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Abstract: Cloud orchestration frameworks are recognised as a key driver to tackle the complexity of deploying and man-
aging cloud resources and services. Although automated orchestration approaches have been widely adopted
in industry and academia, most of them only provide limited management capabilities, such as monitoring
or scaling individual components. Holistic management features concerning multiple application components
are mostly not covered by existing solutions. Supporting such features typically involves a custom implemen-
tation of management logic, which can be error-prone, time-consuming and frequently outdated. In this work,
we present an approach for the automated generation of holistic management workflows based on TOSCA
application models, reusable node types and policy types. A prototype implementation and a case study are
also discussed to prove the feasibility of the proposed idea.

1 INTRODUCTION

As a result of several benefits in terms of avail-
ability, scalability, costs and time savings (Marston
et al., 2011), cloud computing adoption has expanded
rapidly over the past decade, leading to a larger dis-
tribution of resources and services across the inter-
net (Dikaiakos et al., 2009). COVID-19 has further
accelerated the migration to cloud computing, caus-
ing cloud adoption to increase at an even greater rate.
According to Flexera 2021 State of the Cloud Re-
port (Flexera, 2021), many organisations have suc-
cessfully adopted cloud computing worldwide.

A key point to optimise resource usage and fully
exploit the potential of cloud computing is cloud or-
chestration (Ranjan et al., 2015; Weerasiri et al.,
2017). Due to the proliferation of heterogeneous
providers, cloud orchestration is considered to be
challenging, error-prone and time-consuming (Ca-
baller et al., 2018). Manual solutions to orchestra-
tion are discouraged because they require a familiarity
with different cloud provider platforms, services and
low-level APIs. Most commercial cloud providers
offer automated orchestration platforms to end-users
(Bousselmi et al., 2014): however, these products
are proprietary and not portable. Cloud-agnostic ap-
proaches to automation are also provided by tools
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falling under the realm of DevOps (Leite et al., 2019),
Infrastructure as Code (IaC) (Morris, 2016) and Con-
figuration Management (CM) (Delaet et al., 2010).

By contrast, these approaches only have limited
automated management, such as monitoring or scal-
ing individual components (Toffetti et al., 2017),
whereas holistic application management involving
components distributed over multiple environments is
not automatically supported for the most part. Holis-
tic application management includes features such
as performing backups of stateful components, test-
ing the availability of application components, etc.
However, the support for such features requires cus-
tom implementations which can be error-prone, time-
consuming and frequently outdated.

In this paper we propose an approach to auto-
matically generate holistic management workflows
from TOSCA application models, which are transpar-
ently enriched with component-specific management
features by means of an appropriate combination of
reusable TOSCA node types and policy types. As a
consequence of such enrichment process, application
architects are not required to provide manual imple-
mentation of management functionalities, leading up
to reduced efforts and more error resilience.

The remainder of the paper is structured as fol-
lows. Section 2 provides a background of the con-
cepts used in this work and motivates the need for
holistic management automation. Section 3 delves
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into the proposed approach to automatically generate
management workflows from TOSCA-based applica-
tion models. Section 4 discusses a prototype imple-
mentation and a case-study showing the potential of
the proposed idea. Related work is discussed in Sec-
tion 5. Concluding remarks and future directions are
debated in Section 6.

2 BACKGROUND AND
MOTIVATION

In this section, we first outline basic principles for de-
ployment and management automation and then pro-
vide a brief overview on the TOSCA specification. Fi-
nally, a motivation scenario for holistic management
automation is introduced.

2.1 Deployment and Management
Automation

Over the past few years, quite a few orchestration and
management frameworks have emerged from both in-
dustry and academia (Tomarchio et al., 2020). Most
cloud industry players have developed Cloud Man-
agement Platforms (CMP) to automate cloud service
provisioning. The most advanced platforms also offer
lifecycle management of cloud applications. These
commercial products are typically neither open to the
community nor portable across third-party providers.

There are a number of tool categories which share
similarities with cloud orchestrators. Configuration
management tools, such as Ansible, Chef, Puppet and
Salt, mostly automate the development, delivery, test-
ing and maintenance throughout the software lifecy-
cle. These tools have recently moved towards orches-
tration, which leverage Infrastructure as Code (IaC) to
change, configure and automate infrastructure. Ter-
raform is one of the most notable IaC open-source
solutions. These technologies use either declarative
or imperative models to automate application deploy-
ment. While declarative models describe the desired
application state from which the deployment tasks are
automatically derived, imperative models specify the
deployment tasks and their execution order.

