
Orama: A Benchmark Framework for Function-as-a-Service

Leonardo Reboucas De Carvalho a and Aleteia Patricia Favacho Araujo b

Department of Computing Science, University of Brası́lia, Brasilia, Brazil

Keywords: Cloud, FaaS, Benchmark, AWS, GCP, Factorial Design, T-test, Orama Framework.

Abstract: The prominent Function-as-a-Service (FaaS) cloud service model has positioned itself as an alternative for
solving several problems, and, interest in cloud-oriented architectural solutions that use FaaS has therefore
grown rapidly. Consequently, the importance of knowing the behavior of FaaS-based architectures under
different concurrency scenarios has also become significant, especially in implementation decision-making
processes. In this work, the Orama framework is proposed, which helps in the execution of benchmarks in
FaaS-based environments, orchestrating the deployment of pre-built architectures, as well as the execution
of tests and statistical analysis. Experiments were carried out with architectures containing multiple cloud
services in conjunction with FaaS in two public cloud providers (AWS and GCP). The results were analyzed
using factorial design and t-test and showed that the use cases running on AWS obtained better results in
runtime compared to their counterparts on GCP, but showed considerable error rates in competition situations.
It is worth mentioning that the Orama framework was used from in the automated provisioning of use cases,
execution of benchmarks, analysis of results and deprovisioning of the environment, supporting the entire
process.

1 INTRODUCTION

Studies indicate that Function-as-a-Service (FaaS)
(Malawski et al., 2020), also called Serverless (Nup-
ponen and Taibi, 2020) or Backend-as-a-Service
(Schleier-Smith et al., 2021), will become the main
computing paradigm of the Cloud Era (Schleier-
Smith et al., 2021). All this success can be explained,
in part, by the great ease in using this service model,
as well as in the automatic and transparent elasticity
of delivery.

The growing adoption of FaaS-based architectures
has increased concern about performance aspects re-
lated to environments deployed by this type of ser-
vice. Some works such as FaaSdom (Maissen et al.,
2020) and Sebs (Copik et al., 2021) for example, have
investigated the behavior of FaaS services, mainly ex-
ploring the characteristics of programming languages
and providers’ strategies.

However, productive applications often involve
more than one cloud service. In this context, it is im-
portant to know the behavior of this type of applica-
tion when faced with different levels of concurrency.
For this reason, this work proposes the Orama Frame-

a https://orcid.org/0000-0001-7459-281X
b https://orcid.org/0000-0003-4645-6700

work to provide assistance in the execution of bench-
marks in FaaS-oriented solutions, from automated de-
ployment, to test execution and statistical analysis.

The Orama framework has built-in FaaS archi-
tectures ready to be deployed in cloud environments
and then submitted to user-customized test batteries.
When the tests are finished, depending on the config-
uration, the user will be able to access a 2k factorial
design (Jain, 1991), where k is the number of factors
analyzed.

Experiments were performed to validate the
framework on two public cloud providers (AWS and
GCP). For the tests, six Orama built-in use cases were
applied, which enabled explorationat various levels
from simple activation of FaaS functions to integra-
tion with database services and object storage.

This article is divided into seven parts, the first
being an introduction. Section 2 presents the theoret-
ical foundation that supports the work, while Section
3 describes the proposal, that is, the Orama Frame-
work. Section 4 presents the related works, while
Section 5 describes the methodology used in the ex-
periments carried out to validate the framework. Sec-
tion 6 shows the results obtained and finally, Section
7 presents the conclusions and future work.

Carvalho, L. and Araujo, A.
Orama: A Benchmark Framework for Function-as-a-Service.
DOI: 10.5220/0011113900003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 313-322
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

313



2 BACKGROUND

Since NIST (MELL and Grance, 2011) defined cloud
service models in 2011 as Infrastructure-as-a-Service
(IaaS), Platform-as-a-Service (PaaS) and Software-
as-a-Service (SaaS) several public cloud providers
have named their services using “as-a-service” suf-
fixes quite differently from the initial NIST definition.

Although these services differ from the NIST
naming definition, their features generally fit with one
of the traditional models. This profusion of services
gave rise to the term “XaaS” (DUAN et al., 2015) to
generalize “everything-as-a-Service”. In this scenario
Function-as-a-Service emerged.

