
Lifting Existing Applications to the Cloud: Abstractions, Separation of
Responsibilities and Tooling Support

He Huang1, Zhicheng Zeng3 and Tu Ouyang2

1University of Melbourne, Parkville VIC 3010, Australia
2Case Western Reserve University, CSDS department, U.S.A.

3Zilian Tech Inc., Shen Zhen, China

Keywords: Cloud, Abstraction, DevOps, Software Engineering.

Abstract: The benefits from running applications on the cloud: easy to scale up, low cost from competition of many cloud
vendors, and many others, are compelling reasons for more and more applications being developed and/or
deployed against the cloud environment. This trend promptes application developers to rethink the structure
of their applications, the runtime assumption of the applications, and what are the appropriate input/output
abstractions. New generation of applications can be built from the scratch with the recent development of
the cloud-native primitives (clo, nd). However there are many existing applications which were previously
developed against single-machine environment. Some of them now are needed to be lift to the cloud so as
to enjoy the benefits from cloud environment such as computation elasticity. What does a principled process
look like to lift such applicaitons to the clcoud? In this paper, we present what we have learnt from helping our
customers to lift their existing applications to cloud. We identify the key challenges from common questions
being asked in practice, and we present our proposed methodologicl framework, to partially address these key
challenges. The solution is comprised of various methods identifing right abstractions for cloud resources,
separating the responsibilities between application developer and cloud DevOps, and how to leverage tooling
to streamline the whole process. We try to design our methods as much cloud-vendor agnostic as possible. We
use the lifting process of one application, a web crawler from our practice, to exemplify various aspects of the
proposed methodological framewor.

1 INTRODUCTION

After the launch of AWS, recent fifteen years have
seen a wave of moving applications to the cloud.
Cloud technologies have evolved, from running appli-
cations on virtual machine, to running applications in
a lightweight container, to the recent development of
”serverless” Functions-as-a-Service paradigm (Akkus
et al., 2018; Villamizar et al., 2016) that affects the
program design deeply and directly. The serverless
paradigm enables developers to write code without
the need of planning distributed computation, simply
upload the code to the cloud, the cloud does all the job
including replicating the code to many machines and
running all the code instances simultaneously. The
new generation of applications being developed can
immediately employ the new cloud primitives from
the scratch and enjoy a simple and efficient deploy-
ment to the cloud. On the other hand, there are many
existing applications that are still key to many orga-

nizations that are in the middle of moving things to
cloud. It can be a long and costing journey to gradu-
ally educate original application developers of cloud
knowledge so that they can deploy these applications
to the cloud, and sometimes there are needs to rewrite
part of the applications. Developing methods to speed
up the lift process of these applications while mini-
mizing man-hours asked from original developers can
help both the developers and the organizations.

Cloud vendors and open source communities have
devised many supporting tools and solutions (azu, nd;
pod, nd; pup, nd; doc, nd; ter, ndb; aws, nd). Most
of these solutions aim to solve specific challenges in
one particular stage of the lifting process but not all.
Overall it is still difficult for developers to choose the
set of tools to use, and split up the work so to let cloud
experts to come in to help.

Learned from our practices, in this study we sum-
marize a few important challenges identified, and
present a methodological framework to help practi-

Huang, H., Zeng, Z. and Ouyang, T.
Lifting Existing Applications to the Cloud: Abstractions, Separation of Responsibilities and Tooling Support.
DOI: 10.5220/0011109000003179
In Proceedings of the 24th International Conference on Enterprise Information Systems (ICEIS 2022) - Volume 2, pages 601-608
ISBN: 978-989-758-569-2; ISSN: 2184-4992
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

601



tioners reason about several important aspects of lift-
ing an application to the cloud. This methodological
framework also helps to evaluate and choose wisely
the appropriate set of supporting tooling to help the
lift process by matching with each applications’ char-
acteristics. The identified important challenges are
presented in Section 2, and the methodological frame-
work to these challenges, which can help to guide
the implementation of artifacts such as requirement
checklist, code, and team topologies. The method-
ological framework is detailed in Section 3.