Although declarative models are highly intuitive
and reusable, they suffer from a few limitations. On
the one hand, deployment systems can directly infer
all tasks to be executed from the models, but on the
other hand they can neither customise tasks nor al-
ter their execution order. Imperative models are then
necessary when it comes to modelling complex ap-
plication deployments with customised tasks. Work-

flows languages, such as BPMN (OMG, 2011) and
BPEL (OASIS, 2007), are typical examples of imper-
ative technologies. However, imperative models re-
quire technical expertise and are frequently outdated
as compared to declarative models.

While the available technologies support auto-
mated deployments over multiple environments, they
only provide limited support for automated manage-
ment (Toffetti et al., 2017). As far as cloud providers
are concerned, they usually only offer management
features for the hosted components, with the result
that single management features need to be orches-
trated when multiple providers are involved. Holistic
management of multiple components located in dif-
ferent environments is mostly unsupported as well.
Typical holistic management features include but are
not limited to component backup, testing, update, etc.
Even in that case, automating holistic management re-
quires single management features to be orchestrated
(by a workflow, for instance).

2.2 The TOSCA Specification

High-level specification languages to describe the
topology of cloud services facilitate the orchestra-
tion process and foster interoperability across differ-
ent providers. TOSCA (OASIS, 2013) represents a
notable contribution to the development of cloud stan-
dards, since it allows to describe multi-tier applica-
tions and their lifecycle management in a modular and
portable fashion (Bellendorf and Mann, 2018).

According to TOSCA, the structure of a cloud ap-
plication is described as a service template, which
consists of a topology template and the types needed
to build such a template. The topology template is a
typed directed graph, whose nodes (called node tem-
plates) model the application components, and edges
(called relationship templates) model the relations oc-
curring among such components. Each topology node
can also be associated with the corresponding capa-
bilities and requirements, the interfaces to manage it,
the attributes and properties it features, the software
artifacts it uses and the policies applied to it.

TOSCA supports the deployment and manage-
ment of applications in two different flavours: imper-
ative processing and declarative processing. The im-
perative processing requires that management logic
is contained in the Cloud Service Archive (CSAR),
which stores all software artifacts needed to provi-
sion and manage the application. Management plans
imperatively orchestrate low-level management op-
erations that are provided either by the application
components themselves or by publicly accessible ser-
vices. Management plans are typically implemented
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using workflow languages (e.g., BPMN, BPEL). The
declarative processing shifts management logic from
plans to runtime. TOSCA runtimes automatically in-
fer the corresponding logic by interpreting the appli-
cation topology template. Management functionali-
ties depend on the corresponding runtime, which is
not standardised by the TOSCA specification.

TOSCA Simple Profile (OASIS, 2020) is an iso-
morphic rendering of a subset of the TOSCA specifi-
cation in the YAML language. It provides a more con-
cise and accessible syntax to describe portable cloud
applications. TOSCA Simple Profile defines a few
normative workflows that are used to operate a topol-
ogy and specifies how they are declaratively gener-
ated. Imperative workflows can be used for complex
use cases that cannot be solved in declarative work-
flows. However, they provide less reusability as they
are defined for a specific topology rather than being
dynamically generated based on the topology content.
The work described in this paper heavily grounds on
the TOSCA Simple Profile.

2.3 Motivation

As mentioned in Section 2.1, while the available ap-
proaches provide automated deployment over mul-
tiple environments, they only support limited au-
tomated management which requires orchestration
when multiple cloud providers, services and compo-
nents are involved. Besides, automated holistic man-
agement is mostly unsupported and, when it is sup-
ported, custom implementations are often required.

