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Abstract: This paper addresses the issue of implementing two alternative approaches to developing automated scoring 
algorithms in computer-based language testing. One of the approaches discussed is based on the application 
of regular expressions and the other is based on exact-text matching. Although scoring algorithms that make 
use of regular expressions are technologically very attractive, there is evidence to indicate that they are not 
able to guarantee perfect scoring accuracy. Accordingly, in testing situations where decisions about the test 
takers need to be made on the basis of test scores, as in school settings, exact-text matching may actually be 
the preferred option. Moreover, whichever approach is adopted, it seems reasonably clear that automated 
scoring should ideally be subject to some human verification. The paper includes a brief description of a 
testing system where automated scoring employing exact-text matching is supplemented by human 
verification of the results. 

1 INTRODUCTION 

Computer-based language tests can be automatically 
scored using several approaches, which principally 
depend on the type of expected response. First, 
selected-response items, such as multiple choice or 
true/false, are commonly scored either by means of a 
rule known as ‘number right’ or through the use of 
‘formula scoring’. The latter functions as a correction 
for random guessing (see Budescu & Bar-Hillel, 
1993, for more on formula-scoring rules). Second, 
limited-production items, which include gap-filling 
and short answer, can be automatically scored by 
comparing the responses submitted by the test takers 
with the keyed answers. The comparisons may be 
made using either exact-text or regular-expression 
matching (Carr & Xi, 2010; Carr, 2014). Finally, 
automated scoring of extended-production tasks, such 
as essays, can be performed with the aid of artificial 
intelligence and machine learning techniques (e.g. 
Kumar & Boulanger, 2020). However, although 
automated essay scoring is generally faster, cheaper, 
and fairer than human scoring, and frequently 
claimed to be equally as reliable (Shermis, 2010, and 
references therein), the appropriateness of using it 
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alone in high-stakes situations has been called into 
question (see Weigle, 2013, for a review). 

This paper focuses on the scoring of limited-
production items, where the expected response ranges 
approximately from one word to one sentence. The 
paper discusses the use of regular-expression 
matching as an alternative to exact-text matching and 
points to the imitations of the former method. Finally, 
the article briefly presents a web-based testing system 
(WebClass) which combines automated scoring 
algorithms with human verification of their output. 

2 REGULAR-EXPRESSION 
MATCHING 

Regular expressions are sometimes utilized in 
computerized testing systems to score the test takers’ 
limited-production responses. For example, Moodle 
offers a 3rd-party plugin, which allows test 
developers to create the so-called Regular Expression 
Short-Answer questions (Rézeau, 2022). The key for 
a question of this type can be single regular 
expression, such as the one in (1a) or (1b) rather than 
a number of alternative (acceptable) responses (i.e. 
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bat, cat, and rat). This example clearly demonstrates 
that the use of regular expressions is simply a more 
economical solution compared to exact-text 
matching. 
 

(1a)  [bcr]at 

(1b) (b|c|r)at 
 

Admittedly, manual generation of regular 
expressions may be quite time consuming and error-
prone. However, as a further step in the development 
of computerized short-answer scoring systems, 
Ramachandran, Cheng, and Foltz (2015) offer a 
method for automating the generation of regular 
expressions. For many developers of computer-based 
tests, including school teachers, solutions of this kind 
seem to be an absolute necessity. 

It is also worthy of note that in the case of limited-
production test items the usefulness of regular 
expressions for the development of scoring 
algorithms may depend on how precise the responses 
are expected to be. Specifically, in certain tests of 
language ability, a high degree of precision may be 
necessary: this is often the case with vocabulary and 
grammar tests. For example, although the phrase the 
girl ride a bike may be understandable, it violates the 
basic rule of subject-verb agreement in English. 
Similarly, although the phrases sign on the dotted line 
and sign on a dotted line are almost identical, the 
former one is a more native-like expression. In such 
situations, the number of acceptable responses may 
be fairly limited, which means that a complete scoring 
key can be based solely on exact-text matching, and 
it may not be necessary to resort to using regular 
expressions. 

By contrast, in tests of reading or listening 
comprehension, where grammatical accuracy is not a 
priority, responses are typically accepted as correct as 
long as they contain certain key terms, or keywords, 
specified in the expected answer (the key). Therefore, 
in constructing a scoring key the test item writer may 
define a suitable regular expression that the scoring 
algorithm will use to check whether all of the 
necessary keywords are included in the responses 
provided by the test takers. Nevertheless, developing 
a perfectly reliable algorithm based on regular 
expressions is not without its problems. This issue is 
addressed in the next section. 