Rich literature exist where many methods have
been described in regard to lifting applications to the
cloud, in almost every stage of the lifting process,
numerous open-source or commercial tools are avail-
able to choose. In this paper, we provide a method-
ological framework that summarizes valuable practi-
cal lessons we learned from lifting several applica-
tions to the cloud, we also discuss some practical im-
plementation strategies we adopted, selection criteria
to choose tools, and how to efficiently integrate hu-
man specialists in the process. Additionally , we sur-
vey some of the most popular tools when describing
the learned lessons.

For the purpose of clear illustration, we use one
application as an example throughout this paper: a
web crawler. This web crawler application was origi-
nally developed against and previously ran on a single
machine. The number of web pages to crawl later in-
creases dramatically, renders the single-machine ap-
plication incapable to handle the workload. Lifting
this application to the cloud, to leverage the parallel
computation power there, became clear way to go to
the developer. The web crawler application takes a
text file as input that contains a list of web page URLs
to crawl, the application outputs the content of URLs
to individual files whose file system paths are defined
by an input parameter to the application. We note that
there are certainly many more complex applications
than a web crawler. In this position paper, we fo-
cus on this simple web crawler example, exploring
methodological framework to help lifting more com-
plex applications is a compelling future work.

2 KEY CHALLENGES

Application developers, who initially designed and
implement their application without any assumption
of cloud environment, when the needs come to mi-
grate such application to the cloud, unavoidably they
would have many questions in mind. Some typical
questions are: what benefits would come with cloud
lifting? How much code needs to be added? How

much effort for the developers? Could the applica-
tion be lifted with only a small amount of adjust-
ments and have most of the business logic untouched?
How much must application developers understand
the target cloud environment during the lifting pro-
cess? Should it be the application developer to do the
lifting, or should it be someone else who knows the
cloud better to do it, is there a systematical guideline
to help to define and separate the work?

Stemmed from numerous questions we were
asked in practice, we identify several key challenges:

C.1. How to identify what application can be lift to
cloud with little to no adjustment work.

C.2. What are appropriate set of building blocks(i.e.,
primitives) to provide to the application devel-
opers, help them to remove the common road
blocks in the lifting process? The goal is to en-
capsulate the application from the ”new” cloud
runtime and environment as much as possible,
resulting in less adjustment work. For an ap-
plication that meets certain property criteria, the
amount of adjustment work could be close zero
for the developer, which means the lifting is
transparent to the application and all the extra
work could be done by specialists.

C.3. How not to assign too much extra responsibil-
ities to the application developer? It helps re-
duce anxiety resulted from uncertainty and also
helps to brings additional help to accelerate the
lift. Some responsibilities, for instance, under-
standing cloud environment assumptions, man-
aging cloud resources, monitoring applications
running status in the cloud, could ideally be as-
signed to the domain specialists.

C.4. What are the tooling support to enable automa-
tion of the lifting? And importantly, to sup-
port overcoming the other challenges aforemen-
tioned. Tooling helps to reduce effort and hu-
man error in many lifting stages, for example,
provisioning cloud resources such as computa-
tion container, storage and network, automatic
deploying the applications to cloud and scaling
up cloud resources appropriately, and monitoring
running applications.

3 METHODOLOGICAL
FRAMEWORK

We present a methodological framework derived from
the author’s real-world practices, to help, partly ad-
dress the challenges listed in previous section.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

602



3.1 Identifying Application Properties
through Checklist

This facet is to address challenge C.1. We are inter-
ested to figure out a checklist to identify such appli-
cation properties, so as to follow the checklist then
provide confident answers to application developer if
his/her application falls into one of these easy-to-lift
categories defined by our checklist. Certain properties
of application would greatly reduce the amount of the
adjustment need in corresponding parts.