2.1 Function-as-a-Service

Function-as-a-Service (FaaS) (Schleier-Smith et al.,
2021) consists of a cloud computing service model in
which the client submits a snippet of source code to
the provider and configures a trigger, which can either
be from other services within the provider’s platform
or through a REST API. This type of service is also
known as Serverless (Nupponen and Taibi, 2020) and
Backend-as-a-Service (Schleier-Smith et al., 2021).

Once the service is activated through the trigger,
the provider must guarantee its processing, automat-
ically and transparently providing instances to meet
new requests that exceed the service capacity of the
provisioned environment (auto scaling). The billing
model is based on requests and takes into account the
execution time and the amount of resources allocated
to each request. Providers often impose limits on run-
time, amount of RAM and vCPUs, etc.

This service model has grown significantly thanks
to its ease of adoption and its usage-adjusted charg-
ing model. In this it differs from the IaaS model, in
which charging is based on how long the machines
are in operation, even if they are not in use. In FaaS
the customer is only charged when their application is
effectively used.

Leading public cloud providers offer FaaS options
such as AWS with Lambda (AWS, 2021), Google
Cloud Platform (GCP) with Google Cloud Function
(GCF) (Google, 2021), Microsoft Azure with Azure
Function (Microsoft, 2021), IBM with IBM Cloud
functions (IBM, 2021), Oracle with Oracle Cloud
Function (Oracle, 2021), and Alibaba with Alibaba
Cloud Function (Cloud, 2021).

Performance metrics, especially related to latency,
are excellent tools in the decision-making process for
deploying environments, especially in a cloud com-
puting context. In this context, knowing the perfor-
mance of the solutions is highly desirable and for this

it is possible to use benchmarks to measure perfor-
mance in a systematic way. Some works have devel-
oped benchmarks for performing performance tests in
FaaS environments, such as FaaSdom (Maissen et al.,
2020) and Serverless Benchmark Suite (Sebs) (Copik
et al., 2021). It is important to know the behavior of
FaaS-based architectures in collaboration with other
service models (IaaS and PaaS, for example) offered
by providers, as these scenarios in turn reflect the op-
erational reality of production environments.

In a benchmark process it is important to have an-
alytical tools that allow the identification of insights
from the data obtained from the benchmarks. A tool
that can accomplish this task is the 2k factorial design
(Jain, 1991). By defining two levels (lower and upper)
for factors concerning variables supposed to have in-
fluence on a particular phenomenon, it is possible to
estimate the percentage of the effects of each factor
on the calculated result, as well as the effects of the
combined factors.

Another statistical analysis tool is the paired t-test.
In this test, two samples have their result difference
analyzed in order to determine if the difference found
is statistically significant. This determination occurs
through the calculation of the difference confidence
interval. If this interval contains the number zero,
then the difference is not significant (within a cer-
tain confidence level), otherwise the difference can be
considered as significant and its semantics can be an-
alyzed, in relation to the problem in question. It is
noteworthy that a t-test should only be performed on
populations with up to 30 samples, since the t-student
distribution is used for its calculations and it has such
a restriction. The next section will present the Orama
framework proposal in detail.

The framework proposed in this work has a fac-
torial design module that is capable of performing
analysis with two factors (k = 2) (provider and con-
currence), having latency as the objective variable. In
addition, it also has the execution of the t-test, if appli-
cable. The next section will present the Orama frame-
work proposal in detail.

3 ORAMA FRAMEWORK

With the purpose of facilitating the execution of
benchmarks on FaaS-oriented environments, espe-
cially when the use cases involve other cloud ser-
vice models, in this work the Orama framework was
proposed. “Orama” is a word of Greek origin that
means “Sight”. The name chosen for the framework
demonstrates the intention to shed light on the behav-
ior of FaaS environments. The main features of the

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

314



Figure 1: Orama workflow.

framework are: open-source; built-in use cases; auto-
matic provisioning of built-in use cases; custom use
cases (without provisioning); semaphore controlled
simultaneous benchmark execution; detailed results
of benchmark executions; possibility of re-running
benchmarks; control of the number of requests made
by benchmarks; additional request option to bypass
cold-start; 2k (k = 2) factorial design module for sta-
tistical analysis between two benchmarks; and t-test
to analyze the difference between two benchmarks.

