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Abstract: This paper presents a controller design for networked control systems (NCS) with packet delay and event-
triggered control. The total network delay is assumed to be an integer multiple of a fixed sampling period so 
that the overall system is time-varying with each model depending on the number of time delays. The design 
methodology is applicable to an arbitrary number of packet delays, regardless of whether the delays are 
random or deterministic. The methodology is applied to a simple example and Monte Carlo simulation results 
show that the controller stabilizes the NCS and is robust with respect to random variations in the sampling 
period and to changes in the probability of packet delays. 

1 INTRODUCTION 

Networked control systems (NCS) are control 
systems where the controller receives information 
from the plant and delivers control commands to the 
actuator through a communication network (Antaklis, 
et al., 2007; Li, et al., 2015). The shared network 
connection between different components of the 
control loop yields a flexible architecture and reduced 
installation and maintenance costs (Hespanha, et al, 
2007)0. With limited network resources, in many 
applications it is beneficial to reduce the load on the 
network by using event-triggered control (Yang, 
2006), (Ge et al., 2021), (Lemmon, 2010). Control 
actions are not updated unless this is warranted to 
maintain satisfactory operation of the control system 
and the need to relay information to the network from 
a remote controller during periods where the current 
control is satisfactory is eliminated. 

With event-triggered control or with packet delay, 
the interval between updates of the control signal 
varies. This variation results in a system that switches 
between different plant models with each model 
corresponding to the interval between the last and 
current control update. Switching requires careful 
design to ensure that the switched system remains 
stable and perform satisfactorily. 

Although there are multiple results in the 
literature for the stability analysis and design of linear 
NCS (Garcia et al., 2014), there is still a need for a 

simple design approach that yields a time-varying 
controller that can handle arbitrary packet delays. We 
exploit a well-known result for the stabilization of 
linear parameter-varying systems (Pandey et al., 2017) 
to design a time-varying controller for NCS with 
arbitrary packet delays. Although the result was 
intended for the design of gain scheduled control 
systems, a special case of the result allows us to 
exploit it for the design of NCS. The NCS model is 
adopted from (Montestruque and Antaklis, 2004). 
The resulting controller stabilizes the NCS regardless 
of the switching regime between the models 
corresponding to different packet delays. The 
controller is obtained by solving a set of linear matrix 
inequalities (LMIs). The number of inequalities 
solved for the controller depends on the maximum 
number of consecutive packet delays assumed for the 
design.  

An example is provided to demonstrate the 
control system design. Simulation results show that 
the design stabilizes the NCS regardless of the 
switching regime associated with the packet delays. 
In addition, if the system is designed for switching at 
multiples of the sampling period, it is robust with 
respect to random variations in the sampling period. 
Thus, the sampling period need not be known exactly. 

The next section reviews the NCS model of from 
(Montestruque and Antaklis, 2004) and some 
properties of switched systems. Section 3 presents our 
controller design methodology, which is the main 
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result of this paper. Section 4 presents simulation 
results and Section 5 is the Conclusion. 

2 NETWORKED CONTROL 
SYSTEM 

Consider the linear plant 𝒙ሶ ሺ𝑡ሻ = 𝐴𝒙ሺ𝑡ሻ + 𝐵𝒖ሺ𝑡ሻ (1)𝒚ሺ𝑡ሻ = 𝐶𝒙ሺ𝑡ሻ + 𝐷𝒖ሺ𝑡ሻ (2)

with networked control with constant matrices 𝐴 ∈ℛ×, 𝐵 ∈ ℛ×, 𝐶 ∈ ℛ×, 𝐷 ∈ ℛ× . We adopt 
the NCS model of (Montestruque and Antaklis, 2004) 
and investigate the stability and controller design for 
the system. 