These application properties and their implica-
tions are summarized as a checklist, in practical, we
examine the application that need to be lifted through
this checklist and identify properties that enable cer-
tain effortless migration.

• A monotonic application, could have multiple in-
stances scheduled at the same time without the
need of explicit coordination. Stated by CALM
theorem (Ameloot et al., 2013), the output of ap-
plication is deterministic and monotonic code can
be run free without any need for locking, barriers,
commit, consensus, etc.

• An associative and communicative application
could be transparent to out-of-order scheduling.
This is similar to the map function in map-reduce
computing paradigm (Dean and Ghemawat, 2004)

• An idempotent application (Hummer et al., 2013)
does not need to be aware of a recovery strategy
that performs full restart facing application fail-
ure, since running the application multiple times
produces the same output.

• An application using file-system based input and
output. Such application can be migrated to cloud
without modification of I/O part, given abundance
in cloud virtual file abstractions.
The web crawler meets all criteria in the check-

list, it is monotonic, associative, communicative and
idempotent, its I/O model is the simplest file based, all
these properties together allow this application to be
lift with almost zero effort from the developer under
our proposed framework’s support.

3.2 Abstractions for Hiding Complexity

This facet is similar to a software engineering
goal raised in many engineering contexts, that is
WORA(Write once, run anywhere), a acronym orig-
inally coined for advertising Java and the Java virtual
machine. It highlights the benefits brought by ele-
gant separation of the code and the runtime, via right
abstractions of the underlying layers thus hiding ir-
relevant detail from the upper layers. By doing that

the upper layer implementation requires little to no
modification in case some lower layers implementa-
tion changes. The same strategy can apply to lifting
existing application to cloud, that is to hide the detail
of runtime environment changes from existing appli-
cations through a right set of abstractions.

We acknowledge that switching a cloud environ-
ment is way more complicated than a language run-
time, thus the list of desired abstractions can grow
long. Some of the cloud environment elements might
not be feasible at all to abstract away. Below we list
a few fundamental abstractions that are common to
many applications, to tackle challenge C.2:

• Abstractions to cloud runtime environment. Con-
crete examples include, docker for container (doc,
nd) that present a whole virtual hardware and
software runtime to the application, and Kuber-
netes technologies (k8s, nd) that provide a set of
frameworks and technologies to orchestrating and
scheduling many containers within same cloud
environment, they are designed such that most ap-
plications do not need to be aware of their exist-
ing.

• Input/Output abstractions. Virtual file system, is
one of the simplest abstraction that could facili-
tate an effortless and seamless migration of ap-
plication, built of file-system-based I/O, to the
cloud. To many client libraries, accessing vir-
tual file system is no different from accessing
a local file system. Database is another com-
mon means as Input/Output, database could be in-
stalled on a virtual machine in the cloud and sim-
ilar access interface is provided to applications.
A SQL-supporting database abstraction provided
by the cloud, is considered an enabler for a quick
lift of existing application to the cloud. In addi-
tion, many cloud vendors provide managed ser-
vices of selected database to simplify database
management in cloud, e.g., Microsoft Azure pro-
vides Azure SQL Managed Instance for its SQL
server that usually requires management by in-
dividual enterprise’s IT department (azu, nd),
solution marketplace are thriving with plenty of
cloud-vendor and third-party database migration
service options available to choose from (aws, nd;
dat, ndb). The I/O abstraction provided by cloud
vendors usually come with different SLA(service
level agreement) on different properties, most im-
portant ones are consistency, latency and avail-
ability. Cloud vendors price different in multiple
tiers, offering differential combination of SLAs of
properties to suite diversified user cases. One ex-
ample is that Microsoft Azure offers four tiers of
share File services, where the most expensive pre-

Lifting Existing Applications to the Cloud: Abstractions, Separation of Responsibilities and Tooling Support

603



mium tier guarantees low latency, as well as high
throughput, the second most expensive tier imple-
ments same throughput guarantee, but not opti-
mized for low latency (mic, nd).