3.1 Orama Workflow

Figure 1 presents the Orama framework workflow. In
the diagram shown, it is possible to observe four lanes
that represent the main phases of the framework: con-
figuration, infrastructure preparation, benchmark ex-
ecution and analysis. In the configuration phase, it is
necessary to create, at least, a provider, a use case and
a benchmark to start the operation of the framework.

When installing the framework, it is possible to
run a command to automatically create built-in use
cases and some benchmark scenarios. Use cases con-
sist of architectural definitions that have automation
artifacts that allow them to be provisioned and depro-
visioned in an automated way. It is also possible, at
the time of framework installation, to configure the
AWS and GCP credentials that will enable the deploy-
ment of use cases related to these providers. Frame-
work installation instructions are available in Orama’s
public repository1. In addition, it is also possible to
install it using pre-built and published Docker images
from the Docker-Hub2.

Once properly installed and configured, the next

1https://github.com/unb-faas/orama
2https://hub.docker.com/u/oramaframework

Figure 2: Orama architechture.

step is to deploy the environment in which the tests
will run. The Orama framework allows the config-
uration of custom use cases that do not need to be
deployed, in this case the user configures directly in
the framework the URLs that are part of the use case,
whether they are GET, POST, PUT or DELETE.

If the environment needs deployment, the user can
command this through the framework’s frontend in-
terface and monitor its deployment. The built-in use
cases have all the automation artifacts needed to be
deployed to the respective providers and these arti-
facts are applied in this phase.

After being deployed, environments are ready to
be tested. In this phase the user can run the bench-
marks as many times as necessary. A benchmark con-
sists of running bursts of requests over a use case
URL. It is possible to configure a list of bursts in a
benchmark, as well as the number of repetitions of
that scenario, in order to obtain samples for statistical
analysis.

It is also possible to configure in a benchmark the
execution of an additional request, before the begin-
ning of the tests, as a service warm-up, in order to
avoid a cold-start. Furthermore, they may be config-
ured in such a way that they intervene between the
executions of the bursts, if the intention is to analyze
the cold start, or any other requirement that demands
an interval between requests.

Once the benchmarks are run, it is possible to
carry out comparative analyzes between them, as long
as certain conditions are respected. For this version of
the framework, it is only possible to compare bench-
marks containing different providers, two equal levels
of concurrency and the same number of repetitions.
Once these criteria are met, it will be possible to visu-
alize the 22 factorial design and paired t-test results.

The factorial design will show, among other met-
rics, the percentage of the effect of the provider, con-
currence and both combined for the results obtained
in the benchmark. The t-test will present the signif-

Orama: A Benchmark Framework for Function-as-a-Service

315



icance of the difference found between the latency
means of the results at various confidence levels from
60% to 99.95%.

At the end of the analysis, the user can de-
provision the deployed environment to carry out the
tests (if applicable), thus ending the workflow of the
framework.

3.2 Orama Architecture

In order to achieve the intended objective of the
Orama framework an architecture was defined and
an application was developed consisting of five main
components as shown in Figure 2. All components of
the framework are designed to be built on top of con-
tainer runtime and cooperate with each other via the
HTTP protocol, as well as with external entities such
as cloud providers, or other target testing platforms.
The five main components of the Orama Framework
are:

• Frontend: application developed in Node.js us-
ing React and Material UI frameworks whose ob-
jective is to provide a friendly interface between
the user and the framework, allowing the manage-
ment of application assets such as providers, use
cases, benchmarks and factorial designs. It is also
possible to execute the provisioning and deprovi-
sioning processes, as well as the benchmarks and
the visualization of the results;

• Backend: application developed in Node.js us-
ing the express.js framework whose objective is to
provide a centralized API for the frontend so that
requests from the frontend are always directed
to this component for treatment and eventual
redirection to another service within the Orama
ecosystem framework. It is also the component
responsible for interacting with the application’s
database;

• Database: consists of the framework’s data stor-
age layer, composed of the Postgresql database;

• Cloud Orchestrator: application developed in
Node.js using the express.js framework whose
objective is to provide an API for provisioning
and deprovisioning the environment through Ter-
raform (HashiCorp, 2021). This component waits
for infrastructure definition artifacts to exist for
a use case in order to apply it to the selected
provider. The use cases can be easily extended
just by creating new directory structures with
the respective Terraform definition files and the
proper framework configuration to trigger it;

• Benchmarker: application developed in Node.js
using the express.js framework whose objective

is to provide an API for executing benchmarks
through the JMeter tool (Halili, 2008). The frame-
work has a generic JMeter benchmark execution
artifact that takes several parameters that are ex-
pected by the Benchmarker component. This
component also generates a web page with test
metrics from a CSV file that is accessed from the
frontend after running the benchmark when view-
ing the results. This component allows simulta-
neous executions of benchmarks, but does not ef-
fect them at the same time, there is a semaphore
control that guarantees that only one benchmark
is running at a time.