2.1 Illustrative Example 

Limited-production items may require test takers to 
provide short statements or simple definitions. For 
illustrative purposes, consider an item which elicits a 
short sentence expressing the idea that bikes are 

vehicles with two wheels. The prototypical expected 
response might be as follows: 
 

(2) A bike is a vehicle with two wheels. 
 
In exact-text matching approaches, the statement 
given in (2) would be the keyed answer for this test 
item. However, the same idea can be expressed in 
many other ways, including sentences containing 
some grammatical errors (but perfectly 
understandable). Examples of such sentences are 
given below: 
 

(3a) Bikes are vehicles which have two wheels. 
A bike is a vehicle with two wheels. 
The bike is vehicle with two wheels. 
A bike is a vehicle that has two wheels. 
Bike vehicles have two wheels. 
Bike is vehicle on two wheels. 

 

While all of the sentences in (3a) share a similar 
structure (e.g., they begin with a noun phrase 
containing the word bike, in either singular or plural 
form), this is by no means the only possibility, as 
evidenced by the following examples (again, not 
necessarily correct in terms of grammar), the last of 
which does not even contain a verb: 
 

(3b) Vehicles called bikes have two wheels. 
Two wheels are typical of vehicles like bikes. 
Two wheels define vehicles such as bikes. 
Number of wheel on a bike vehicle is two. 
Vehicle with two wheels is called bike. 
Bike – a two-wheel vehicle. 

 

As an alternative to exact-text matching approaches, 
all of the sentences in (3a) and (3b) could be 
considered acceptable on the grounds that each of 
them contains the following keywords (three of which 
might be either singular or plural): 
 

(4) bike(s), vehicle(s), two, wheel(s) 
 

The keywords may appear in actual statements in the 
order given (as in 3a) or in a completely different one 
(as in 3b). Moreover, they may be optionally followed 
or preceded by other words. 

In a computer-based testing system, the scoring 
algorithm could be designed to conduct a keyword 
matching operation, for example using the 
preg_match() function in PHP. For this to be 
possible, the pattern required by the function in 
question has to be a regular expression (or regex for 
short). The regex for the keywords given in (4) may 
be specified in the following way: 
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(5) /^(?=.*\bbikes?\b)(?=.*\b 
vehicles?\b)(?=.*\btwo\b) 
(?=.*\bwheels?\b).+/i 

 

The regular expression provided in (5) is within 
slashes, followed by the i flag at the end, which 
indicates that the search should be case-insensitive. 
The caret (^) at the beginning is an anchor that 
denotes the start of the string (although it may be 
optional). The main part of the regex consists of four 
capturing groups (inside parentheses), each 
corresponding to one of the keywords in (4). Every 
keyword requires a positive lookahead (denoted by 
?=) and is also preceded by the dot (.) metacharacter 
and the asterisk (*) quantifier (which together match 
any character between zero and unlimited times, thus 
making it possible for the response to optionally 
include some other words, in addition to the 
keywords). Moreover, each keyword is between word 
boundaries (indicated by \b). Three of the keywords 
have additionally a question mark at the end (which 
means that the preceding s is optional in each case). 
Finally, the last capturing group is followed by a dot 
and a plus sign (+). These two symbols match any 
character at least once (between one and unlimited 
times). In effect, the dot and plus match the entire 
expression on condition that all of the positive 
lookahead assertions are true. 

The regex in (5) is capable of matching each of 
the sentences given in (3a) and (3b). In view of the 
fact that, using exact-text matching approaches, these 
sentences would all have to be included in the key (i.e. 
in an array of alternative answers that deserve full 
credit), the keyword approach based on regular 
expressions is a neat solution. Despite this, however, 
it is far from perfect as the regex in (5) would also 
match sentences which are too vague to be accepted 
as correct, for example: 
 

(6)    Vehicles including bikes have two wheels. 
Bikes denoting vehicles have two wheels. 

 

To make matters worse, it would match sentences 
which are definitely incorrect, for example: 
 

(7)    Bikes are not vehicles with two wheels. 
Bikes are vehicles with two or five wheels. 
Bikes are vehicles with more than two wheels. 
Bikes are vehicles with twenty two wheels. 
Every vehicle with two wheels is a bike. 