The web crawler application’s input/output is
based on UNIX-like file system. In practice, the target
cloud vendor for this application is Microsoft Azure,
we choose to use the Azure shared file service to sim-
ulate a local UNIX-like file system to the application,
so that there is no modification needed at all in the I/O
layer of the application. Docker container (doc, nd) is
used to provide the runtime abstraction.

3.3 Separation of Responsibilities via
Code

This facet is to reduce the amount of required effort
and the anxiety associated with it from the application
developers, Software framework and associated pro-
cesses need to devised to separates as many responsi-
bilities as possible from developers, and route them to
cloud specialists who can solve one responsibility ef-
ficiently. Several key responsibilities to separate from
developers are listed below:

• Separate application scheduling, so that applica-
tion logic is independent of job scheduling strate-
gies as much as possible

• Separate cloud resource management from the ap-
plication

• Separate deploy-to-cloud process from applica-
tion

• Separate application monitoring in Cloud from
application

Recent years have seen a new specialist of soft-
ware engineering workers emerging, namely De-
vOps (Mueller, 2010). While DevOps is not limited
to cloud environment, Such specialist does blooms in
recent years with the thriving trend of moving appli-
cations to cloud. It is also important enabling force
for operating cloud applications efficiently and effec-
tively because now cloud vendor could run such a De-
vOps organization to handle the needs of individual
enterprises. Cloud DevOps’ cloud operation exper-
tises render them the best personnels to handle many
of the responsibilities we want to separate out from
developers, particularly those related to cloud run-
time. We suggest achieving the separation with ap-
propriate team design, team process and tooling sup-
port. Figure 1a illustrates an overview of many re-
sponsibilities that can be handled by different teams
to support running an application in a cloud environ-
ment. Ideally, application developer only needs to

take care of the application’s logics, while leaves ev-
erything else, from runtime configuration, cloud de-
ployment, to job monitoring to other specialist teams,
for example, DevOps.

Operation teams should be treated as essentially
engineering team, engineers are trained and best in
expressing intended actions in code. Therefore it’s
preferred to execute process as running a program in
stead of human manual steps following instruction in
a documentation. We propose a key paradigm for sep-
aration of responsibilities: Responsibility-as-Code.
We apply this paradigm to tackle the challenge C.3.

We deem setting up framework for coding up var-
ious responsibilities as effective ways to bring in ex-
perts from DevOps team who are experts to individ-
ual responsibility, code is something that is a famil-
iar vehicle to both ops and application teams, a place
to encode and store different expertise knowledge in
a precise way, a means where tasks(and responsibili-
ties) can be split up, boundaries can be set, while col-
laboration between teams still can happen if needed,
through established engineering practices such as pull
request, code review and branches management.

We find several discussion topics in software en-
gineering literature that are closely related to what
we call responsibility-as-code: Examples include
infrastructure-as-code (Hüttermann, 2012; ter, nda;
Morris, 2016) in the field of DevOps engineering, and
executable playbooks (exe, nd) in ”chaos engineer-
ing” field, Of note many of these concepts discussed
in the literature rely on tooling to realize the full po-
tential, that we discuss in section refsec:tooling.

Research and practice suggests code for express-
ing infrastructure or process are better constructed
with a declarative language, tooling could compile
the process code into action plans and then execute.
(Schwarz et al., 2018; Morris, 2016). Figure 1b shows
a list of configuration files for the web crawler ap-
plication, each of the files aims to express one cat-
egory of responsibilities for setting up and running
the application in a cloud environment. Application
developer needs to know little about what are these
configuration files for. These files are added later
by DevOps specialists. In this example list, Dock-
erfile is for cloud runtime setup with docker con-
tainer, k8s.yaml is the configuration code for orches-
trating various cloud resources for running applica-
tion via Kubernetes. main.tf, variables.tf and ter-
raform.tfstates contain code for cloud resource defini-
tions and management, specified in terraform script-
ing language. azure-pipelines.yaml is to specify
the deployment process of the application to the Mi-
crosoft Azure cloud These configuration files are cre-
ated by DevOps and executed by tooling.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