The backend, cloud orchestrator and benchmark
components have an API documentation view using
Swagger3 in order to facilitate an eventual direct con-
sumption of data from these components.

3.3 FaaS Built-in Use Cases

The Orama framework has some built-in FaaS-
oriented use cases that can be deployed in AWS and
GCP in order to pass through batteries of tests, or
even serve as bases for productive applications, since
the framework makes available the artifacts, defini-
tion of the infrastructure, and source codes of the
functions. In this version Orama provides six built-
in use cases with the purpose of representing a sim-
ple use of the FaaS paradigm in both providers and
two other more complex uses involving integrations
between FaaS and other providers services, these use
cases are described below.

1. Lambda Calculator: Figure 3a shows the ar-
chitecture of the Lambda Calculator use case in
which one simple Node.js math calculator func-
tion in AWS is deployed in a Lambda service, as
well as an API Gateway that makes it accessible
via REST API.

2. GCF Calculator: Figure 3d shows the architec-
ture of the GCF Calculator use case in which one
simple Node.js math calculator function in GCP
is deployed in a GCF service. The GCF service
makes available a REST API.

3. Lambda to DynamoDB: Figure 3b shows the ar-
chitecture of use case Lambda to DynamoDB in
which three Lambda functions are deployed (ac-
cessible via REST API through the API Gateway)
to meet requests to include, obtain and exclude
data in json format in a database. For data stor-
age, a DynamoDB service is provided with which

3Swagger is an Interface Description Language for de-
scribing RESTful APIs expressed using JSON.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

316



(a) Lambda Calculator. (b) Lambda to DynamoDB. (c) Lambda to S3.

(d) GCF Calculator. (e) GCF to Firestore. (f) GCF to Cloud Storage.

Figure 3: Orama built-in use cases.

integrations between Lambda functions are imple-
mented.

4. GCF to Firestore: Figure 3e shows the architec-
ture of use case GCF to Firestore in which three
GCF functions are deployed to meet requests to
include, obtain and exclude data in json format in
a database. For data storage, a Firestore service
is provided with which integrations between GCF
functions are implemented.

5. Lambda to S3: Figure 3c shows the architecture
of use case Lambda to S3 in which three Lambda
functions are deployed (accessible via REST API
through the API Gateway) to meet requests to in-
clude, obtain and exclude data in json format in a
S3 bucket.

6. GCF to Cloud Storage: Figure 3f shows the ar-
chitecture of use case GCF to Cloud Storage in
which three GCF functions are deployed to meet
requests to include, obtain and exclude data in
json format in a Cloud Storage bucket.

The use cases offered by Orama can be easily de-
ployed to providers from the frontend of the frame-
work. When deploying a use case, the architectural
definition artifacts will be offered to Terraform, which
will communicate with the provider and carry out the
deployment, including the deployment of functions,
whose source code is also part of the use case’s direc-
tory structure.

Conversely, for environment de-provisioning, it is
enough for the user to command it from the fron-
tend and the aforementioned artifacts will be offered
to Terraform, now for environment demobilization.

It is noteworthy that unlike other tools aimed at
performing FaaS benchmarks with a focus on ex-
ploring the implementations of runtimes offered by
providers for some programming languages, Orama
is intended to serve as a basis for the orchestration of
FaaS benchmarks whose integration between services
is present.

With high extensibility, the proposed framework
can be easily adjusted to run tests in other scenarios,
shortening the distance between not knowing the be-
havior of a solution in certain situations and the pos-
sibility of a detailed analysis using robust statistical
tools.

4 RELATED WORKS

FaaS-dom (Maissen et al., 2020) is a modular set of
benchmarks for evaluating serverless computing that
includes FaaS workloads and supports the main FaaS
providers (AWS, Azure, Google, and IBM). The func-
tions implemented to carry out the tests by FaaS-dom
are a strong point, as they are written in several lan-
guages and for several providers. However, they do
not have an integration approach with other cloud ser-
vices as Orama has, and the tasks that the FaaS-dom
functions perform can be considered trivial.