The plant model is not exactly known, and the 
nominal model of the system with the matrices of the 
same order as their true counterparts in (1) and (2) is 𝒙ෝሶ ሺ𝑡ሻ = 𝐴መ𝒙ෝሺ𝑡ሻ + 𝐵𝒖ሺ𝑡ሻ (3)𝒚ሺ𝒕ሻ = 𝐶መ𝒙ෝሺ𝑡ሻ + 𝐷𝒖ሺ𝑡ሻ (4)

The discrepancy between the actual and nominal 
models results in the error 𝒆 = 𝒙 − 𝒙ෝ, 𝒙 = 𝒙ෝ + 𝒆 (5)

Subtracting the nominal from the actual dynamics 
gives the error dynamics 𝒆ሶ = 𝐴𝒆 + 𝐴ሚ𝑥ො + 𝐵෨𝒖ሺ𝑡ሻ (6)

where we use the perturbation matrices 𝐴ሚ = 𝐴 − 𝐴መ, 𝐵෨ = 𝐵 − 𝐵 (7)

For an observable system, we use the control 𝒖ሺ𝑡ሻ = −𝐾𝒙ෝሺ𝑘ሻ, 𝑡 ∈ [𝑘ℎ, 𝑘ℎ + ℎ] (8)

where 𝒙ෝሺ𝑡ሻ  is the state estimate. Here, we first 
assume that the state is measurable with a finite error 
in the measurement. Substituting the control in the 
system dynamics gives the closed-loop model 𝒙ሶ ሺ𝑡ሻ = 𝐴𝒙ሺ𝑡ሻ − 𝐵𝐾൫𝒙ሺ𝑡ሻ − 𝒆ሺ𝑡ሻ൯ (9)𝒚ሺ𝒕ሻ = 𝐶𝒙ሺ𝑡ሻ − 𝐷𝐾𝒙ෝሺ𝑡ሻ (10)

Substituting in the error dynamics gives 𝒆ሶ = ൫𝐴መ + 𝐵෨𝐾൯𝒆ሺ𝑡ሻ + ൫𝐴ሚ − 𝐵෨𝐾൯ 𝒙ሺ𝑡ሻ (11)

Combining error and nominal dynamics gives the 
augmented stated vector 

𝒛ሺ𝑡ሻ = 𝒙ሺ𝑡ሻ𝒆ሺ𝑡ሻ൨ (12)

Combining (9) and (11), we have the augmented 
system dynamics 

𝒙ሶ ሺ𝑡ሻ𝒆ሶ ሺ𝑡ሻ൨ = 𝐴 𝒙ሺ𝑡ሻ𝒆ሺ𝑡ሻ൨ − 𝐵𝐾ሺ𝑘ሻ 𝒙ሺ𝑡ሻ𝒆ሺ𝑡ሻ൨ (13)

𝐴 = ቂ𝐴 0𝐴ሚ 𝐴መቃ , 𝐵 = ቂ𝐵 −𝐵𝐵෨ −𝐵෨ቃ (14)

The system is digitally controlled with a control 
signal sent through a communication system to the 
actuator and the controller receiving a signal from the 
sensor. The following assumptions are used in the 
sequel:  

(i) The total delay, including plant to controller 𝑇 and controller to actuator 𝑇 , plus the 
computational time is 𝑇 satisfies 𝑇 + 𝑇 + 𝑇 ≤ 𝑙ℎ, 𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (15)

(ii) The delay 𝑇  can be predicted with 
sufficient accuracy to design the system 
using the sum 𝑇 + 𝑇 + 𝑇 = 𝑙ℎ, 𝑙 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 (16)

(iii) The sampling period 𝑁ℎ  provides 
sufficiently faster sampling than the Nyquist 
rate dictated by the dynamics of the closed-
loop system. 

(iv) The number of consecutive packet delays in 
the NCS does not exceed 𝑙. 

(v) When event-driven control is used to reduce 
the required network bandwidth, the effective 
sampling period is in the range [ℎ, 𝑙ℎ] , 
where 𝑙  is a variable but bounded integer, 𝑙 ≤ 𝑙. 