604



Applicaition

Runtime Environment 

Developer 
Responsibilities

DevOps 
Responsibilities

Cloud Environment

Cloud Job Deployment & 
Scheduling

Cloud Job monitoringCloud Resource Management

Input/Output

(a) The mapping of responsibilities to components for
running application instances in the cloud, in ideal case,
application developer need to only focus on the applica-
tion logic and assign other tasks to DevOps.

(b) A sample list of responsibility-as-code files, except
.gitignore and README.md(both for other code repos-
itory management intends), each of these code files ex-
presses one particular category of responsibilities, and
the code can be executed by corresponding tooling to
perform specified tasks.

Figure 1: The conceptual responsibility layout for running
applications in the cloud, and responsibility-as-code sam-
ple files.

3.4 Tooling for Automation

Building toolchains, as stated in challenge C.4, is the
most important aspect to save the cost of every appli-
cation lift, It is also the enabler to realize various con-
cepts in the other proposed methods. We list a few
tooling support categories we consider as the most
essential. In every of these category we have seen
many offerings from both open source communities
and commercial companies, some of the solutions are
opinionated. It is challenging to compare these offer-
ings’ pros and cons, and choose the ones that fit the
need.

• Tooling for automated creation of specific runtime
environment for the application. An ideal runtime

environment should provider an higher-level ab-
straction to specific underlying hardwares and the
operating system. We choose docker (doc, nd) as
runtime packaging system in our practice. The
configuration files manifesting the runtime param-
eters using docker, for the web crawler applica-
tion, are shown in figure 1b. Other alternative
tooling include Podman (pod, nd), a daemonless
container engine running on Linux; and LXC (lxc,
nd) that is implemented within Linux facilitating
an operating-system-level virtualization.

• Tooling for cloud resource definition and man-
agement. One example of such tools is pup-
pet (pup, nd), it includes its own declarative lan-
guage to describe system configuration and it ac-
tually supports systems beyond cloud. Chef (che,
nd) uses a pure-Ruby, domain-specific language
(DSL) for writing system configuration ”recipes”,
it can streamline tasks in company servers, as
well as clouds like AWS, Microsoft Azure, IBM
cloud. SaltStack is another open source option
that provides configuration management in its au-
tomation engine (sal, nd). Config files shown in
figure 1b include terraform config files that ter-
raform tooling understand and execute to manage
the cloud resources for web crawler application.
Terraform (ter, ndb) is a software tool that allows
users to define and configure cloud resources us-
ing a high level script language, which in turn can
be executed to run management routines of these
resources against all popular cloud vendors, One
useful feature of Terraform is that it provides a
layer of resource abstraction to hide as much as
possible the differences between cloud vendors.

• Tooling for observability, for monitoring applica-
tion status running in the cloud, , and managing
alerts when something needs attention. In ad-
dition to native tooling provided by almost ev-
ery cloud vendor, there are commercial prod-
ucts available covering across cloud vendors from
Datadog (dat, nda), and Lightstep (lig, nd), using
a vendor-agnostic tooling is useful if the applica-
tion targets multi-cloud deployments.

• Tooling for incident response, to provide frame-
works and templates to standardize generic in-
cident mitigation and simplify producing exe-
cutable playbook code to cope with specific ap-
plication incidents. (ser, nd; sta, nd) are example
products for this category.

