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Abstract: Today, the amount of data is growing rapidly, which makes it nearly impossible for human analysts to com-
prehend the data or to extract any knowledge from it. To cope with this, as part of the knowledge discovery
process, many different data mining and machine learning techniques were developed in the past. A famous
representative of such techniques is clustering, which allows the identification of different groups of data (the
clusters) based on data characteristics. These algorithms need no prior knowledge or configuration, which
makes them easy to use, but interpreting and explaining the results can become very difficult for domain ex-
perts. Even though different kinds of visualizations for clustering results exist, they do not offer enough details
for explaining how the algorithms reached their results. In this paper, we propose a new approach to increase
explainability for clustering algorithms. Our approach identifies and selects features that are most meaningful
for the clustering result. We conducted a comprehensive evaluation in which, based on 216 synthetic datasets,
we first examined various dispersion metrics regarding their suitability to identify meaningful features and we
evaluated the achieved precision with respect to different data characteristics. This evaluation shows, that our
approach outperforms existing algorithms in 93 percent of the examined datasets.

1 INTRODUCTION

Nowadays, a tremendous amount of data is being cap-
tured, stored, and processed throughout almost any
domain. With the progressing digitalization, this data
keeps growing every day. Analyzing this data leads to
new possibilities for improving our daily lives, e. g.,
through automated traffic management or easier di-
agnosis of illnesses. However, for a domain expert,
oftentimes the amount of data is too large to be com-
prehended, processed, or analyzed (Keim et al., 2008;
Maimon and Rokach, 2010). For this reason, many
techniques exist for data mining and machine learn-
ing with the goal of extracting information and knowl-
edge from data. This is referred to as the knowledge
discovery process (Fayyad et al., 1996). A popular
data mining technique is clustering (Wu et al., 2008),
which assigns similar data to a cluster based on the
data’s characteristics. This allows identifying clus-
ters in the data without any specific prior knowledge.
A famous and widely used representative for these al-
gorithms is k-Means (MacQueen, 1967).
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However, when it comes to clustering, interpreting
and explaining the results can become difficult. Since
there is no prior knowledge of the data, it can become
unclear how the algorithms created the clusters, i. e.,
which data characteristics were relevant or how the
data of different clusters can even be distinguished.
Being able to comprehend and explain the results,
however, is an important issue for domain experts,
since they can only trust in the results if they are able
to understand how they were concluded. Hence it is
necessary to keep the human user ”in-the-loop” (En-
dert et al., 2014; Behringer et al., 2017).

To cope with the issue of data interpretation, dif-
ferent preparation and visualization techniques were
developed for clustering, e. g., Principal Component
Analysis (PCA) (Dunteman, 1989) or t-Distributed
Stochastic Neighbor Embedding (t-SNE) (Hinton and
Roweis, 2002). When applying PCA to a multi-
dimensional dataset, the dataset is reduced to fewer
dimensions while preserving as much of the data’s
characteristics as possible and in order to increase
comprehensibility. In contrast, t-SNE is a non-linear
dimension reduction technique that creates a visual
result in two or three dimensions to evaluate segmen-
tation for exploration purposes.
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Figure 1: The results of PCA and t-SNE on the IRIS dataset.

Figure 1 shows the visualization results based on
PCA and t-SNE on the IRIS dataset (Fisher, 1988). In
PCA, finding clusters can be difficult, depending on
the number of clusters and data distribution. In the
example on the right, using t-SNE, although clusters
can be identified easily, details of the data are lacking,
however, since the concrete range of values in the data
as well as the semantics of the axes cannot be seen at
glance by human users.

In addition to PCA or t-SNE, data mining tools
like WEKA (Frank et al., 2016) offer a textual repre-
sentation of clustering results, which contains many
details about how the clustering result was reached,
e. g., the number of necessary iterations, statistical in-
dicators like mean or standard deviation, or the num-
ber of instances per cluster. Experienced data sci-
entists can draw conclusions from this kind of infor-
mation, however, there is no filtering for relevant in-
formation. In particular, considering results with an
increasing number of features, it becomes more and
more difficult to maintain an overview, and human
analysts can easily become overwhelmed by such tex-
tual representations.

