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Abstract: In this research we present a parsimonious yet effective method to detect, track, and estimate the speed of
multiple vehicles using a single camera. This research aims to determine the efficacy of homography-based
speed estimations derived from details extracted from objects of interest. At first, a neural network trained to
detect vehicles outputs bounding boxes. The output of the neural network serves as an input to a multi-object
tracking algorithm which tracks the detected vehicles while, at the same time, their speed is estimated through
a homography-based approach. This algorithm makes no assumptions about the camera, the distance to the
objects, or the direction of motion of vehicles with respect to the camera. This method proves to be accurate
and efficient with minimal assumptions. In particular, only the mean dimensions of a passenger vehicle are
assumed to be known and, using the homography matrix derived from the corners of a vehicle, the speed of
any vehicle in the frame irrespective of its motion direction and regardless of its size is able to be estimated.
In addition, only a single point from each tracked vehicle is needed to infer its speed, avoiding repeatedly
computing the homography matrix for each and every vehicle, thus reducing the time and computational
complexity of the algorithm. We have tested our algorithm on a series of known datasets, the results from
which validate the approach.

1 INTRODUCTION

In this research we demonstrate our findings from de-
tecting, tracking, and estimating the speed of multiple
vehicles using only a single camera. Estimating the
speed of vehicles, especially on highways, has been
an important topic of research for several decades. In
the last few years, however, there has been a resur-
gence of interest in this field due to the imminent ad-
vent of autonomous vehicles. Most of the research in
this field relies on Time-of-Flight (ToF) sensors where
a transceiver emits a signal measuring the time it takes
to hit a target vehicle and return to the receiver (Sar-
bolandi et al., 2018), (Li et al., 2013). This method
has been proven accurate, however, there are several
drawbacks. One drawback in particular being that
only one vehicles’ speed can be estimated at a time.

On a highway, there are many vehicles passing at
any moment, and more than one of them may need
attention. Having only one vehicle targeted by a mea-
suring device is not enough as there may be several
vehicles whose speed may need to be estimated. In
addition, the handling of the device needs to be pre-

cise enough to target a vehicle adequately to have
an estimate of its speed as the signal emitted needs
to reach the right vehicle. Line of sight is also an-
other drawback. More specifically, targeting one ve-
hicle with a ToF device may be occluded or obstructed
by another passing vehicle thus giving erroneous es-
timated of a vehicles’ speed. Finally, ToF sensors es-
timate the speed of a vehicle at a given point in time.
A vehicle’s speed throughout a period of time cannot
be determined.

Other popular methods for estimating vehicles’
speed include piezoelectric sensors embedded into the
ground in two different parts of a road with a known
distance between them, thus the time taken for a vehi-
cle to move from one piezoelectric sensor to the other
is recorded and the speed is, therefore, inferred (Rajab
et al., 2014), (Markevicius et al., 2020). Other similar
approaches for estimating a vehicle’s speed are based
on the use of magneto-resistive sensors (Markevicius
et al., 2017). This method, in spite of its accuracy, suf-
fers also from some major drawbacks. More specif-
ically, if several vehicles cross either the first or the
second piezoelectric sensor at the same time, it may
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be difficult to know which estimated speed belongs
to which vehicle. This is the reason this method is
more frequently used in country side roads and less,
if at all, on busy highways. In addition, this method
requires installation of equipment on the ground. Fi-
nally, this method, suffers, too, from calculating a ve-
hicles’ speed at a given point in time, therefore, mak-
ing it impossible to track the speed of a vehicle con-
tinuously in time. A work by (Dailey et al., 2000)
uses assumptions drawn from distributions about the
mean height, width, and length of vehicles.

Computer vision has played an important role in
estimating the speed of vehicles (Hassaballah and
Hosny, 2019). Several methods make use of computer
vision sensors only. In several of these approaches,
assumptions about the environment or the camera
need to be made. For example, in many works, the
computer vision system has to be at a known dis-
tance from the vehicles. This is, in particular, the case
where a camera is placed atop a bridge with a known
height from the ground. Other methods rely on known
marks on the ground or in the image plane. Further-
more, in some instances, the direction of motion plays
an important role in the estimation process. In a work
by (Diamantas and Dasgupta, 2014) the direction of
motion of the vehicle needs to be perpendicular to the
optical axis of the camera.