Lifting Existing Applications to the Cloud: Abstractions, Separation of Responsibilities and Tooling Support

605



4 RELATED WORK

Infrastructure-as-code (IaC) is the practice to auto-
matically configure the system and to provision re-
sources on remote instances (Hüttermann, 2012; Mor-
ris, 2016). It has become a highly advocated prac-
tice for day-to-day work for DevOps (Artac et al.,
2017) since it allows system configuration tasks to
be executed repeatably, safely, and efficiently. Some
research on IaC focuses on identifing and veriing
the properties of IaC code, such as idempotency and
convergence, as well as others, to detect possibly
harmful effects in the code that might lead to seri-
ous consequences (Van der Bent et al., 2018; Rah-
man and Williams, 2018). Hummer et al. (Hum-
mer et al., 2013) applied model-driven testing tech-
niques to Chef configuration cookbooks, and were
able to find some of the non-idempotent ones. Re-
hearsal (Shambaugh et al., 2016), a configuration ver-
ification tool for Puppet, uses static analysis to verify
determinism and idempotency. We believe many pro-
posed methods from Infrastructure-as-Code research
can be applied to our proposed Responsibilities-as-
Code paradigm to guide the code design and verifica-
tion.

The ”Separation of concerns” principle is one of
the essential principles in software engineering. It
states software should be decomposed in such a way
that well-separated modules address different “con-
cerns” or aspects of the problem. (Hürsch and
Lopes, 1995) Concern can be ”the details of the hard-
ware for an application”, or ”elements to present
the information on the user interface”. Many re-
search has explored ways to apply this principle
in constructing software systems, through code pat-
terns (Gamma et al., 1995; Sarcar, 2016), program-
ming paradigms (Stutterheim et al., 2017; Kiczales
and Mezini, 2005), development process (Panunzio
and Vardanega, 2014; Castellanos Ardila and Gallina,
2020), and so on. Win et al, state the importance of
applying this principle to design and implement se-
cure software (De Win et al., 2002). The concern
concept in SoC overlaps with responsibility used in
this paper, though in our context, responsibility also
implies human factor: not only does software need to
be decoupled to be addressed as independently as pos-
sibly, but also decoupled software aspects should be
grouped such that different aspect groups can be han-
dled by differen human specialists as independently
as possible, to maximize the payoff of human exper-
tise.

5 CONCLUSION AND
DISCUSSION

We provide several important lift-to-cloud challenges
and propose a methodological framework that con-
sists of cloud-vendor-agnostic reasoning and meth-
ods to help addressing the challenges. Our hope is to
shield lights into what are the common road-blocks in
the lifting process and What are the systematical way
to reason about how to overcome these road-blocks.
Hopefully what is presented here can foster the re-
lated discussion and help the community to devise
new methods and tools to accelerate the lifting pro-
cess of many of existing applications.

There are more complex applications, than the
web crawler example used throughout this study,
which we believe will benefit from a similar system-
atical methodological framework in the process of
lifting-to-cloud. Many of the reasoning aspects pre-
sented in our methodological framework are mostly
applicable for the more complex applications, but
with new challenges that are worthwhile further ex-
plorations. For example, some complex applications
can not be lift to the cloud without any modifica-
tion. In those cases, how to identify the responsibil-
ity boundary between the original developer and the
cloud DevOps? Can we devise tools to help quickly
identify code blocks that potentially require changes
from DevOps?

As to the future development directions of sup-
porting application lifting, Several new responsibility
categories are worth further considerations, In addi-
tion what have been described in Section 3.3. First is
how to manage security responsibilities. Some cloud
and third party vendors have been providing mecha-
nisms and tooling to support requirements on security,
some of these vendors providing very fine-grained ac-
cess control (gcp, nd). If choosing native security
mechanisms, application developers can leave the re-
sponsibilities to the cloud providers. Second is re-
sponsibilities of automated dynamic resource alloca-
tion and resource optimization, achieving it asks for
platform support as well as appropriate set of tooling.
Cheung et al. (Cheung et al., 2021) has proposed
a concept called ”targets for dynamic optimization”
as one of four new facets for cloud programming to
abstract such resource optimization responsibilities.
Databricks spark, a distributed compute engine, has
introduced an autoscaling technique, that removes the
need for developers to state the amount of resource
(for instance, CPU and memory) provisions automat-
ically. Databricks claims that this technique is able to
reduce cloud costs by up to 30%. However, this tech-
nique is specific to the Databricks platform. We hope