 

The opposite situation is also possible: some 
sentences which correctly define bikes would not be 
matched by the regex. Examples are given below: 

(8)    Bikes have a pair of wheels. 
A bike is a vehicle with a pair of wheels. 

A bike has one front and one rear wheel. 
Bike – a two-wheeled vehicle. 

 

It should be clear that the regex in (5) requires 
modifications as it is not capable of matching every 
possible correct response. Amongst other necessary 
changes, the keyword vehicle would need to be made 
optional. More importantly, however, even if the 
regex is successfully adjusted to match all of the 
examples presented above, it may be difficult to rule 
out the possibility of someone producing yet another 
alternative (and acceptable) response. One situation 
in which the use of regular expressions may be 
particularly challenging is when the keywords 
include a word for which the number of acceptable 
synonyms can be very large. The adjective good is a 
case in point. 

2.2 Regular Expressions Versus  
Exact-text Matching 

The question that arises in this context is whether the 
use of keywords and regular expressions is a better 
solution than exact-text matching. On the one hand, it 
must be admitted that keyword matching is very 
likely to result in fewer errors compared to exact-text 
matching. On the other hand, even if the keyword 
method results in only one mismatch (and the exact-
match method generates dozens of mismatches), there 
remains the problem of identifying that single 
mismatch in a set of responses submitted by the test 
takers. And even if there are actually no mismatches, 
there should be a way of making sure that this is 
indeed the case. In all probability, the only solution is 
some kind of human verification of the automated 
scoring. Otherwise, some students may end up with 
inaccurate scores (and we might not even be aware of 
this). 

However, if we accept that human verification is 
a necessity, then exact-text matching is actually 
superior to the keyword technique. The reason for this 
is that the keyword approach can potentially make 
two kinds of errors. As shown above, it can give full 
credit to incorrect responses, which might be called 
false positive mismatches, as in (7), or it can give no 
credit to correct responses, which could be termed 
false negative mismatches, as in (8) above. The exact-
match approach, by contrast, can only make one type 
of error, namely false negative mismatches. This is 
because, in the exact-match approach, it is impossible 
for an answer to be included in the key and actually 
deserve no credit (unless the answer is there by 
mistake). 

Suppose, for instance, that in the exact-match 
approach we have an item with four different keyed 
answers. Now, if test takers provide ten different 
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responses, four of which match the key, then only the 
remaining six will need to be taken care of in the 
process of verification to determine whether or not 
they are false negative mismatches. In the keyword 
approach, by contrast, all of the ten responses will 
need to be verified because, potentially, each of them 
can be either a false positive or a false negative 
mismatch. 

In a sense, scoring systems that require human 
verification could be regarded as detracting from the 
attractiveness and utility of computer-based testing. 
Unfortunately, it does not seem to be possible for 
automated scoring to be one hundred percent 
accurate, at least in the case of certain constructed-
response test items, and some kind of verification is 
usually indispensable. This should not be taken to 
suggest that humans make fewer errors than 
computers. In fact, the opposite may well be true as 
computer-based tests are generally more reliable in 
that they make the scoring more consistent over time 
and across test forms (e.g. Brown, 2016). However, 
the point is that computers may not be able to make 
the final decisions as to the lexical and grammatical 
correctness of constructed responses. Indeed, at least 
in school settings, it is teachers rather than computers 
who are ultimately responsible for the scoring. 
Accordingly, when teachers mark a response as 
incorrect, it is their task to explain to the students why 
it has not been accepted. If computerised testing 
systems were to completely replace humans, they 
would need to be perfectly accurate, and this may be 
hard to achieve in cases where responses have to be 
produced rather than selected. 

3 WebClass 

WebClass is a homegrown online platform that 
combines a MySQL database with PHP scripts 
running on a LiteSpeed web server (Malec, 2018). It 
can be classified as an academic learning 
management system (cf. Foreman, 2018) integrating 
features such as learner management, 
communication, content authoring, and assessment. It 
has recently been used primarily as a web-based 
assessment tool to develop online language tests for 
university and secondary school students (Malec & 
Malec, 2021). The testing component of the platform 
can be utilised to create tests and quizzes of several 
different types (including selected- and constructed-
response items as well as extended-response tasks), 
administer them to students, monitor the test-taking 
process, mark the responses automatically (but with a 
possibility of verifying and overriding the scoring), 

provide general and answer-specific feedback to the 
test takers, analyse tests and items statistically, store 
items in the item bank and then reuse them with the 
aid of a test generator or by importing them into 
existing tests (see also, e.g., Malec, 2015; Marczak, 
Krajka, & Malec, 2016). 