In this research, our algorithm addresses all of the
above shortcomings yet still provides accurate and
continuous estimates of multiple vehicles using only
a single, non-invasive sensor, that is, a camera. In par-
ticular, our algorithm does not require the installation
of any specialized equipment on the road nor does it
make any assumptions about any known distances to
the target vehicle or the camera. Moreover, it does
not compute the instantaneous speed of a vehicle but
rather it computes and records the speed of a vehi-
cle throughout the whole duration of the video, thus,
providing concrete evidence of a vehicles’ speed and
acceleration which might otherwise be spurious if an
instant estimate is drawn.

Furthermore, the direction of motion of a vehicle
does not affect the speed estimates. Our algorithm
provides precise estimates irrespective of the motion
and direction of the vehicle with respect to the cam-
era. Finally, homography matrix estimation is carried
out once during the initialization process of our al-
gorithm in any one given vehicle, thus, significantly
minimizing the computational complexity for contin-
uously computing the homography matrix in every
frame and for every vehicle. Our algorithm has been
tested on several datasets with multiple cars on busy
highways. Additionally, we have also carried out ex-
periments with a known vehicle speed serving as the

ground truth with the view to infer the error in our
approach.

This paper consists of five sections. In the next
section, background and related works in the fields
of detection, tracking, and speed estimation are pre-
sented. In Section 3, we present and describe our
methodology as well as the different algorithms en-
compassing our approach for detection, tracking, and
speed estimation. Section 4, presents the results of
our proposed algorithm. Qualitative, as well as quan-
titative results, are provided and compared with the
ground truth. Finally, Section 5 epitomizes our pa-
per with a discussion on the conclusions drawn from
this research as well as the current work that is taking
place and the plans for future work.

2 RELATED WORKS

Tracking many objects simultaneously, especially in
busy difficult environments, and extracting informa-
tion such as height and speed from them over a pe-
riod is, in fact, a multitude of different challenges
wrapped into one. The task of tracking objects alone
requires identifying the object, recognizing the move-
ment and updated locations of objects, and conclud-
ing which object is which at any given point. Individ-
ual aspects of object tracking have seen significant re-
search, especially in recent years with research being
spurred by autonomous vehicles. Because so many
challenges construct one singular goal, there can be a
large amount of benefit to the overlap in tying together
multiple systems that solve individual problems.

2.1 Object Detection

You Only Look Once (YOLO) is a darknet-based ob-
ject detector that takes a unique approach to object
detection. Darknet-53 (Redmon, 2021) is the specific
convolutional neural network used as the backbone
for YOLO v3 and YOLOv4 (Redmon and Farhadi,
2018). Compared to prior object detectors which use
classifiers and localizers applied to multiple locations
and at different scales to the image, YOLO applies a
single neural network to the entire image. The im-
age is subdivided into regions or blobs which are an-
alyzed and are given bounding boxes and probabili-
ties for different object classes. This approach allows
predictions to be informed by global context because
the neural network is applied to the entire image at
once. This approach is also many times faster than
classifier-based detectors, allowing for real-time ob-
ject detection.

Because object detectors are typically neural net-
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work models, they need to be trained on a dataset.
Microsoft’s Common Objects in Context (COCO) is
one of the leading object recognition datasets. COCO
contains images with complex scenes which have ob-
jects in a natural context (Lin et al., 2015). 91 object
types are defined in the dataset.

2.2 Feature Detection and Tracking

Kanade-Lucas-Tomasi (KLT) point trackers find the
best fit linear translation between images by using
spatial intensity information to make the process of
finding the regression less computationally costly
(Lucas and Kanade, 1981). Minimum eigenvalue fea-
ture detection finds where large gradient changes in
the image intersect. Corner points become features to
track when the minimum of both computed eigenval-
ues of the gradient is above a set threshold. These cor-
ner points can then be found repeatedly and tracked
from frame to frame. In addition to detection and
tracking, an affine transformation is found between
nonconsecutive frames to identify and potentially re-
ject tracked points that are too dissimilar (Shi and
Tomasi, 1994). KLT point trackers are used broadly
in the field of computer vision for camera motion
estimation, video stabilization, and object tracking.
When applying KLT point tracking, points can be lost
because of occlusion, lack of contrast, etc. Because
of this, many tracked features end up short-lived, and
therefore, an additional tracking framework can often
be needed to redetect points of interest.

2.3 Multiple Target Tracking

The uniqueness of different objects of interest is an
important condition to maintain in many tracking sce-
narios. Knowing which object is which can be im-
perative in many instances and applications. Data
association techniques such as global nearest neigh-
bor (GNN) (Konstantinova et al., 2003) and multi-
ple hypothesis trackers (MHT) aim to solve the is-
sue of uniqueness in cluttered environments. Algo-
rithms like these usually employ gating techniques
along with filtering such as Kalman filtering to make
broad decisions before making finer deductions. Var-
ious algorithms are then used to update the identifica-
tions of the tracks (Bardas et al., 2017).