Serverless Benchmark Suite (Sebs) (Copik et al.,
2021) consists of specifying representative work-
loads, monitoring the implementation, and evaluating
the infrastructure. The abstract model of a FaaS im-
plementation ensures the applicability of the bench-
mark to various commercial vendors such as AWS,

Orama: A Benchmark Framework for Function-as-a-Service

317



Azure and Google Cloud. This work evaluates as-
pects such as: time, CPU, memory, I/O, code size and
cost based on the performed test cases. Despite this,
their test cases do not involve integration with other
cloud services as in the framework proposed in this
work, Orama.

In (Wen et al., 2021) the authors perform a de-
tailed evaluation of FaaS services: AWS, Azure,
GCP and Alibaba, by running a test flow using mi-
crobenchmarks (CPU, memory, I/O and network) and
macrobenchmarks (multimedia, map-Reduce and ma-
chine learning). The tests used specific functions
written in Python, Node.js and Java that explored the
properties involved in benchmarking to assess the ini-
tialization latency and efficiency of resource use. The
benchmarks used in the analysed work also do not in-
tegrate with other cloud services as Orama does, mak-
ing their scope limited.

BeFaaS (Grambow et al., 2021) presents an
application-centric benchmark framework for FaaS
environments with a focus on evaluation with realis-
tic and typical use cases for FaaS applications. It sup-
ports federated benchmark testing where the bench-
mark application is distributed across multiple ven-
dors and supports refined result analysis. However, it
does not offer an improved method of statistical anal-
ysis such as factorial design or t-test, as proposed in
this paper.

5 METHODOLOGY

With the purpose to assess the behavior of the
Orama framework, three test scenarios were defined
as shown in Figure 4. In Scenario 1, the framework
was installed on a local physical machine with Docker
engine available and its six use cases were deployed in
the respective clouds, that is, three in AWS and three
in GCP.

Figure 4: Test architecture.

In Scenario 2, a virtual machine was instantiated
in the GCP provider that received the installation of

the Docker engine and then the installation of Orama
framework. As in Scenario 1, the six use cases were
deployed in the respective clouds, but in Scenario 2
the distance between the framework and the GCP use
cases is much smaller, as both the framework and the
use cases are running inside from the same provider.

In Scenario 3, a virtual machine was instantiated
in the AWS provider that had received the installation
of the Docker engine and then the installation of the
Orama framework. As in Scenario 2, in Scenario 3
there is greater proximity between the framework and
the use cases related to AWS, since both are on the
same provider.

It is noteworthy that the orchestration component
of Orama uses random names to name the resources
in the cloud and because of that there is no name con-
flict, even if the three scenarios are active at the same
time.

Table 1 presents the configuration of the physical
machine used in testing Scenario 1, as well as the con-
figurations of the instances created for testing Scenar-
ios 2 and 3.

Table 1: Experiment scenarios parameters.

Place RAM CPU Region OS Flavor

1 Local 16GB 8 Brasilia/Br Ubuntu 20.04 N/A

2 AWS 16GB 8 us-east-1 Ubuntu 20.04 c5.2xlarge

3 GCP 16GB 8 us-central1 Ubuntu 20.04 Custom

Once the framework was installed and the use
cases implemented in each provider, identical batter-
ies of tests were run for all use cases in all scenar-
ios. The test battery consists of subjecting the envi-
ronment to two levels of concurrent load. A first level
with 10 simultaneous requests and another level with
100 simultaneous requests and each test was repeated
25 times. From these test batteries it was possible to
visualize the results of the factorial design and the t-
test, as will be presented and discussed in Section 6.

6 RESULTS

Once the environment for each scenario was pro-
visioned, the six built-in test cases were executed.
At the end of the execution of the test cases, fac-
torial designs were created comparing the equiva-
lent use cases. A factorial design was created be-
tween Lambda Calc and GCF Calc, as both are sim-
ple use cases aimed at creating a mathematical cal-
culator service. A factorial design was created be-
tween Lambda to DynamoDB and GCF to Firestore,
as they are use cases that relate FaaS to Database-
as-a-Service (DBaaS). A factorial design was created

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

318



(a) Calculators use cases.