In many cases, however, it is purposeful if anal-
yses are not performed by dedicated data scientists,
but to enable domain experts to perform these anal-
yses themselves, e.g., for accelerated initial results.
This is referred to as self-service business intelli-
gence (Imhoff and White, 2011). Hence, using state-
of-the-art approaches still makes explaining how the
algorithms reached their results a great challenge.

To cope with this issue, we introduce in this paper
a new approach to enhance the explainability of clus-
tering algorithms. In the first step, we create a rank-
ing of features by the meaningfulness for the result
of the clustering algorithm. Subsequently, we deter-
mine the quantity of features that are to be considered
meaningful in order not to overwhelm a domain ex-
pert. Next, we calculate statistical parameters, which
reduce the amount of information, leading to an eas-
ier understanding and further insights. These param-
eters, e. g., minimum, maximum or upper and lower
quartile, are calculated for each selected feature.

For the purpose of evaluation, we compare our ap-
proach against a state-of-the-art approach based on
216 synthetic datasets with a wide range of different
characteristics and show that our approach offers sig-
nificant advantages and, in terms of identified mean-
ingful features, outperforms the state-of-the-art ap-
proach in up to 93 percent of the datasets.

The remainder of this paper is structured as fol-
lows: Section 2 introduces related work. Next, Sec-
tion 3 contains our main contribution – an approach to
increase explainability of clustering algorithms. Sec-
tion 4 shows the results of our evaluation. Finally,
Section 5 concludes this paper.

2 RELATED WORK

Clustering is an unsupervised data mining technique
to discover groups in the given dataset, such that
the data within a cluster are similar and the data
of different clusters are dissimilar. In the litera-
ture, several clustering algorithms exist (Jain, 2010).
The most famous ones are centroid-based, such as
k-Means (MacQueen, 1967), density-based, such as
DBSCAN or OPTICS (Ester et al., 1996), and hier-
archical ones (Jain, 2010). Here, k-Means is a very
famous clustering algorithm due to its ease of use and
scalability (Wu et al., 2008). However, all these clus-
tering algorithms require parameters to be set prior to
execution. Yet, the parameters highly influence the
clustering result. For instance, centroid-based algo-
rithms such as k-Means require the number of clusters
as input.

To detect the number of clusters, automatic and
semi-automatic methods exist in the literature. Both
first execute a clustering algorithm with several possi-
ble values for the parameters, e. g., for the number of
clusters on the dataset. Automatic methods use clus-
tering metrics to evaluate the clustering results and to
choose the best one automatically (Liu et al., 2013).
There are actually two kinds of clustering metrics:
External and internal metrics. External metrics com-
pare the clustering result against a ground-truth clus-
tering result. However, in general, we cannot assume
that we have information about the ground truth as
clustering is a solely unsupervised task. In contrast,
internal metrics measure the compactness (similarity
between instances within one cluster) and dispersion
(dissimilarity between different clusters) of cluster-
ing results and set both measures in relation to each
other. Here, various metrics exist, e. g., the Silhou-
ette (Rousseeuw, 1987), Davies-Bouldin (Davies and
Bouldin, 1979) or Calinski-Harabasz (Caliñski and
Harabasz, 1974).
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A prevalent semi-automatic method is the elbow
method (Thorndike, 1953). The user is shown a graph
over the different k values on the x-axis and the y-axis
shows the sum of square errors for the corresponding
k value. This graph is typically monotonic decreas-
ing, however, the assumption here is that the correct k
value is the one with the highest decrease. This point
of the highest decrease can be obtained by looking
at the graph and searching for an elbow point by the
user. Yet, the automatic and semi-automatic methods
can only compare different clustering results and tell
which one is better, but cannot describe how a clus-
tering result is obtained and which are the meaningful
features that led to each individual cluster.