(vi) The number of sampling periods between 
two consecutive arriving packets does not 
exceed an integer bound 𝑁, that is 𝑙 + 𝑙 ≤ 𝑁 (17)

Under the above assumptions, ℎ  is a suitable 
sampling period for the NCS and the NCS can 
function appropriately with the sampling period 𝑁ℎ 
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Discretizing the system with different sampling 
periods that are a multiple of the fixed sampling 
period ℎ, we have a system that switches arbitrarily 
between the models ቆ𝑒, න 𝑒ఛ𝐵𝑑𝜏

 ቇ , 𝑙 = 1,2, … , 𝑁 (18)

The state-space model of the system is of the form 𝒙ሺ𝑘 + 1ሻ = 𝐴𝒙ሺ𝑘ሻ + 𝐵𝒖ሺ𝑘ሻ,𝑖 ∈ {1,2, … , 𝑁} (19)𝒚ሺ𝑘ሻ = 𝐶መ𝒙ෝሺ𝑡ሻ + 𝐷𝒖ሺ𝑡ሻ (20)

The following result applies in this case. 

Theorem 1. 0(Zhai et al., 2002) If all state matrices 𝐴, 𝑖 = 1, … , 𝑁, are mutually commutative and Schur 
stable, then the switched system (19) is globally 
exponentially stable under arbitrary switching. 

The result clearly applies in the case of Schur 
stable state matrices in the form 𝐴 = 𝐴, 𝑖 = 1, … , 𝑁 (21)

When applied to the NCS of (19), we have the 
corollary. 

Corollary: If the discrete-time NCS model of (19) is 
Schur stable for a sampling period ℎ,  then the 
switched system (19) is globally exponentially stable 
under arbitrary switching between sampling periods  𝑙ℎ, 𝑙 = 1,2, … , 𝑁, that are integer multiples of ℎ. 

Remark 1 

The stability condition is valid if the sampling period 
varies randomly because the state matrices remain 
mutually commutative based on the well-known 
properties of the matrix exponential. 

Remark 2 

The stability condition is valid in the case of a matrix 
perturbation Δ𝐴 ∈ ℛ×  such that the state matrix 𝐴 + Δ𝐴 is Schur stable. 

Remark 3 

A necessary condition for the system to remain stable 
under arbitrary switching is for all subsystem 
matrices to be Schur stable. Otherwise, switching to 
an unstable subsystem and subsequently remaining 
there would result in an unstable switched system. 
 
 

3 CONTROLLER DESIGN 

This section presents a new approach for the design 
for NCS with arbitrary switching between models 
corresponding to different sampling rates. The 
varying sampling rates correspond to periods where 
no control signal is sent from the controller to the 
actuator. This results in a sampling period in the range, 𝑙ℎ, 𝑙 = 1,2, . . … 𝑁, where ℎ is the nominal sampling 
period of the system and 𝑁  is an integer. The 
switching can be deterministic or random because the 
conditions are valid regardless of the switching mode. 

The following theorem from (Pandey and Oliveira, 
2017) provides stability conditions for a system that 
switches between different linear models. 

Theorem 2. (Pandey and Oliveira, 2017) 

Consider a time-varying discrete-time linear system 
of the form 

𝐴ሺ𝑘ሻ =  𝜉ሺ𝑘ሻ𝐴ே
ୀଵ  

𝐵ሺ𝑘ሻ =  𝜉ሺ𝑘ሻ𝐵ே
ୀଵ  

(22)

 𝜉ሺ𝑘ሻ = 1,ே
ୀଵ 𝜉ሺ𝑘ሻ > 0, 𝑖 = 1, … , 𝑁 (23)

The system is stable with the control 

𝐾ሺ𝑘ሻ =  𝜉ሺ𝑘ሻ𝐾ே
ୀଵ 𝐾 = 𝐿𝑋ି ଵ (24)

if there exist positive definite matrices 𝑋, , 𝑌, 𝑍, 𝑄, 𝑖 = 1, … , 𝑁  that the satisfy the LMI 

𝑋 + 𝑋் − 𝑄 𝑋் 𝐴் −𝐿்𝐴𝑋 𝑄 − 𝑅 𝐵𝑍 − 𝑌்−𝐿 𝑍் 𝐵் − 𝑌 𝑍 + 𝑍்  

> 0
(25)