3 METHODOLOGY

This section provides the process and workflow be-
hind estimating speed. Speed and depth estimation

are at the summit of a long multifaceted path con-
sisting of finding objects to track, tracking the ob-
jects which are found, solving for uniqueness, im-
age manipulation, and every hurdle and complica-
tion in-between. Methods that rely on depth appear
in (Diamantas et al., 2010), (Diamantas, 2010). Be-
cause tracking objects and estimating depth is such a
complex challenge, we decided to split it into smaller
more manageable problems, with each step providing
new challenges to solve, not only in it of itself, but
also in order to work with each step of the rest of the
process.

In order to find an object’s speed, first, where the
object is must be known. For this, object detection
is needed. With current object detection algorithms
arises another challenge, computational power. Ob-
ject detection requires a large amount of computing
resources. If we want to find, for example, vehicle
speeds in real-time using easily accessible computing
power, object detection for every new input (frame)
isn’t feasible. It is also quite a waste of resources
when there are much less demanding ways to track
object positions frame-to-frame, such as point track-
ing. An object detector still needs to be run period-
ically to detect new objects and regather points on
already tracked objects, but point tracking or other
tracking algorithms are the frame-to-frame solutions
for tracking changes in object position.

In order to track object speed, first, detection of
the object is done, then tracking of changes in ob-
ject position. The next issue arises when we consider
tracking multiple objects. In the case of speed esti-
mation, we must know which object is which. If a car
is being tracked, and a new car appears nearby, there
needs to be a protocol in place to decide which ob-
ject is which from frame to frame and with each new
round of detection. This is another challenge faced on
the way to speed estimation.

3.1 Detection Phase

The first step for any tracking or collection of data of
objects of interest is to detect those objects. Object
detection is a rapidly advancing field in computer sci-
ence, and there are many different detectors out there.
One thing most modern detectors have in common is
that they are neural network models, but beyond that,
the structure, design, and techniques used can vary
greatly.

For this project, we decided to implement
YOLOv4 in this detection algorithm. YOLO was the
detector of choice because of its balance of detec-
tion accuracy and detection speed. One of the pri-
mary goals in speed estimation is for it to be real-time.
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YOLOv4 achieves 43.5% AP (65.7% AP50) on the
MS COCO dataset with a speed of roughly 65 frames
per second using a Tesla V100 graphics card. Com-
pared to EfficientDet, another state-of-the-art detec-
tor, YOLO boasts twice the detection speed at com-
parable accuracy (Bochkovskiy et al., 2020).

Using code to import the YOLO models to MAT-
LAB (YOLOv4, 2021), YOLOv4 is periodically run
to detect new objects and recollect features on already
tracked objects. In much of our testing, 500 mil-
lisecond intervals proved to be an appropriate interval
rate for real-time operation, quick detection of newly
presented objects, and consistent point recollection.
YOLO produces axis-aligned bounding boxes for all
detected objects as well as categories and confidence
values for each detection. Objects with a confi-
dence value over a certain threshold are kept. Non-
maximum suppression (NMS) keeps objects from be-
ing double-counted.

3.2 Tracking and Data Collection Phase

In order to progress from object detection to object
tracking, a few issues need to be addressed. Firstly, in
multi-object tracking, the uniqueness of each object
needs to be maintained. In other words, when tracking
multiple objects, knowing which object is which is
important. Second, in-between detections being run,
the movement of objects needs to be tracked and their
bound boxes adjusted accordingly. Lastly, because
the view of objects can in many cases be temporarily
obstructed and because some objects may be difficult
to detect, predicting the future position of tracks can
be utilized to produce more consistent tracking and
allows the tracking to be more robust in many more
challenging situations.

There are a number of approaches for deducing
which object is which. We chose a ranked assign-
ment method (Murty, 1968) which uses a cost matrix
to determine assignments with the least cost. The op-
timized ranked assignment method we implemented
greatly optimizes the method by partitioning in an op-
timized order, inheriting partial solutions, and sorting
sub-problems (Miller et al., 1997).

Utilizing a KLT algorithm (Tomasi and Kanade,
1991) with the bounding boxes provided by object
detection as the region of interest, we were able to
get consistent feature extraction and tracking (Shi and
Tomasi, 1994). Since the objects of interest were of-
ten moving objects, we used bidirectional error along-
side point tracking to determine and eliminate points
detached from the objects being tracked (Kalal et al.,
2010). With these measures in place, points that
proved to be quality points on the object to track were

then used to interpolate the object’s change in position
from frame to frame. The interpolation arises from
the geometric transform estimation derived from the
points’ change in position between frames (Torr and
Zisserman, 2000).