To detect the most significant features in data, fea-
ture selection (Kumar and Minz, 2014) or feature im-
portance (Altmann et al., 2010) algorithms might be
used. The most common use of feature selection is
that based on a target class, e. g., the cluster label, the
features that have the greatest impact on the result are
selected. These algorithms typically assign scores to
the features by measuring the correlation of a feature
with respect to the target. To this end, statistical mea-
sures as, for instance, ANOVA, chi-square or mutual
information are used (Altmann et al., 2010).

Yet, there are also more advanced feature selection
algorithms, e. g., Random Forest (Breiman, 2001) or
Boruta (Kursa and Rudnicki, 2010), which uses a
Random Forest model to predict which features con-
tribute most to the result. However, it is not possible
to apply these algorithms on the resulting clusters in-
dividually as each cluster contains only one label and
thus meaningful statements are not possible if only
one class is present. Hence, these approaches are not
suited to explain which features are important in the
individual clusters or the clustering result at all.

However, some feature selection algorithms can
be used without a target class (Solorio-Fernández
et al., 2020). Here, the authors conclude that addi-
tional hyperparameters, such as the number of clus-
ters or number of features, are needed for such fea-
ture selection algorithms, which are not available in
practice by domain experts, especially in the context
of exploratory analysis. Furthermore, the scalability
of these methods is limited and differences between
individual clusters and the entire dataset are not taken
into account. As a result, meaningful features can not
be determined for each cluster individually.

The most related approach to our work is Inter-
pretable k-Means (Alghofaili, 2021) which yet is not
a scientific publication but a promising article pub-
lished on towardsdatascience.com including imple-
mentation on GitHub. This approach utilizes the SSE
that is minimized in the k-Means method. To this end,

it calculates for each cluster which feature minimized
the SSE the most. Since the objective of k-Means is
to minimize the SSE, this would relate to the feature
with the most significant impact to the clustering re-
sult. This allows to assign a feature importance score
to each feature and to select the most meaningful fea-
tures on this basis. Though this method is able to se-
lect features for each cluster individually, it is only
applicable to k-Means.

Approaches that aim to increase the explainability
and the interpretation of clustering results typically
use decision trees (Dasgupta et al., 2020; Loyola-
González et al., 2020) for that purpose. Though, de-
cision trees are supervised methods, they can be used
on the clustering result by using the cluster labels as
class labels. Then, a decision tree is trained on the
clustering results. The resulting decision tree can sub-
sequently be used to explain for a certain data instance
why it belongs to a cluster. Though this is suitable to
explain why certain instances are within a cluster, this
is not suitable for domain experts if there are thou-
sands or millions of data instances. As a consequence,
explaining every single instance is not scalable for do-
main experts and it remains uncertain by what one
cluster is characterized in detail. Hence, we follow
a different approach, i. e., we aim to summarize and
describe the clusters themselves and not each data in-
stance. Therefore, our approach is especially more
suited for large-scale datasets where we might have
millions of data instances with hundreds of features.

With regard to commercial software, there is an
option in IBM DB2 Warehouse to visualize and com-
municate clustering results. Thereby exists the oppor-
tunity to sort the features according to their impor-
tance. However, based on the documentation1, this
sorting contains all features and is based either on the
normalized chi-square values, the homogeneity of the
values, or in alphabetical order.

In summary, approaches to explain clustering re-
sults only describe the generation, e.g., by decision
trees, but not the content or meaning of the result.
Feature selection algorithms can only be used to iden-
tify meaningful features for the entire result, but not
for individual clusters. The only algorithm we could
find for identifying meaningful features at the clus-
ter level, Interpretable k-Means, is limited to k-Means
and thus not generally applicable. Furthermore, Inter-
pretable k-Means a) ignores the differences between
clusters and the entire dataset and b) lacks function-
ality to determine the quantity of meaningful features
and instead returns a ranking over all features avail-
able in the dataset.