3.1 Scoring Algorithm 

Limited-production items are scored on WebClass by 
comparing each response submitted by the test takers 
with the keyed answers. For reasons discussed above, 
the comparison is made using exact-text matching 
rather than keyword or regular-expression 
approaches. An example is provided below of how 
scoring works in practice, followed by a discussion of 
human verification of automated scoring. 

The operation of the scoring algorithm as applied 
to limited-production items is illustrated using this 
example from a language test: 
 

(9) Use the Word Given 
Complete the second sentence so that it means 
the same as the first sentence, using the word 
given. 

This is, undoubtedly, the best road trip in my 
life. SHADOW 
This is, _______________________, the best 
road trip in my life. 

KEY 
(1) without a shadow of a doubt 
(2) beyond a shadow of a doubt 

Additional Settings 
Spelling errors permitted for partial credit: 2 
Ignore: capitals, spaces, punctuation 

 

Two keyed answers are provided for the item in (9), 
but in theory there is no limit to the number of 
acceptable alternatives. Additional settings, which 
are relevant to the scoring algorithm, include the 
number of spelling mistakes permitted for partial 
credit (half a point) as well as instructions to disregard 
capitalisation, spacing, and punctuation. The number 
of spelling errors allowed for half a point depends on 
the length and type of the expected answer. In some 
cases, even one spelling mistake is undesirable. For 
example, when the expected answer is a short word, 
such as the preposition on, changing it to, for 
example, in, would not be a minor error that deserves 
partial credit. It is thus important to make sure that the 
partial-credit error level specified for a given item 
does not result in unacceptable responses being 
awarded half points. 

From a programming point of view, the scoring 
algorithm determines the number of spelling mistakes 
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using the levenshtein() function in PHP (more 
on this function can be found in, e.g., Quigley & 
Gargenta, 2007; see also Lisbach & Meyer, 2013, on 
its use in linguistics). The function returns the so-
called Levenshtein distance, also known as the edit 
distance, between two strings, i.e. the minimum 
number of edit operations (insertions, deletions, or 
replacements) required to convert one string into the 
other. Partial credit is awarded on condition that the 
Levenshtein distance between the response and any 
of the keyed answers does not exceed the level 
specified by the item constructor. 

Some examples of responses to the item in (9) are 
given in (10) below (the errors are underlined): 
 

(10) Without a shadow of a doubt [1] 
 without a shadow o fa doubt  [1] 
 beyond a shadow, of a doubt  [1] 

beyond a shaddow of a doubt  [0.5] 
without a shaddow of a doutb  [0.5] 
witout any shadow of doubt  [0] 

 

Each response above is followed by a score 
automatically computed by the algorithm. In the first 
three cases, the responses are awarded full credit 
thanks to the fact that the algorithm is set to ignore 
capitals, spaces, and punctuation, respectively. The 
next two responses are awarded partial credit because 
the number of spelling errors is not greater than the 
number allowed. Finally, the last response receives 
zero points because it contains three spelling mistakes 
and is thus not similar enough to the key. Looking at 
the responses scored by partial credit in (10), it might 
be argued that the spelling errors are mere typos and 
that these answers actually deserve full credit. 
Moreover, the last response is not necessarily 
completely wrong, and it might be given partial (or 
even full) credit. These examples strongly suggest 
that automated scoring can be significantly enhanced 
by some kind of human verification. 

3.1.1 Verification of Automated Scoring 

In the testing system discussed here, score 
verification follows test administration. The relevant 
tool (illustrated in Figure 1) is a scrollable web page 
presenting the teacher or test administrator with the 
entire test, one item after another. Each item is 
followed by incorrect responses (i.e. those for which 
no matches have been found in the key) as well as the 
names of the test takers who submitted the responses 
(these names can optionally be hidden). For each such 
response, the automated scoring can be changed into 
partial or full credit. When the computer’s decision is 
overridden, the response is saved in an array of 

answers which deserve either full credit or partial 
credit. The scoring algorithm first attempts to find a 
match in these two arrays prior to determining the 
number of spelling mistakes. If a match is found, the 
computation of the Levenshtein distance is skipped. 
Taking the above into account, the steps in the 
operation of the scoring algorithm can be defined as 
in Table 1. It should be added that each step is 
executed only if none of the previous conditions is 
met. 