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

606



to see more new vendor-agnostic techniques and tool-
ing being developed to provide similar capabilities of
automated cloud resource allocation. Furthermore,
co-developing tooling for the cloud resource alloca-
tion optimization purpose and tooling for cloud appli-
cation performance monitoring is a possible direction
for tooling advance.

ACKNOWLEDGMENTS

We thank Dr. Zhimin Zeng from Zilian Tech, and
Prof. Longpeng Zhang from University of Electronic
Science and Technology of China, for their construc-
tive discussion on related topics, and their support for
this work. This work is partially supported by Na-
tional Social Science Foundation of China(Grant No.
20CJY009).

REFERENCES

(n.d.). Ansible executable playbooks. https://docs.ansible.
com/ansible/latest/cli/ansible-playbook.html.

(n.d.). Aws database migration service. https://aws.amazon.
com/dms/.

(n.d.). Azure files pricing. https://azure.microsoft.com/
en-us/pricing/details/storage/files/.

(n.d.). Chef infra, a powerful automation platform. https:
//github.com/chef/chef.

(n.d.). Cloud native compute foundation. https://www.cncf.
io/.

(n.d.a). Datadog: Cloud monitoring as a service. https:
//www.datadoghq.com/.

(n.d.). Docker: Empowering app development for develop-
ers. https://www.docker.com/.

(n.d.). Gcp security and identity. https://cloud.google.com/
products/security-and-identity.

(n.d.a). Infrastructure as code: What is it? why is it
important? https://www.hashicorp.com/resources/
what-is-infrastructure-as-code.

(n.d.). Kubernetes: Production-grade container orchestra-
tion. https://kubernetes.io/.

(n.d.). Lightstep - monitor and improve performance. https:
//lightstep.com/.

(n.d.). Linux containers. https://linuxcontainers.org/.
(n.d.b). Migrating workloads to aws with data-

dog. https://www.datadoghq.com/resources/
aws-migration-ebook.

(n.d.). Podman: A tool for managing oci containers and
pods. https://github.com/containers/podman.

(n.d.). Puppet: Powerful infrastructure automation and de-
livery. https://puppet.com/.

(n.d.). Salt project. https://saltproject.io/.
(n.d.). Servicenow: The simplicity your company craves.

https://www.servicenow.com/.

(n.d.). Stackpulse - reliability platform. https://stackpulse.
com/.

(n.d.b). Terraform. https://www.terraform.io/.
(n.d.). What is azure sql managed in-

stance? https://docs.microsoft.com/
en-us/azure/azure-sql/managed-instance/
sql-managed-instance-paas-overview.

Akkus, I. E., Chen, R., Rimac, I., Stein, M., Satzke,
K., Beck, A., Aditya, P., and Hilt, V. (2018).
{SAND}: Towards high-performance serverless com-
puting. In 2018 {Usenix} Annual Technical Confer-
ence ({USENIX}{ATC} 18), pages 923–935.

Ameloot, T. J., Neven, F., and Van den Bussche, J.
(2013). Relational transducers for declarative net-
working. Journal of the ACM (JACM), 60(2):1–38.

Artac, M., Borovssak, T., Di Nitto, E., Guerriero, M.,
and Tamburri, D. A. (2017). Devops: introducing
infrastructure-as-code. In 2017 IEEE/ACM 39th Inter-
national Conference on Software Engineering Com-
panion (ICSE-C), pages 497–498. IEEE.