1https://www.ibm.com/docs/en/db2/10.5
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3 EXPLAINABILITY OF
CLUSTERING RESULTS USING
MEANINGFUL FEATURES

Clustering aims at combining similar data into
groups. This is done by maximizing separation be-
tween the clusters and minimizing separation within
a cluster. To determine this degree of separation,
metrics are used, such as the distance between the
points (k-Means), the distance between the neighbor-
ing points (DBSCAN), or the graph distance (e. g., the
nearest-neighbor graph on spectral clustering). Ac-
cordingly, a good clustering result is achieved when
instances from different clusters differ strongly, i. e.,
the dispersion is rather large, while the dispersion
within a cluster is small. However, a clustering re-
sult considered as optimal based on objective criteria,
such as dispersion or compactness metrics, is not nec-
essarily appropriate in each scenario. Instead, non-
optimal clustering results may be more expressive and
provide more value to an analysis given that they bet-
ter represent the real world. Hence, an interpretation
purely on these metrics is difficult for domain experts.

In particular, large datasets contain many features
that are not relevant for the clustering result but make
interpretation of the result an even more difficult task.
In order to interpret a clustering result, it is therefore
crucial that the features that are most meaningful are
identified and subsequently processed in a way that
can easily be interpreted by domain experts.

To accomplish this, four steps are necessary:
(1) identification of meaningful features, (2) deter-
mine the quantity of meaningful features, (3) determi-
nation of statistical quantities, and (4) visualization of
the results:

(1) Identification of Meaningful Features. For the
first step, we assume that dispersion metrics are not
only suitable for assessing the overall result, but also
for analyzing individual features in isolation. Conse-
quently, a feature is considered meaningful as long as
the dispersion of this feature within a cluster is clearly
different from the dispersion of this feature in the en-
tire dataset. In order to find the meaningful features,
we calculate for each cluster ci and feature fa an arbi-
trary metric M, for instance, the variance or standard
deviation.

In Sect. 4, we examine a selection of different dis-
persion metrics for their suitability with respect to this
application. Subsequently, we calculate this metric
for the feature fa as well on the entire dataset to get
the metric difference:

MetricDi f f erenceci, fa = |Mci, fa |− |Mcall , fa | (1)

This metric difference (cf. Eq. 1) is minimized when
the dispersion of values of the considered feature fa
within the considered cluster ci is small (|Mci, fa |) and
the dispersion over all clusters call , i. e., the entire
dataset, is large for this feature (|Mcall , fa |). The metric
difference can now be used to identify the most mean-
ingful features for each single cluster individually and
to rank the features for each cluster. Note, that each
feature has to be normalized to ensure comparability
between features. Nevertheless, it may be relevant for
a domain expert to identify the most meaningful fea-
tures across all clusters. For this purpose, for each
feature, the position in the respective cluster ranking
can be leveraged and the features with the best av-
erage position are identified as the most meaningful
features across all clusters.

In some cases, however, depending on the specific
analysis scenario it is more appropriate to understand
why clusters are separated. Hence, the most meaning-
ful features are those that make clusters most distin-
guishable from one another, even if these features do
not describe the cluster itself anymore. If so, it is not
the dispersion between feature and entire dataset that
has to be considered, but the discriminatory power
(DP, cf. Eq.2) of the value ranges for a feature be-
tween the different clusters:

DPfa = (MO fa , ID fa) (2)

Thus, for each feature fa of the dataset, there is one
tuple composed by the degree of the mean overlap
(MO fa , cf. Eq. 3) as well as the inner distance (ID fa ,
cf. Eq. 5). Both are discussed in more detail below.

MO fa =
1

c∗ (c−1)

c

∑
i=1

c

∑
j=1
j 6=i

O fa(ci,c j)

max fa(ci)−min fa(ci)
(3)

O fa(ci,c j) = max(0,min(max fa(ci),max fa(c j))

−max(min fa(ci),min fa(c j)))
(4)

First, the average degree of overlap (MO fa ) is cal-
culated. This describes the pairwise overlap (O fa ,
cf. Eq. 4) of the value ranges between the currently
considered cluster ci and all other clusters c j for the
feature fa. This overlap is also set in relation to the
respective value range covered, i.e, if the currently
considered cluster ci covers a larger value range, then
an overlap of the same size is less penalizing than in
the case of a smaller value range. Consequently, a
result in which the value ranges of a feature do not
overlap between different clusters is in general bet-
ter than one with overlap, but it is rather unlikely to
achieve this kind of accurate separation. It is more
likely that the same overlap will occur between two
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different features. If this happens, the feature that sep-
arates the value ranges more strongly should be con-
sidered as more meaningful, i. e., the so-called inner
distance (ID fa , cf. Eq. 5) between the value ranges
of the clusters is larger. This inner distance is larger
when less value range is occupied by different clus-
ters at the same time. It should be noted that the use
of minimum and maximum is quite susceptible to out-
liers. To reduce this risk, the interquartile range could
be used instead of minimum and maximum, however,
it has to be accepted that the results may be altered in
this scenario.