For predictions and data collection, a Kalman fil-
ter for each bounding box continually updates with
the current position of the midpoint of the bottom
edge of each bounding box. With the path of this point
being fed to the Kalman filter, the Kalman filter can
then predict, in a linear fashion, the future positions
of this point (Welch and Bishop, 2006). This point
serves two purposes. Its first purpose is as a reference
from which the bounding box can be reconstructed
when the object is lost. If an object is a particularly
difficult detection or if an object is temporarily oc-
cluded, all tracked points can be lost. In a short time,
if a new detection is found which matches the pre-
dicted position of a lost track, we can say with some
confidence this is the same object. The Kalman fil-
tered point’s second purpose will be discussed in the
next subsection. Variations of an extended Kalman
filter could be implemented for more advanced pre-
dictions (Simon, 2006), but because the confidence
of an object reappearing drastically reduces quickly
in most scenarios we presented, the computationally
light basic Kalman filter was used.

3.3 Homography-based Speed
Estimation

Speed estimation lies at the summit of this algorithm.
Although the large push for autonomous vehicles has
caused greatly accelerated advancements in computer
vision, speed estimation and 3D scene recreation have
continued to be very challenging topics. More and
more complex techniques for data collection such as
lidar and multi-camera systems have come to the fore-
front of depth perception research, but many of these
techniques are expensive, inaccessible, or too inva-
sive a solution in certain environments with certain
constraints. There is a need to create a robust speed
estimation algorithm that needs very minimal infor-
mation to work reliably.

The biggest hurdle in speed estimation with a sin-
gle camera is projecting a 3D scene from a 2D repre-
sentation, i.e. an image, in a meaningful way to then
gather speed. Many ways of doing this have the ba-
sic requirement of knowing the camera’s extrinsic pa-
rameters such as pose and height. In many scenarios,
extrinsics like this are unknown and difficult to find.
Making the simple assumptions that 1) the ground in
the scene is flat and 2) the objects you are tracking
are moving along the ground, planar homography can
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be used to shift the perspective of the image in a way
which speed can then be extracted. Homography is a
bijective isomorphism of a projective space. Homog-
raphy is traditionally used for image rectification and
computation of camera motion between images.

The question then arises, how do we find the ho-
mography transform of an image in order to find the
speed of vehicles and the like? First, a set of points
parallel to the ground plane is needed with known
mappings to real-world distances. Keeping in mind
the primary goal in this paper is to monitor vehicle
speed, points from passing vehicles can be collected
and used as the foundation for a homography matrix
derivation. In this work, four corners of a passing ve-
hicle, where the headlights and tail lights are located,
were manually picked during the initialization of the
algorithm. Lastly, using these points along with the
average dimensions of a vehicle, we were able to con-
sistently produce an image transformation productive
for speed estimation utilizing planar homography in
MATLAB (Corke, 2017). Assuming the ground is rel-
atively flat, the transformed image acts essentially as
a Bird’s Eye View where pixel-wise distances on the
same plane as the ground are known. For each ob-
ject, the midpoint of the bottom bounding box edge,
where the vehicle meets the ground plane, discussed
in section 3.2 can be processed though the homogra-
phy transformation matrix. The changes in the po-
sition of the now transformed midpoints can then be
mapped to real world distances. The homography ma-
trix H transforms the set of points (x1,y1) to set of
points (x2,y2).

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (1)

x1
y1
1

= H

x2
y2
1

=

h11 h12 h13
h21 h22 h23
h31 h32 h33

x2
y2
1

 (2)

x′2(h31x1 +h32y1 +h33) = h11x1 +h12y1 +h13 (3)

y′2(h31x1 +h32y1 +h33) = h21x1 +h22y1 +h23 (4)

8 degrees of freedom can safely be enforced by setting
h33 to 1:

x′2 =
h11x1 +h12y1 +h13

h31x1 +h32y1 +1
(5)

y′2 =
h21x1 +h22y1 +h23

h31x1 +h32y1 +1
(6)

From this derivation, further corresponding sets of
points can be included to fit a homography matrix to
all points. The corners of a reference vehicle and the

Figure 1: A sample image from a dataset showing detected,
tracked, and speed estimates of various vehicles’ sizes. In
the lower right corner, two of the camera sensors used in
experiments with self-owned vehicle are shown.

average dimensions of a vehicle where used to com-
pute the transformation matrix of the image. Thus,
having computed the homography matrix, the follow-
ing equation (7) is used to estimate the speed between
consecutive frames:

v(t) =
∆s
∆t

=
ds
dt

(7)

where ∆t is given by the extracted frame rate
of the camera. With an appropriate camera angle
paired with YOLO’s ability to distinguish between
cars, trucks, and buses, semantic segmentation (Jégou
et al., 2017) and optical flow techniques could be used
to automate point acquisition during the initialization
process, and, further, repeatedly find transformations
from passing vehicles, allowing for a further rectified
transformation matrix over time, or even allow for a
moving camera (Diamantas and Alexis, 2020), (Dia-
mantas and Alexis, 2017).