Figure 1 illustrates a declarative application model
describing a typical cloud application scenario based
on TOSCA. In order to have a proper application de-
ployment, it is crucial to check if it is successful from
both a technical and business perspective. This is
where testing becomes relevant. In case of multi-
cloud applications, it might be necessary for appli-
cation components to communicate with each other.
For instance, depending on the testing, SSH connec-
tions (e.g. Compute nodes), HTTP connections (e.g.
WordPress and Apache nodes) or even SQL connec-
tions (e.g. DBMS and Database nodes) might need
to be established. Since huge expertise is required to
implement testing, the automated generation of tests
is important to ensure that all components and com-
munication among them work as expected. In case
of a web application, it is also important to copy cur-
rent data on a regular basis. In order to back up the
Database in our scenario, it is required to either use
the backup feature of the underlying DBMS or estab-
lish a direct connection to the database and execute a
query to retrieve all data. However, additional tech-

nology and domain-specific logic need to be orches-
trated and executed in the correct order.

In general terms, even automating the manage-
ment of simple applications can be a major chal-
lenge when management features must be imple-
mented manually, since manual implementations re-
quire massive domain-specific expertise and are error-
prone, time consuming and frequently outdated. In
this work we propose an approach for the automatic
generation of holistic management workflows based
on TOSCA application models and policies.

3 POLICY-BASED APPLICATION
MANAGEMENT

In this section, we delve into the proposed method-
ology to automatically generate management work-
flows from TOSCA-based application models. First,
we provide a bird’s-eye view of the approach; then,
we analyse the main steps of the entire process.

3.1 High-level Approach

In order to automatically generate executable man-
agement workflows from TOSCA application models,
we propose the approach depicted in Figure 2.

The overall process is composed of three distinct
sequential phases. The process begins with the Ap-
plication Specification phase, where the application
architect is in charge of modelling and submitting a
TOSCA application model which is specified based
on interface types, node types and policy types in-
cluded in a TOSCA Simple Profile extension. All
these types define to varying degrees management in-
terfaces and policies for different management fea-
tures, using a general-to-specific pattern. In a nut-
shell, given a general management feature (e.g. test-
ing), general interface types and policy types are de-
fined for such a feature which get to be extended for
specific node types (e.g. Database). Managed node
types are also defined by extending basic TOSCA
node types with all available management interfaces.

The submitted input triggers the Workflow Gen-
eration phase, that in turn consists of the transfor-
mation of a TOSCA application model into differ-
ent workflow plans, namely provisioning and man-
agement plans, based on input data. Specifically,
the provisioning plan is generated based on node de-
pendencies, whereas management plans are generated
based on policies and management interface opera-
tions defined on nodes. The TOSCA Processor com-
ponent is responsible for parsing a TOSCA applica-
tion model, generating its provisioning and manage-
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Figure 1: TOSCA application model of a WordPress scenario.
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Figure 2: Overview of the approach for the automated generation of application management workflows.

ment plans and validating them. Finally, in the Or-
chestration phase, a workflow engine performs the
enactment of such plans.

3.2 Application Specification

One of the main strengths of this work is the develop-
ment of a standards-based approach for the descrip-
tion of application topology and management, which
leverages the TOSCA standard.

Although the TOSCA Simple Profile specification
includes two normative interface types, i.e. Stan-
dard and Configure, for component lifecycle and con-
figuration management respectively, there is a lack
of support for management features. As a result,
we extended the standard specification by defining
management-oriented interface types. By way of il-
lustration, Figure 3 shows a few exemplifying inter-

face type definitions included in our TOSCA Sim-
ple Profile extension. As mentioned in Section 3.1,
given a specific management feature, interface types
are defined via a general-to-specific pattern. In fact,
as we can see in Figure 3a, two interface types are
present: a general interface type (Test), which is de-
fined for testing purposes, and a specific interface type
(TestDB), which is an extension of the former for test-
ing database components. Similarly, Figure 3b shows
two interface type definitions: a general interface type
for backup purposes and a specific interface type for
backing up database components.