(b) Database-relateds use cases.

(c) Object storage-relateds use cases.

Figure 5: Paired experiment results.

Orama: A Benchmark Framework for Function-as-a-Service

319



between Lambda to S3 and GCF to Cloud Storage,
which are the use cases that relate FaaS with object
storage services.

In Figure 5a it is possible to observe that the
graphs show the alternation of average latency times
between repetitions. This is due to the unpredictable
characteristic of the data network, however some
peaks and troughs are noticeable and these indicate
the provider’s performance in order to adjust the elas-
ticity of the environment during the execution of the
test batteries.

The difference in the mean latency time plateau
that exists between the results in the two providers is
evident. For example, in Scenario 1 the range calcu-
lated for the Lambda Calc graph was fixed between
900 and 1600 milliseconds, that is, the average la-
tency times in the repetitions varied within this range.
On the other hand, the graph referring to GCF Calc in
Scenario 1 had its range established between 900 and
2400, that is, the average latency of the GCF Calc var-
ied in a greater range than the average latency of the
Lambda Calc. This difference in level was reflected
in the overall average, in which Lambda Calc scored
1288.92 while GCF Calc scored 1361.18. This differ-
ence was also evidenced in Scenarios 2 and 3 and this
indicates that the use case Lambda Calc on average is
able to execute requests faster than the GCF Calc.

However, when analyzing the failure rates, that is,
the percentage of unsuccessful requests, it is possible
to see that in the three scenarios the use case Lambda
Calc presented percentages above 0%, while the use
case GCF Calc remained continuously at 0% in all
scenarios, giving it a higher degree of reliability.

Figure 5b presents the latency averages calculated
in each repetition of the use cases Lambda to Dy-
namoDB and GCF to Firestore in the three scenarios,
since both use cases refer to solutions that relate FaaS
to DBaaS. In Figure 5b the role of providers in in-
creasing the scale of environments is clearly visible,
both in the AWS use case and in the GCP use case,
since the average calculated in the first repetition is
the highest in the series, while from the second repe-
tition onwards the averages drop drastically and from
the third repetition onwards the oscillations reflect the
variations in the transmission rate of the data network.

Analyzing Figure 5b it is possible to notice that
the fastest execution of the use case Lambda to Dy-
namoDB occurred in Scenario 3 where the frame-
work was running inside the provider in which the use
case is deployed (AWS), although this is also the case
in Scenario 3, the use case Lambda to DynamoDB
has the highest failure rate at 31.60%, while in Sce-
narios 1 and 2 the failure rates were at 12.58% and
25.31%, respectively. These high error rates demon-

strate that the AWS provider, in these scenarios, ex-
perienced difficulties in handling concurrent requests.
These problems may be related to temporary instabili-
ties faced by the network during the testing period, to
improper configurations of the use cases, or even to
a problem in the provider’s platform. The tests were
repeated several times in order to compose the mass
of data, but an instability could have covered the en-
tire period of the tests. Regarding the use cases, they
were created using the ”default” configurations indi-
cated by the manufacturer, and can be easily adjusted
to generate new use cases with different configura-
tions in order to evaluate the same scenarios against
different configurations. All this is thanks to the flex-
ibility provided by the Orama framework.

The CGF to Firestore use case had the lowest av-
erage latency in Scenario 3, although in this scenario
the Orama framework was deployed on the AWS
provider. This indicates that the network layer of the
AWS IaaS service managed to be more efficient in
transmitting data than the respective layer in GCP,
while in Scenario 2, where the framework was de-
ployed in a GCP IaaS service, the average latency was
even higher than in Scenario 1, in which the frame-
work was running outside the clouds, in a local en-
vironment, which reinforces the perception that the
network layer of the GCP IaaS service contributed to
these results.

It is noteworthy that the use of the Orama Frame-
work allowed these findings with a much reduced ef-
fort, since the implementation of test cases, as well as
the conduct of benchmarks occurred in an automated
manner.

Figure 5c shows the results of the use case related
to object storage in the three scenarios. In this figure,
it is possible to observe a large variation in latency av-
erages between repetitions in Scenario 1 for both use
cases and this is due to the intrinsic variations of the
data network, since in Scenario 1 the Orama frame-
work is deployed outside the clouds.