Castellanos Ardila, J. P. and Gallina, B. (2020). Separation
of concerns in process compliance checking: divide-
and-conquer. In 27th European & Asian System, Soft-
ware & Service Process Improvement & Innovation
EuroAsiaSP2’20, 09 Sep 2020, Düsseldorf, Germany.
Springer International Publishing.

Cheung, A., Crooks, N., Hellerstein, J. M., and Milano, M.
(2021). New directions in cloud programming. arXiv
preprint arXiv:2101.01159.

De Win, B., Piessens, F., Joosen, W., and Verhanneman,
T. (2002). On the importance of the separation-of-
concerns principle in secure software engineering. In
Workshop on the Application of Engineering Princi-
ples to System Security Design, pages 1–10. Citeseer.

Dean, J. and Ghemawat, S. (2004). Mapreduce: Simplified
data processing on large clusters.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., and Pat-
terns, D. (1995). Elements of reusable object-oriented
software. Design Patterns. massachusetts: Addison-
Wesley Publishing Company.

Hummer, W., Rosenberg, F., Oliveira, F., and Eilam, T.
(2013). Testing idempotence for infrastructure as
code. In ACM/IFIP/USENIX International Confer-
ence on Distributed Systems Platforms and Open Dis-
tributed Processing, pages 368–388. Springer.

Hürsch, W. L. and Lopes, C. V. (1995). Separation of con-
cerns.

Hüttermann, M. (2012). Infrastructure as code. In DevOps
for Developers, pages 135–156. Springer.

Kiczales, G. and Mezini, M. (2005). Separation of concerns
with procedures, annotations, advice and pointcuts. In
European Conference on Object-Oriented Program-
ming, pages 195–213. Springer.

Morris, K. (2016). Infrastructure as code: managing
servers in the cloud. ” O’Reilly Media, Inc.”.

Mueller, E. (2010). What’sa devop? the agile ad-
min. URL (consulted 2019): http://theagileadmin.
com/2010/10/08/whats-a-devop.

Lifting Existing Applications to the Cloud: Abstractions, Separation of Responsibilities and Tooling Support

607



Panunzio, M. and Vardanega, T. (2014). A component-
based process with separation of concerns for the de-
velopment of embedded real-time software systems.
Journal of Systems and Software, 96:105–121.

Rahman, A. and Williams, L. (2018). Characterizing de-
fective configuration scripts used for continuous de-
ployment. In 2018 IEEE 11th International confer-
ence on software testing, verification and validation
(ICST), pages 34–45. IEEE.

Sarcar, V. (2016). Java design patterns. Springer.
Schwarz, J., Steffens, A., and Lichter, H. (2018). Code

smells in infrastructure as code. In 2018 11th Interna-
tional Conference on the Quality of Information and
Communications Technology (QUATIC), pages 220–
228. IEEE.

Shambaugh, R., Weiss, A., and Guha, A. (2016). Rehearsal:
A configuration verification tool for puppet. In Pro-
ceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation,
pages 416–430.

Stutterheim, J., Achten, P., and Plasmeijer, R. (2017). Main-
taining separation of concerns through task oriented
software development. In International Symposium
on Trends in Functional Programming, pages 19–38.
Springer.

Van der Bent, E., Hage, J., Visser, J., and Gousios, G.
(2018). How good is your puppet? an empirically
defined and validated quality model for puppet. In
2018 IEEE 25th international conference on software
analysis, evolution and reengineering (SANER), pages
164–174. IEEE.

Villamizar, M., Garces, O., Ochoa, L., Castro, H., Sala-
manca, L., Verano, M., Casallas, R., Gil, S., Valen-
cia, C., Zambrano, A., et al. (2016). Infrastructure
cost comparison of running web applications in the
cloud using aws lambda and monolithic and microser-
vice architectures. In 2016 16th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Com-
puting (CCGrid), pages 179–182. IEEE.

ICEIS 2022 - 24th International Conference on Enterprise Information Systems

608