All these additional interface types must be in-
cluded in node type definitions, which is why we also
extended the normative node type hierarchy in order
to support management features. For the sake of clar-
ity, Figure 4 depicts a node type definition and a few
policy type definitions included in our TOSCA Sim-
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tosca.interfaces.node.Test:

version: 1

description: >

TOSCA management interface type for testing

generic components

tosca.interfaces.node.TestDB:

derived_from: tosca.interfaces.node.Test

version: 1

description: >

TOSCA management interface type for testing

database components

operations:

test_db_connection:

description: |

Management operation to test the DB

connection

notifications:

db_connection_testing:

description: |

Notification to trigger connection testing

(a) Test and TestDB interface types

tosca.interfaces.node.State:

version: 1

description: >

TOSCA management interface type for saving/

restoring the state of generic components

tosca.interfaces.node.StateDB:

derived_from: tosca.interfaces.node.State

version: 1

description: >

TOSCA management interface type for saving/

restoring the state of database components

operations:

db_freeze:

description: |

Management operation to freeze DB state

db_thaw:

description: |

Management operation to thaw DB state

notifications:

db_state_freezing:

description: |

Notification to trigger DB state freezing

db_state_thawing:

description: |

Notification to trigger DB state thawing

(b) State and StateDB interface types

Figure 3: Illustrative interface type definitions for Testing and Backup features.

ple Profile extension. In particular, as we can see in
Figure 4a, the Database.Managed node type extends
the normative Database node type by adding TestDB
and StateDB interfaces (see Figure 3) for testing and
backup purposes. Policy types are also defined in or-
der to specify the targeted node types and the actions
to perform in relation to management features, when
specific events are triggered. In particular, policy trig-
gers are linked to notification events from the targeted
node types’ management interfaces. Similar to inter-
face types, policy types are defined via a general-to-
specific pattern as well. As we can see in Figure 4a,
two general policy types are present: Testable and
Freezable for testing and backup purposes, respec-
tively. By contrast, Figure 4b shows two specific pol-
icy types: TestableDB and FreezableDB for testing
and backing up database components, respectively.

In summary, while normative interface types and
node types provide sufficient deployment capabilities,
the current version of the TOSCA standard is not well
equipped with management features. In order to fill
this gap, we propose to define: management interface
types, which get to be extended depending on a com-
bination of management features and node type cate-
gories, managed node types, which extend normative
node types and include these management interfaces,
and management policy types, which define the oper-

ations to execute on the targeted node types based on
management features. The complete set of extended
types is fully TOSCA-compliant, since it is valid ac-
cording to the grammar and rules defined in the stan-
dard, and can be further enriched with additional man-
agement features.

3.3 Management Workflow Generation

As mentioned in Section 3.1, the application architect
models a TOSCA application model according to in-
terface types, node types and policy types included
in a TOSCA Simple Profile extension. By apply-
ing this approach, the application model is automat-
ically enriched with management capabilities, which
the TOSCA Processor (see Figure 2) leverages to gen-
erate management workflows based on policies and
interface operations defined on nodes. Policies are
the focal point of the entire process, as they specify
the targeted nodes and the actions triggered depend-
ing on management features.

The strategy of generation of management work-
flows depends on management features. In case of
the backup feature a parallel strategy is adopted, since
every stateful component can be backed up indepen-
dently; in case of the testing feature two strategies
are viable: a) parallel strategy and b) sequential strat-
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tosca.nodes.Database.Managed:
derived_from: tosca.nodes.Database
description: >
Extension of the tosca.nodes.Database node type with

specific management interfaces
interfaces:
TestDB:
type: tosca.interfaces.node.TestDB
operations:
test_db_connection:
description: |
Management operation to test DB connection

notifications:
db_connection_testing:
description: |
Notification to trigger connection testing

StateDB:
type: tosca.interfaces.node.StateDB
operations:
db_freeze:
description: |
Management operation to freeze DB state

db_thaw:
description: |
Management operation to defrost DB state

notifications:
db_state_freezing:
description: |
Notification to trigger DB state freezing

db_state_thawing:
description: |
Notification to trigger DB state thawing

tosca.policies.Testable:
derived_from: tosca.policies.Root
description: >
The TOSCA Policy Type for testing TOSCA nodes or groups

of nodes.

tosca.policies.Freezable:
derived_from: tosca.policies.Root
description: >
The TOSCA Policy Type for freezing/thawing TOSCA nodes

or groups of nodes.