The peaks that occur in all scenarios for the CGF
to Cloud Storage use case are noteworthy, these peaks
may represent the actuation of the providers when re-
duce the scale of the environment after the test exe-
cution immediately before. Another fact that stands
out is the presence of the same behavior perceived in
Figure 5b. Once again the GCP-related use cases ran
faster in scenarios where the Orama Framework was
deployed outside of it. As previously mentioned, this
fact may be related to the characteristics of the GCP’s
internal network that supports the IaaS environment
where the Orama framework was installed. It is pos-
sible to view the average times of all repetitions in
each use case for each scenario separately in Table 3.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

320



Table 2: T-test results.

Use case type

Scenario

1 - Local 2 - GCP 3 - AWS

Difference T-test Confidence Difference T-test Confidence Difference T-test Confidence

Calculator 72.26 Passed 80% 235.75 Passed 97.50% 299.32 Passed 99.95%

Database 878.15 Passed 99.95% 924.57 Passed 99.95% 939.57 Passed 99.95%

Object Storage 705.31 Passed 99.95% 933.04 Passed 99.95% 1136.58 Passed 99.95%

Figure 5c also shows that although AWS-related
use cases process requests faster than GCP use cases,
their error rates are not much higher, especially in
those scenarios where the framework was deployed
in the cloud, where error rates reached about 31%.

An important feature offered by the Orama Frame-
work is factorial design analysis. Figure 6 shows the
results of the confrontation between the use cases in
each scenario. This figure shows, in a pie format,
the percentages of the effects calculated by the Fac-
torial Design for the factors: provider (in green), con-
currence (in blue), the relationship between provider
and concurrence (in yellow) and the sampling error
(in red).

The effect of sampling error within a factorial de-
sign indicates the existence of some factor interfering
with the results beyond those mapped (provider and
concurrence), since this effect is calculated from the
difference between the values calculated in the sam-
ples and the mean of these samples. As the bench-
marks use an approach that massively executes re-
quests over the data network, especially over the inter-
net, this factor interferes with the results and this can
be corroborated by analyzing that the portions of the
sampling error effects in Scenario 1 are higher than
those portions determined in Scenarios 2 and 3 where,
one of the use cases was tested from an installation of
the framework within its own provider, promoting a
reduction in data traffic.

Table 3: Average latencies in each use case (milliseconds).

Use case type
Scenario

1 - Local 2 - GCP 3 - AWS

Calculator
AWS 1288.92 1473.44 966.58

GCP 1361.18 1709.19 1265.89

Database
AWS 1274.43 1564.43 1008.14

GCP 2152.58 2489.00 1947.71

Object Storage
AWS 1328.46 1593.24 987.21

GCP 2033.77 2526.28 2123.79

In Figure 6 it is possible to verify that in the com-
parison between Lambda Calc and GCF Calc in the
factorial design results there is a predominance of the
concurrence effect (blue slices) to the detriment of the
other factors. In the comparison between Lambda to
DynamoDB and GCF to Firestore there is a greater in-

Figure 6: Factorial designs results.

fluence of the provider effect, but in Scenarios 2 and
3, where the sampling error has less influence, it is
possible to see that the provider influence loses impact
and once again the factor concurrence exerts greater
influence on the results obtained. When analyzing
the confrontation between S3 Lambda use cases such
as GCF to Cloud Storage, the effects shift their in-
fluence between scenarios. While in Scenario 1 the
provider and concurrence effects have practically the
same influence, in Scenario 2 the concurrence effect
outweighs the provider effect. In Scenario 3, it is the
provider that exerts the greatest influence.

The results of factorial designs show that for the
use cases tested, in general, the results are mostly im-
pacted by the concurrence effect. Table 2 shows the
results of the t-tests between pairs of use cases of the
same type, where it is possible to find a difference be-
tween the average latencies. It is possible to notice
that in all tests the difference was considered signif-
icant, once the test was passed. Most of the differ-
ences managed to pass the test with 99.95% confi-
dence level, only in the use cases related to the cal-
culator for Scenarios 1 and 2 the degree of confidence
with which the difference passed the t-test was 80%
and 99.75%, respectively. The results of the experi-
ment shown in this section are available in detail on
GitbHub4.