Table 1: The scoring algorithm on WebClass. 

Step Condition Score
1 Response is empty 0
2 Response matches the key (optionally 

disregarding capitalisation, spacing, 
punctuation)

1 

3 Response matches full-credit answers 1
4 Response matches partial-credit answers 0.5
5 Levenshtein distance does not exceed the 

level allowed for partial credit 
0.5 

6 None of the above is true 0
 
Several comments are worth adding about the 

score verification tool. First, responses which are 
entirely correct (and do not contain any typos) can be 
added to the key. Second, the arrays of full-credit and 
partial-credit answers can be created earlier, i.e. at the 
stage of test construction. However, during score 
verification, the decisions are based on real responses 
actually submitted rather than those which may 
potentially be given by the test takers. Third, changes 
made to the scoring of any given response have an 
effect on every test submitted by all the test takers – 
it is not necessary to repeat the procedure for each test 
taker. Fourth, score verification can only be applied 
to limited-production items – the scoring of selected-
response items is fully automated and cannot be 
changed, whereas extended responses (such as 
essays) are manually marked using an HTML editor. 
Fifth, the verification tool can also be used to give 
feedback to the test takers in the form of general and 
answer-specific comments. Finally, the content of the 
verification tool can be viewed ‘by students’ (not ‘by 
items’), in which case a list is displayed of all the 
students (grouped by classes) who have attempted the 
test. For each individual, the test can then be opened 
in a popup window where the scoring of her or his 
responses can be verified and validated. 

In classroom settings, some further uses for the 
score verification tool are possible. For example, 
teachers may use the web page (displayed on a screen 
or wall by means of a projector) to discuss the results 
with the whole class. When students do not see the 
tool, the names provided for each incorrect  response  
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Figure 1: Verification of automated scoring on WebClass. 

allow the teacher to easily address individual 
students. 

4 CONCLUSION 

One of the oft-quoted benefits of the use of 
technology for testing is that computer-based tests, as 
opposed to their paper-based counterparts, can be 
scored automatically. However, technology alone is 
not capable of guaranteeing high precision of scoring 
because automated scoring “can only be as accurate 
as the human-produced answer keys” (Brown, 2016). 
This article has discussed two approaches to 
producing answer keys to limited-production test 
items, namely exact-text matching and keyword 
matching (based on regular expressions). The main 
advantage of scoring algorithms implementing 
keyword matching is that a single regular expression 
can replace a whole array of keyed responses required 
for exact-text matching. On the other hand, it is easy 
to find examples of responses which ‘fall through the 
cracks’ inherent in solutions employing regular-
expression matching. One possible conclusion to be 
drawn from this is that natural language is too 

complicated for regular expressions to handle it 
impeccably. 

However, if this conclusion is valid, the outcome 
of machine scoring evidently requires some human 
verification. Furthermore, as has been argued above, 
another reasonable conclusion is that exact-text 
matching (which can result in one type of errors) 
allows for more time-efficient score verification than 
does keyword matching (which can potentially result 
in two types of errors). 

The second part of the article has presented the 
score verification tool available on WebClass, an 
online learning management system. This tool 
presents the teacher or test developer with incorrect 
responses only. It does not show correct responses 
because these are given full credit and do not need 
any further verification. As explained above, this 
solution is in accord with the exact-match approach. 
An alternative solution based on the keyword method 
would require the score verification tool to display all 
of the responses submitted by the test takers simply 
because every single response could potentially be 
inappropriately scored (no matter how unlikely this 
might be). 

It is worth adding that the amount of time required 
for score verification on WebClass partly depends on 
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the level of difficulty of the test. If most of the test 
takers know the correct answers, there are relatively 
few incorrect responses that need any verification. By 
contrast, if most of the students produce incorrect 
responses, deciding which of them are appropriately 
identified by the scoring algorithm as wrong may 
require a considerable amount of time. The number of 
responses that may need verification also depends on 
the length of the expected answer. If the expected 
answer is a single word or a short phrase, the 
possibilities for alternative responses may be very 
limited. It is then also much easier to create a 
complete scoring key. 
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