In Fig. 1 various detected and tracked vehicles
(passenger cars, trucks, large trucks) along with their
estimated speed is shown. In the lower right corner
the sensors (FLIR Blackfly and Intel Realsense D455)
used for the experiments are also depicted.

4 EXPERIMENTS AND RESULTS

The following figures present experimental work with
videos taken from datasets as well as videos created
with a self-owned vehicle that served as a ground truth
to compute the error in estimated speeds. Figure 2
shows the output of the algorithm using datasets with
different videos. Each column contains vehicles go-
ing in different directions. This algorithm is robust to
scale as well as to motion direction of vehicles. Fig-
ure 3 shows images with a self-owned vehicle and a
known speed. The error has been estimated to be as
low as 0.3 km/h and as high as 7.5 km/h in some few
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Figure 2: Output of proposed algorithm. Speed estimations of a number of vehicles with various sizes moving into different
directions validate the effectiveness of our proposed algorithm. Videos from different data sets have been used in this set of
experiments.

instances. In most experiments the error is between
3-5 km/h. Figure 4 images have been taken using
a smartphone camera. In this experiment, the error
lies within the afore-mentioned range. The resolution
of frames varies with most videos having a resolu-
tion of 1920× 1080 and in one case, a resolution of
2560×1920 (Fig. 2, last row). The frame rate varies
between 10 fps and 50 fps. In all different settings
our algorithm performed remarkably well. The source
code of our approach is available at Github1. Several
videos with the output of our algorithm can be found
on our YouTube channel2.

5 CONCLUSIONS AND FUTURE
WORK

In this research, we have presented an algorithm for
detecting, tracking, and estimating the speeds of mul-
tiple vehicles. In particular, this method comprises of
several sub-algorithms, at first a neural network algo-
rithm, based on YOLOv4, detects multiple vehicles
on the highway which in turn serves as input to a
multiple-object tracker based on the KLT algorithm.
Using the homography matrix, which is computed
only once based on the mean dimensions of passenger

1https://github.com/TSUrobotics/SpeedEstimation
2https://www.youtube.com/channel/

UCeyQfeblSg2eyX2gGSUpIOw

vehicles and the four corners of any passenger vehicle
at the beginning of our video, we are able to estimate
and track the speed of all vehicles for the entire dura-
tion of the video. This algorithm requires only a sin-
gle feature from any vehicle to be tracked in order to
infer its speed. The algorithm is, thus, computation-
ally cheap yet it provides accurate estimates of vehi-
cles’ speeds irrespective of the direction of motion of
vehicles or their size. The results validate our algo-
rithm which is tested on a series of known datasets as
well as compared with ground truth data.

The vehicle corner-based homography derivation
could be expanded in a number of ways. One sig-
nificant development would be automating the cor-
ner collection and repeatedly applying it. This would
eliminate any initialization procedure, and allow for
a homography derivation which improves with time.
With some modulation, the methods of this work
could be expanded and applied along with automated
corner collection of vehicles to not only provide much
more accurate speed estimation, but also allow for
speed estimation from a moving camera with very
minimal assumptions.

Currently, we are developing methods to detect
vehicles using semantic segmentation which will pro-
vide an even more accurate estimate of the homog-
raphy matrix. As a future work, we plan on testing
future iterations of this algorithm on a moving vehi-
cle with the aim to estimate the time to collision as
well as to run our algorithm on a parallel processor
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Figure 3: Output of proposed algorithm. In these set of images controlled experiments have been carried out with a self-owned
vehicle with the view to estimate the error.

Figure 4: Output of proposed algorithm. Images are taken by a smartphone camera and a self-owned vehicle is driven with
the view to estimate the error.

platform. Moreover, we plan on combining the cur-
rent approach with optical flow techniques with the
view to provide more robust results especially in sce-
narios where a vehicle is stopped and a small amount
of speed is estimated with the proposed algorithm.
Finally, we plan on implementing this approach on
an Unmanned Aerial Vehicle (UAV) and use thermal
camera imaging to infer speeds at night.
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