4https://github.com/unb-faas/orama-results

Orama: A Benchmark Framework for Function-as-a-Service

321



7 CONCLUSION

Considering the results shown, it is possible to con-
clude that the Orama framework proposed in this
work is capable of running benchmarks in several
FaaS scenarios, allowing comparative analyzes be-
tween benchmarks both in terms of absolute perfor-
mance and through statistical analyzes such as facto-
rial design and t-test.

The pre-configured use cases that are part of the
Orama Framework are tools that can help the com-
munity beyond what they propose. They can serve
as a basis for building other similar benchmarks with
different configurations or even for different bench-
marks, with services that have already been addressed
by the original use case. In addition, Orama use cases
can also serve as a starting point for a solution in a
productive environment, since it has a defined and ro-
bust orchestration process.

In the experiment, the framework was installed in
different positions in relation to the target clouds of
the use cases. Installation, provisioning and test exe-
cution are automated, allowing quick and easy analy-
sis from different points of view. Overall, the results
of experiments on AWS and GCP providers showed
that use cases running on AWS managed to be faster
than equivalent use cases running on GCP. However,
there was a high occurrence of errors in the executions
in AWS, while in GCP the use cases did not present
errors.

In future work, use cases may be incorporated to
increase the scope of testable solutions. Thanks to
the decoupled structure of the Orama Framework, in-
corporating new use cases is a relatively simple pro-
cess. Thus, it is possible, any out further work, for ex-
ample, in the investigation of performance problems
commonly found in FaaS architectures, varying dif-
ferent configuration possibilities in order to find those
parameters that exert the greatest influence on the re-
sults.

REFERENCES

AWS (2021). AWS lambda. https://aws.amazon.com/en/
lambda. [online; 11-Aug-2021].

Cloud, A. (2021). Alibaba cloud function. https://www.
alibabacloud.com/product/function-compute. [online;
11-Aug-2021].

Copik, M., Kwasniewski, G., Besta, M., Podstawski, M.,
and Hoefler, T. (2021). Sebs: A serverless benchmark
suite for function-as-a-service computing.

DUAN, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., and
Hu, B. (2015). Everything as a Service (XaaS) on

the Cloud: Origins, Current and Future Trends. vol-
ume 00, pages 621–628.

Google (2021). Cloud functions. https://cloud.google.com/
functions/. [Online; 10-Aug-2021].

Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C.,
Zhao, M., and Bermbach, D. (2021). Befaas: An
application-centric benchmarking framework for faas
platforms.

Halili, E. H. (2008). Apache JMeter. Packt Publishing
Birmingham.

HashiCorp (2021). Terraform: Write, plan, apply. https:
//www.terraform.io. [online; 11-Aug-2021].

IBM (2021). IBM cloud functions. https://cloud.ibm.com/
functions/. [online; 11-Aug-2021].

Jain, R. (1991). The art of computer systems: Tech-
niques for experimental design, measurement, simu-
lation, and modeling. John Wiley & Sons,.

Maissen, P., Felber, P., Kropf, P., and Schiavoni, V. (2020).
Faasdom. Proceedings of the 14th ACM International
Conference on Distributed and Event-based Systems.

Malawski, M., Gajek, A., Zima, A., Balis, B., and Figiela,
K. (2020). Serverless execution of scientific work-
flows: Experiments with hyperflow, AWS lambda and
Google Cloud Functions. Future Generation Com-
puter Systems, 110:502–514.

MELL, P. and Grance, T. (2011). The NIST definition of
cloud computing. National Institute of Standards and
Tecnology.

Microsoft (2021). Azure functions. https://azure.
microsoft.com/pt-br/services/functions/. [online; 11-
Aug-2021].

Nupponen, J. and Taibi, D. (2020). Serverless: What it is,
what to do and what not to do. In 2020 IEEE ICSA-C,
pages 49–50.

Oracle (2021). Oracle cloud function. https://www.oracle.
com/cloud-native/functions/. [online; 11-Aug-2021].

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira,
J., Yadwadkar, N. J., Popa, R. A., Gonzalez, J. E., Sto-
ica, I., and Patterson, D. A. (2021). What serverless
computing is and should become: The next phase of
cloud computing. Commun. ACM, 64(5):76–84.

Wen, J., Liu, Y., Chen, Z., Ma, Y., Wang, H., and Liu, X.
(2021). Understanding characteristics of commodity
serverless computing platforms.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

322