𝑅 = 𝐵𝑌 + 𝑌் 𝐵் , 𝑖, 𝑗 = 1, … , 𝑁 (26)

For an NCS, switching is between models that 
depend on the number of packet delays, or the period 
for event-triggered control. This effectively changes 
the sampling period from 𝑇  to 𝑙𝑇, 𝑙 = 1,2, … , 𝑁 , 
where 𝑙 − 1 is the number of packet delays. Applying 
Theorem 1 with 𝜉ሺ𝑘ሻ = 1 for one 𝑖 value at a time 
and 𝜉ሺ𝑘ሻ = 0, 𝑗 ≠ 𝑖 gives the following theorem. 
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Theorem 3 

The NCS with packet delay and event-driven control 
subject to assumptions (i-vi) such that the control 
input is changed every 𝑙  sampling periods, 𝑙 ∈{1,2, … , 𝑁} is stable with the control of (24) if the 
LMIs of (25) have positive definite solution matrices 𝑋, , 𝑌, 𝑍, 𝑄, 𝑖 = 1, … , 𝑁  for 𝑖, 𝑗 = 1, … , 𝑁 

Proof 

Theorem 2 provides a controller for arbitrary 
switching subject to conditions (22-23). For NCS, 
switching is between matrices with different 
sampling periods corresponds to the case 𝜉 = 1, 𝜉 =0, 𝑗 ≠ 𝑖, 𝑗 ∈ {1, … , 𝑁} . This clearly satisfies 
condition (23). Hence, Theorem 3 follows directly 
from Theorem 2. 

 

Remark 4 

Although Theorem 3 is stated for multiples of the 
sampling period, the result is clearly valid for any set 
of sampling periods. The results are even valid for 
arbitrary random switching between a set of sampling 
periods. 

4 SIMULATION RESULTS 

Consider the oscillatory behavior of the pair 𝐴 = ቂ 0 1−4 0ቃ , 𝐵 = ቂ01ቃ 
The pair is modelled as 𝐴መ = ቂ 0 1−4.1 0.1ቃ , 𝐵 = ቂ01ቃ 
The perturbation matrices are 𝐴ሚ = 𝐴 − 𝐴መ = ቂ 0 00.1 −0.1ቃ 

 𝐵෨ = 𝐵 − 𝐵 = ቂ00ቃ; 
We form the matrices of the augmented system 𝐴 = ቂ𝐴 0𝐴ሚ 𝐴መቃ , 𝐵 = ቂ𝐵 −𝐵𝐵෨ −𝐵෨ቃ 

For the purposes of controller design, assume that 
package delay and event-triggered control result in 
switching between two systems with sampling 
periods ℎ  and 2ℎ, ℎ = 0.04 s. The switching is 
random with a probability 𝑝 of the nominal sampling 
period ℎ and probability ሺ1 − 𝑝ሻ of period 2ℎ due to 

event triggered control or packet delay. The model 
corresponding to one sampling period ℎ = 0.04 s 
with no delay in the arrival of a package is 𝐴ଵ = 𝑒 = ൦ 0.9968 0.04 0 0−0.1598 0.9968 0 0    0.0001 −0.0001 0.9967  0.040.0043 −0.0039  −0.1641  1.0007൪ 

𝐵ଵ = න 𝑒ఛ𝐵𝑑𝜏
  

= ൦ −4 −0.08 0 00.32 −4 0 0    0 0 −4 −0.080.01 0.01  0.33 −4 ൪ × 10ିଶ 

The model corresponding to a sampling period ℎ = 0.08 s with delay in the arrival of a package due 
to package delay or event triggered control is 𝐴ଶ =  𝑒ଶ = ൦ 0.9993 0.0191 0 0−0.0764 0.9993 0 0   0 0 0.9993  0.0191−0.002 −0.0019  −0.0784  1.0012൪ 