(a) Database node type, Testable and Freezable policy types

tosca.policies.TestableDB:
derived_from: tosca.policies.Testable
description: >
The TOSCA Policy Type for testing TOSCA database nodes.

targets:
- tosca.nodes.Database.Managed

triggers:
db_connection_testing_trigger:
description: |
The trigger kicks in when connection testing gets

notified
event: db_connection_testing
action:
- call_operation: tosca.interfaces.node.TestDB.

test_db_connection

tosca.policies.FreezableDB:
derived_from: tosca.policies.Freezable
description: >
The TOSCA Policy Type for freezing/thawing TOSCA

database nodes.
targets:
- tosca.nodes.Database.Managed

triggers:
db_state_freezing_trigger:
description: |
The trigger kicks in when DB state freezing gets

notified
event: db_state_freezing
action:
- call_operation: tosca.interfaces.node.StateDB.

db_freeze
db_state_thawing_trigger:
description: |
The trigger kicks in when DB state thawing gets

notified
event: db_state_thawing
action:
- call_operation: tosca.interfaces.node.StateDB.

db_thaw

(b) TestableDB and FreezableDB policy types

Figure 4: Illustrative node type and policy type definitions for Testing and Backup features.

egy. Components can be either tested in isolation with
the parallel strategy or tested consecutively following
node dependencies with the sequential strategy.

The parallel generation of Backup workflows
works as shown in Figure 5. In general, considering
more than one Freezable policies (see Figure 4a), a
new workflow is generated where more than one paths
can trigger the workflow instantiation by means of an
event-based gateway. Each path consists of a mes-
sage intermediate event, which is linked to a notifica-
tion event from the targeted nodes’ State interface (see
Figure 3b), and a parallel multi-instance subprocess,
whose number of instances depends on the number of
target nodes the policy is applied to. A service task in
the subprocess executes the action of the policy trig-
ger, which enacts the actual backup.

Figure 6 shows how Testing workflows are gener-
ated. Firstly, a workflow is generated for each node
type. Secondly, a distinction is made between nodes
without dependencies and nodes with dependencies.
The former are tested in isolation, while the latter can
be either tested in isolation or tested sequentially ac-

cording to node dependencies. In the first case (see
Figure 6a), considering more than one testing opera-
tions, a new workflow is generated where more than
one paths can trigger the workflow instantiation by
means of an event-based gateway. Each path consists
of a message intermediate event, which is linked to a
notification event from the targeted nodes’ Test inter-
face (see Figure 3a), and a parallel multi-instance sub-
process, whose number of instances depends on the
number of target nodes the policy is applied to. A ser-
vice task in the subprocess executes the action of the
policy trigger, which enacts the actual testing. Finally,
a message end event marks the end of the workflow.
In the second case (see Figure 6b), a new workflow
is generated where either a message start event, com-
ing from the targeted nodes’ Test interface notifica-
tions, or a parallel multi-instance receive task, waiting
for notifications from node requirements under test,
triggers the workflow instantiation. A parallel multi-
instance subprocess is then activated depending on the
number of target nodes the policy is applied to. A ser-
vice task in the subprocess executes the action of the
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Figure 5: Parallel strategy for Backup workflows.

policy trigger enacting the actual testing. Finally, a
message end event marks the end of the workflow.

4 PROTOTYPE VALIDATION

In this section, we first discuss the implementation
of a prototype and then corroborate the working be-
haviour of our approach by applying both testing and
backup management features on our motivation sce-
nario (see Figure 1).

4.1 System Overview

To validate our approach, we implemented a proto-
type based on the open-source TORCH (Tomarchio
et al., 2021). TORCH is a TOSCA-based frame-
work which deploys and orchestrates VM-based and
container-based applications on top of different cloud
providers. In order to do so, TORCH transforms a
TOSCA application model into an equivalent BPMN
workflow and dataflow model, which a BPMN en-
gine leverages to enforce the operations specified in
the model.

Figure 7 shows the multi-layered framework ar-
chitecture of TORCH. The Application Specification
Layer consists of two components: the Dashboard,
which is the front-end component, and the TOSCA
Modeller, which guides the user to sketch application
requirements. The Orchestration Layer comprises the
TOSCA Processor component, which is in charge of
validating, parsing and converting TOSCA applica-
tion templates into BPMN plans, and the BPMN En-
gine component, which is responsible for instantiat-
ing and orchestrating such BPMN plans. The Service
Binding Layer manages the orchestration of applica-
tion resources and services.