ID fa = 1−
c

∑
i=1

max fa(ci)−min fa(ci) (5)

Based on the introduced metric difference, it is
possible to identify the meaningful features for each
cluster both individually and over the entire group
of clusters. Furthermore, by considering the value
ranges in the discriminatory power DP, it is also fea-
sible to identify the features that distinguish the clus-
ters most significantly. Thus, we are able to identify
meaningful features for each single cluster, for an en-
tire clustering result across clusters and, finally, dis-
tinguishing clusters from each other. This step ends
with a ranking of the features based on their mean-
ingfulness.

(2) Determine the Quantity of Meaningful Fea-
tures. In the second step, it must be decided, based on
the ranking of the features, which features are mean-
ingful and enable a domain expert to interpret the
clustering result. Here, three different approaches can
be considered:

(a) Static. Humans can only process a small
amount of information, which is why a focus on the
relevant information is required. According to stud-
ies (Miller, 1956), about 5-9 different values are fea-
sible simultaneously. For the sake of perception, the
number of features can be set to a fixed number, e. g.,
the lower limit 5, and accordingly, the top 5 of the
most meaningful features will be selected as mean-
ingful. This guarantees perceptibility, but if less than
these 5 features are actually meaningful, the selection
would still be increased to 5 features and the domain
expert might draw wrong conclusions.

(b) Threshold. As an alternative, a fixed threshold
for the results from step 1 could be set, which is either
pre-configured or can be changed by the domain ex-
pert during the analysis. After setting this threshold,
all features that fall below it are selected. However, if
the threshold is set too high, it means that too many
features are selected and the results are difficult for a
domain expert to interpret. Instead, if the threshold is
set too low, it is possible that no features are selected

at all as long as no feature falls below this threshold.
However, setting this threshold properly depends on
the data and is, therefore, not reliable in all cases, as
domain experts tend to set it in a way that their expec-
tations are fulfilled even if the features are not mean-
ingful at all (bias).

(c) Dynamic. Another approach is to exploit the
popular Elbow Method (cf. Sect. 3.2), which is com-
monly used to determine the correct number of clus-
ters and use it to identify the quantity of meaningful
features. To do this, the features are sorted accord-
ing to the calculated metric value, which is given here
in advance due to step 1. Subsequently, for each pair
of adjacent features in the ranking, it is determined
how large the change between these features is. If a
large change (knick/elbow) occurs, this means that the
meaningfulness between these features has changed
significantly. In this way, it can be decided in a dy-
namic way which features are still considered mean-
ingful and which are no longer meaningful. In order
to avoid that too many features are considered mean-
ingful, in case of small changes between the features,
the number of features can be as limited as in the static
approach. In contrast to the static approach, however,
it is ensured here that no mixture between meaningful
and non-meaningful features is taken into account.

(3) Calculation of Statistical Quantities. The mean-
ingful features are useful on their own but the discrim-
inatory power is still difficult for a domain expert to
interpret. For this reason, for each feature identified as
meaningful, statistical metrics still need to be calcu-
lated. In the simplest case, it is sufficient to use mini-
mum and maximum values, since overlapping ranges
of values can already be identified using these values.
However, more complex indicators such as quantiles,
among others, are also conceivable.