𝐵ଶ = න 𝑒ఛ𝐵𝑑𝜏ଶ
  

= ൦−7.97 −0.32 0 01.28 −7.97 0 0    0 0 −7.96 −0.32−0.04 0.03  1.31 −8 ൪ × 10ିଶ 

We solve the LMIs of Theorem 3 to obtain the 
controller parameters using the MATLAB LMI 
solver. The solutions can be improved by imposing 
constraints on the norms of the matrices. Solving the 
LMIs gives the gain matrices 𝐾ଵ= ൦−1.3001  0.3355 0.0264 −0.01890.4269    −0.5425 −0.0092 0.012 0.0263 −0.008 −1.35    0.3613−0.0226 0.0128 0.4567 −0.5667൪   
𝐾ଶ= ൦ −1.3180 0.2617 0.0217 −0.01480.3617 −0.466 −0.0062 0.0092   −0.0213 −0.0059 −1.1788  0.2618−0.0175 0.01084  0.3845 −04855൪ 

The design obtained by solving the LMIs results in a 
slightly faster response for the pair ሺ𝐴ଶ, 𝐵ଶሻ 
corresponding to a longer delay but both subsystems 
are asymptotically stable. 
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Using 100 Monte Carlo simulations for the system 
under different conditions, we compare the 
simulation results for the zero-input response. To 
assess the robustness of the systems to random 
changes in the sampling period, the system is 
simulated (a) with switching between sampling 
period ℎ  and sampling period 2ℎ , the (b) with the 
sampling period randomly switching between ℎ and ℎ + Δℎ, Δℎ~𝑈[−0.1ℎ, 0.1ℎ] . Plots of the average 
evolution of the state variables are shown in Figures 
1 and 2. Figure 3 shows the random switching 
between sampling period ℎ and sampling period 2ℎ, 
with an initial sampling period equal to ℎ. Figure 4 
shows the random variation of the sampling period Δℎ~𝑈[−0.1ℎ, 0.1ℎ] . The simulation results show 
that the state variables of the system converge to zero 
with the controller resulting in a stable well-behaved 
system. The random variation of the sampling period 
results in a larger first peak and a more oscillatory 
response but does not destabilize the system. 

The system also performs well for different 
probabilities 𝑝  of a sampling period ℎ = 0.04 𝑠. 
Figures 5 and 6 show the state evolution for 𝑝 = 0.6 
and 𝑝 = 0.8, with probabilities of sampling period 2ℎ = 0.08 𝑠  equal to 0.4  and 0.2, respectively. 
Because the LMI for the delay that results in doubling 
the sampling period gives a faster response, contrary 
to intuition, the response is faster for the lower 
probability 𝑝 = 0.6. However, the system performs 
well for both probabilities, as do others not included 
in the paper. 

 
Figure 1: SEQ Figure \* ARABIC 1,. Plot of xଵ versus time 
(a) switch between sampling period h and sampling period 2h  (b) random variation Δh  around h,Δh~U[−0.1h, 0.1h]. 

 
Figure 2: Plot of xଶ  versus time (a) switch between 
sampling period h  and sampling period 2h  (b) random 
variation Δh around h, Δh~U[−0.1h, 0.1h]. 

 

o o o p p
 

Figure 3: Switching between the sampling periods h and 2h 
for the NCS. 

 
Figure 4: Plot of randomly varying sampling periods. 
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Figure 5: Plot of xଵ versus time for probability of sampling 
period h (a) p = 0.6 (b) p = 0.8 s. 

 
Figure 6: Plot of xଶ versus time for probability of sampling 
period h (a) p = 0.6 (b) p = 0.8 s. 

4 CONCLUSIONS 

This paper presents a new controller design for linear 
NCS with packet delays, event triggered control that 
is robust with respect to random variations in the 
sampling period. The approach is applicable to an 
NCS with known upper bound on the number of 
sampling periods between consecutive received 
packages. The approach is valid for arbitrary random 
switching between different models. Simulation 
results show that the system is stabilized with random 
switching between models and remains stable for 
different probabilities of switching and random 
variations in the sampling period. Future work will 
provide an analysis of the robustness of the design 
with respect to modelling errors and changes in the 
sampling period and probability of switching.  
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