The proposed approach for the automated gen-
eration of management workflows (see Section 3)
is based on the extension of the TOSCA Proces-
sor (see Figure 7), which consists of three compo-
nents: TOSCA-Parser, BPMN-Generator and BPMN-
Validator. The TOSCA-Parser provides means to
load, parse and validate a TOSCA service template
and create the corresponding dependency graph. The
BPMN-Generator creates a BPMN plan depending on
a parsed service template and its dependency graph.
The BPMN-Validator validates an automatically gen-
erated plan against the BPMN specification. Further
details about these components can be found in (Cal-
caterra et al., 2017; Calcaterra et al., 2018).

As mentioned above, the TOSCA Processor was
extended in order to support the automatic generation
of holistic management workflows. Specifically, sev-
eral novelties were introduced in the TOSCA-Parser
and the BPMN-Generator. As regards the TOSCA-
Parser, it was extended in order to provide an ad-hoc
parsing of node properties and artifacts, custom in-
terfaces, interface operations and notifications, policy
triggers. As for the BPMN-Generator, since it was
originally conceived to generate provisioning plans
based on the TOSCA dependency graph, it was ex-
tended in order to provide support for the generation
of management plans based on TOSCA policies. In
particular, while the original BPMN-Generator was
only capable of generating workflows depending on
node dependencies, the extended BPMN-Generator
is capable of generating workflows even when there
are no explicit node dependencies. For instance, it
can support both sequential and parallel strategies for
workflow generation.

Automated Generation of Application Management Workflows using TOSCA Policies

103



(a) Nodes without dependencies

(b) Nodes with dependencies

Figure 6: Parallel and sequential strategies for Testing workflows.
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Figure 7: TORCH - Framework architecture.

4.2 Case Study

Based on the motivation scenario introduced in Sec-
tion 2.3, we discuss two different management fea-
tures, namely Testing and Backup. By applying our
approach, the motivating scenario is automatically en-
riched with test and backup operations by means of

feature-specific node types and policy types. The
added operations are shown in Figure 8. With ref-
erence to the backup feature, we can see that the
mysql database node includes the StateDB interface.
With regard to the testing feature, every node contains
a specific interface for testing purposes. By way of il-
lustration, we can observe that the mysql server and
mysql dbms nodes include the TestCompute and Test-
DBMS interfaces, respectively.

Based on the approach for the management work-
flow generation in Section 3.3, Figure 9 shows the
Backup workflow for the mysql database node in
the motivation scenario. Given a FreezableDB pol-
icy targeting a Database.Managed node (see Fig-
ure 4b), a new workflow is generated where the
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Figure 8: Management-oriented TOSCA application model of a WordPress scenario.

db state freezing message start event, coming from
the StateDB interface notifications, triggers the work-
flow instantiation. A parallel multi-instance subpro-
cess is then activated depending on the number of tar-
get nodes the policy is applied to. In this case there
is only one target node (i.e. mysql database). The
db freeze service task in the subprocess executes the
action of the policy trigger, which enacts the actual
database backup.

Figure 10 shows exemplifying Testing workflows
for the mysql server and app server nodes (Figure
10a) and the mysql dbms node (Figure 10b) in the
motivation scenario. In contrast with the strategy of
generation of Backup workflows, the strategy of gen-
eration of Testing workflows can take node dependen-
cies into account. In particular, a distinction is made
between nodes having no dependencies, such as Com-
pute nodes, and nodes having dependencies, such as
DBMS nodes.

In the first case (see Figure 10a), given a Testable-
Compute policy targeting a Compute node, two paths
are generated where either the compute test ping
message intermediate event or the compute test ssh
message intermediate event, coming from the Test-
Compute interface notifications, triggers the work-
flow instantiation by means of an event-based gate-
way. Regardless of the path being activated, a paral-

lel multi-instance subprocess is then instantiated de-
pending on the number of target nodes the policy is
applied to. In this case there are two target nodes (i.e.
mysql server and app server). Either the test ping
service task or the test ssh connection service task
executes the action of the policy trigger, which en-
acts the actual Compute testing. Finally, the com-
pute tested message end event marks the end of the
workflow.