(4) Visualizing the Results. Finally, the identified
meaningful features must be presented to the domain
expert. Here, a large selection from the above options
is available. Of course, a domain expert must first se-
lect the algorithm and the corresponding parameters.
Then it has to be decided what should be explained,
i. e., whether the meaningful features should be iden-
tified for each cluster individually, for the entire clus-
tering result, or the distinction between the individual
clusters. Furthermore, it has to be decided which of
the methods should be used to determine the quantity.
Finally, various visualization techniques exist that can
provide further insights, e. g., histograms and parallel
coordinates plots.
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4 EVALUATION

In order to verify the practicability of our introduced
approach, we have conducted a comprehensive eval-
uation on the basis of synthetic datasets with varying
dataset characteristics, e. g., the number of features or
number of instances. Therefore, we compare multi-
ple dispersion metrics, which are used to calculate the
metric difference in step 1 of our approach and serve
as a basis for the identification of meaningful features.
Subsequently, we evaluate the precision achieved in
identifying meaningful features based on the identi-
fied metric.

4.1 Dataset Generation

For the evaluation of the presented approach, we
use synthetic datasets with varying characteristics to
cover a wide range of scenarios, which contain a
ground truth about the contained meaningful features.
To provide this ground truth, 5 features were defined
as meaningful for each dataset, i. e., the values as-
signed to these features follow a normal distribution
within each cluster. A normal distribution is appro-
priate because many real-world measurements follow
this distribution as well. For the non-meaningful fea-
tures, in contrast, a uniform distribution of values was
chosen. This leads to a simulated clustering result
with 5 meaningful features and a varying amount of
non-meaningful features. Note that all features are
generated using the same value range, i. e., the data
is already normalized. The general procedure for c
clusters, n instances, f features and a noise ratio r
between 0 and 1 is as follows: Generate c empty clus-
ters, (2) add n

c instances with meaningful and non-
meaningful features to each cluster, (3) create n ∗ r
additional instances (noise) with random feature val-
ues, (4) cluster the resulting dataset into the given c
clusters using k-Means++.

Table 1: Overview of the parameters used for the dataset
generation. Each possible permutation was used once.

Parameter Small Datasets Large Datasets

#features f 10, 20, 40 25, 50, 100
#instances n 5.000, 10.000, 50.000 100.000, 500.000, 1.000.000
#clusters c 5, 10, 25 10, 25, 50
noise ratio r 0.00, 0.33, 0.66, 0.99 0.00, 0.33, 0.66, 0.99

In order to cover a broad spectrum of different
dataset characteristics, we generate a large number
of different datasets (in total 216 varying datasets)
using the above-mentioned procedure. Furthermore,
we divide the generated datasets into large and small
datasets to identify potential differences in relation to

the dataset size. Table 1 shows the different parame-
ters we used to create the evaluation datasets. Thus,
every possible combination of these parameters is the
dataset characteristic of exactly one dataset. As a re-
sult, we generate 108 small and 108 large datasets as
the basis for the evaluation and, for each dataset, the
meaningful and purely random features are known.

4.2 Results

The results of our evaluation are divided into two
parts. First, different dispersion metrics are bench-
marked with respect to their performance to identify
meaningful features. Subsequently, a more detailed
evaluation is performed for the most suitable metric
with respect to different dataset characteristics.

4.2.1 Comparison of Dispersion Metrics

Since the identification of meaningful features is
based on dispersion metrics, the first step is to check
which dispersion metric is best suited to calculate the
metric difference (cf. Eq. 1). Therefore, for each clus-
ter it was first calculated how many of the original 5
meaningful features are found in the top 5 features of
this cluster, e. g., if 3 of 5 meaningful features were
found, the precision for this cluster is 0.6. To de-
termine the precision for the entire dataset, the mean
value over all clusters is taken and is subsequently re-
ferred to as the mean precision.

In order to get an overview of the suitability, 5
common dispersion metrics (cf. Fig. 2) were selected.
For each dataset, the mean precision was calculated
and then sorted in ascending order. It can be seen that
the variance, standard deviation, and median absolute
deviation perform significantly better than the quartile
coefficient of dispersion and coefficient of variation.
As a consequence of this observation, it can be stated
that the variance and the standard deviation could pro-
vide the best results across all datasets. However,
since the standard deviation achieves slightly better
results for the datasets with lower achieved precision,
we decided to use the standard deviation as the basis
of the metric difference for further analysis.

