definition of com-
plex selection patterns derived from user clicks. We
further employed bisimulation relations to measure

the similarity of subtrees to further improve our ap-
proach.

Although, our complexity analysis shows, that the
computational complexity and model sizes of our ap-
proach can be substantial in worst case, experimen-
tal results and empirical evaluation of the DOM trees
of the most popular websites revealed, that in prac-
tice the worst case considerations are rarely observed
and thus, the performance is much better in practice.
Additionally, we need to distinguish the runtime com-
plexity of the training phase and the selection phase.
The majority of required computations is part of the
training phase, which is for most uses cases less fre-
quently necessary, than the less expensive selection
phase. The selection phase can be efficiently com-
puted in O(|S|), but worsens when we employ bisim-
ulation to check different subtress.

The experiment also indicates possible future
work, as the performance tuning of our algorithm. A
termination condition in the selection phase will pre-
vent the traversal of the entire DOM tree and we can
utilize for periodicity analysis the fact, that in con-
trast to our worst case assumption, that every DOM
path is a training path, the training set is usually much
smaller.

ACKNOWLEDGEMENTS

This research was partially founded by the b-it foun-
dation (Bonn-Aachen International Center for Infor-
mation Technology)6.

REFERENCES

Agrawal, R. and Srikant, R. (1994). Fast algorithms for
mining association rules in large databases. In Pro-
ceedings of the 20th International Conference on Very
Large Data Bases, VLDB ’94, page 487–499, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.

Baier, C. and Katoen, J. (2008). Principles of Model Check-
ing. MIT Press.

Barman, S., Chasins, S., Bodik, R., and Gulwani, S. (2016).
Ringer: web automation by demonstration. In Pro-
ceedings of the 2016 ACM SIGPLAN international
conference on object-oriented programming, systems,
languages, and applications, pages 748–764.

Chasins, S. E., Mueller, M., and Bodik, R. (2018). Rousil-
lon: Scraping distributed hierarchical web data. In
Proceedings of the 31st Annual ACM Symposium on
User Interface Software and Technology, pages 963–
975.

6https://www.b-it-center.de/

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

288



Fernández Villamor, J. I., Blasco Garcia, J., Iglesias Fer-
nandez, C. A., and Garijo Ayestaran, M. (2011). A
semantic scraping model for web resources-applying
linked data to web page screen scraping.

Frank, M. (1995). Inference bear: Designing interactive
interfaces through before and after snapshots.

Glez-Peña, D., Lourenço, A., López-Fernández, H.,
Reboiro-Jato, M., and Riverola, F. F. (2014). Web
scraping technologies in an api world. Briefings in
bioinformatics, 15 5:788–97.

Han, J., Dong, G., and Yin, Y. (1999). Efficient mining of
partial periodic patterns in time series database. pages
106–115.

Kadam, V. B. and Pakle, G. K. (2014). Deuds: Data ex-
traction using dom tree and selectors. International
Journal of Computer Science and Information Tech-
nologies, 5(2):1403–1410.

Krosnick, R. and Oney, S. (2021). Understanding the
challenges and needs of programmers writing web
automation scripts. In 2021 IEEE Symposium on
Visual Languages and Human-Centric Computing
(VL/HCC), pages 1–9.

Lamy, J.-B. (2017). Owlready: Ontology-oriented pro-
gramming in python with automatic classification and
high level constructs for biomedical ontologies. Arti-
ficial intelligence in medicine, 80:11–28.

Leshed, G., Haber, E., and Matthews, T. (2008). Coscripter:
Automating & sharing how-to knowledge in the enter-
prise. pages 1719–1728.

Li, T., Azaria, A., and Myers, B. (2017). Sugilite: Cre-
ating multimodal smartphone automation by demon-
stration.

Mahto, D. K. and Singh, L. (2016). A dive into web scraper
world. In 2016 3rd International Conference on Com-
puting for Sustainable Global Development (INDIA-
Com), pages 689–693.

Munoz, E., Costabello, L., and Vandenbussche, P.-Y.
(2014). µraptor: A dom-based system with appetite
for hcard elements. In LD4IE@ ISWC, pages 67–71.
Citeseer.

Scoring-based DOM Content Selection with Discrete Periodicity Analysis

289