In the second case (see Figure 10b), given
a TestableDBMS policy targeting a DBMS node,
a new workflow is generated where either the
dbms connection testing message start event, com-
ing from the TestDBMS interface notifications, or
the await test notifications parallel multi-instance re-
ceive task, waiting for notifications from node re-
quirements under test (i.e. mysql server), triggers the
workflow instantiation. A parallel multi-instance sub-
process is then activated depending on the number
of target nodes the policy is applied to. In this case
there is only one target node (i.e. mysql dbms). The
test dbms connection service task in the subprocess
executes the action of the policy trigger, which enacts
the actual DBMS testing. Finally, the dbms tested
message end event marks the end of the workflow.
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Figure 9: Database Backup workflow for a WordPress scenario.

5 RELATED WORK

The topics of policy-based automation and applica-
tion management have gained popularity in business-
oriented and research projects (Tomarchio et al.,
2020). This section provides a brief overview on a
few works that exploited policies, TOSCA or similar
approaches for application management.

In (Alexander et al., 2017) the authors presented
TOSCAMP, an end-to-end cloud orchestration solu-
tion based on TOSCA and CAMP, which introduces
extensions to CAMP to allow for multi-cloud applica-
tion orchestration through declarative policies. Even
though this work leveraged policies for application or-
chestration, no holistic management was considered.
In (Pierantoni et al., 2020) the authors introduced Mi-
CADO, a cloud orchestration framework to deploy
and manage TOSCA-based applications in the cloud.
An extensible set of TOSCA policies was also elabo-
rated to manage deployment, performance, scalability
and security requirements of applications.

In (Caballer et al., 2018) the authors presented
INDIGO-DataCloud, a cloud orchestration platform
to orchestrate TOSCA-based applications with com-
plex topologies and operational requirements (e.g.
auto-scaling resources) across heterogeneous cloud
infrastructures. In (Kumara et al., 2021) the authors
proposed the SODALITE platform to support the de-
ployment, execution, monitoring and policy-based
runtime adaptation of TOSCA-based applications on
heterogeneous cloud-edge infrastructures. In (Cankar
et al., 2020) the authors presented xOpera, an orches-
trator capable of enacting application deployment and
addressing autoscaling in a policy-based fashion by
using TOSCA standard templates. All the aforemen-
tioned works dealt with application deployment and
policy-based management. Nevertheless, no support
for holistic management was provided.

In (Wurster et al., 2018) the authors presented a
modelling concept to annotate a deployment model
with deployment tests. Tests are automatically run af-

ter deployment to verify that the application is work-
ing properly. Limitations of the proposal include the
fact that the deployment system must provide a ba-
sic set of plugins and be extensible with custom plu-
gins from arbitrary sources. In addition, the approach
features no other holistic management except testing.
In (Harzenetter et al., 2020) the authors introduced
an approach to terminate an application in its current
state and restart it in the same state again. Freeze
plans and defrost plans are automatically generated
in order to save and restore the state of stateful com-
ponents. Limitations of the proposal include the as-
sumption that a stateful component type must be an-
notated to indicate that it will hold a state between
requests. Besides, the approach features no other
holistic management except state backup and recov-
ery. In (Harzenetter et al., 2019) the authors proposed
a concept to automatically generate executable man-
agement workflows based on the application deploy-
ment model. The modelled components are enriched
with component-specific management operations and
a management workflow gets generated to orchestrate
such operations. However, the approach suffers from
some limitations. To provide new management fea-
tures, on the one hand, the workflow generation must
be extended with a corresponding plugin and, on the
other one, domain experts have to implement man-
agement operations in new component types.

6 CONCLUSION

The ever-growing interest in cloud computing has fos-
tered a business landscape, where application provi-
sioning and management have become a key factor for
the competitiveness of cloud providers. Although a
number of automated orchestration frameworks have
appeared, holistic application management regarding
diverse components distributed across multiple het-
erogeneous environments is still mostly unsupported.

In this paper, we presented an approach for the
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(a) Compute test

(b) DBMS test

Figure 10: Illustrative Testing workflows for a WordPress scenario.

automated generation of holistic management work-
flows by enriching TOSCA application models with
reusable TOSCA node types and policy types. The
main effort was devoted to the application model de-
scription based on a TOSCA extension and the fol-
lowing management workflow generation. A proto-
type implementation and a case study were also dis-
cussed to showcase the viability of the proposal.

Future work will focus on two research directions.
On the one hand, more and more management opera-
tions will be under examination to be included in our
TOSCA extension. On the other hand, supplemen-
tary strategies besides sequential and parallel work-
flow generation will be investigated.
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