4.2.2 Comparison of Datasets

In the second part of the evaluation, we took a closer
look at which datasets and dataset characteristics were
performing better or worse when identifying mean-
ingful features. This part of the evaluation was also
divided into large and small datasets according to
the above-mentioned characteristics. As described
in Sect. 2, Interpretable k-Means is the most simi-
lar algorithm to our approach. For this reason, In-
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Figure 2: Evaluation of metrics on generated datasets.

terpretable k-Means was used to determine the mean
precision for each of the 216 datasets and used as a
baseline for evaluating our approach. The results for
smaller datasets are shown in Fig. 3. This figure de-
scribes the mean precision achieved for each combi-
nation of the parameters. For instance, the sub-figure
at the top left shows the mean precision achieved for
5.000 instances and 10 features on the y-axis. In ad-
dition, the three different numbers of clusters c=5,
c=10, c=25 are depicted on the x-axis, and for each
of these combinations, the four possible noise ratios
from left (0) to right (0.99) are plotted. The results of
the baseline achieved with Interpretable k-Means are
depicted in black, while the results of our approach
are depicted in blue.

It is evident that in the vast majority of datasets
very good results could be achieved by our approach.
Only in a very limited number of parameter combina-
tions, the baseline was not met. Hence, the average
mean precision achieved by our approach across all
datasets is 0.85, i. e., at least 4 out of 5 meaningful
features were identified. The worst mean precision
achieved is around 0.4, which still leads to 2 meaning-
ful features that are found on average in each cluster.
The baseline, however, only achieves a mean preci-
sion of 0.74 on average. This means that on average
one meaningful feature less was identified. In addi-
tion, it was not possible to find at least two meaning-
ful features in all of the examined datasets.

To demonstrate the performance of the approaches
from a user perspective, we also evaluated to what
extent a given minimum number of meaningful fea-
tures can be found with these approaches. If at least
4 meaningful features are to be identified, this re-

quirement is matched or exceeded in 81 of the 108
datasets by our approach, which is equivalent to a suc-
cess rate of 75 percent. For Interpretable k-Means,
this goal was only achievable in around 41 percent
of the datasets (45 datasets). If the rather implausi-
bly high noise of 66% or 99% additional instances
is not taken into account, the success rate of our ap-
proach increases to over 85 percent, i. e., 46 of 54
datasets with at least 4 out of 5 meaningful features,
for Interpretable k-Means the success rate in this con-
dition remains with 46 percent around the same level
(25 datasets).

Nevertheless, we expect that even less than 4
meaningful features support a domain expert in the
analysis tremendously. For instance, if a domain ex-
pert would be satisfied with a minimum of 3 mean-
ingful features, the success rate of our approach in-
creases to over 97 percent (105 out of 108 datasets).
If the excessive noise ratios are neglected, the success
rate even climbs to 100 percent. For Interpretable k-
Means, the requirement could be reached in signifi-
cantly fewer datasets (48 of 108 datasets, 44 percent).
Here, when noise ratios are neglected the success rate
is still only at 88 percent (48 datasets).

Furthermore, it is apparent that as the noise ratio
increases, the results tend to get worse. Exceptions to
this pattern are the datasets with only a few features
and a small number of clusters. For these parameters,
adding random instances surprisingly leads to slightly
better results. However, it is not possible to draw a
clear correlation between individual parameters and
their influence on the achieved precision.

A similar general pattern is obtained when looking
at the results for the large datasets (cf. Fig. 4). Once
again, in the vast majority of the evaluated datasets
very good results could be achieved. In contrast to
the smaller datasets, the impact of the randomly gen-
erated additional noise is as expected. Although there
are occasional exceptions, noise generally causes a
decrease of precision in the results across all param-
eter combinations. In particular for large noise ra-
tios the precision drops significantly in some cases
(e. g., f=25, n=100.000, c=50). Furthermore, it can
be seen that this effect weakens when considering a
larger number of features.

The average mean precision for the large datasets
achieved by our approach is approximately 0.83, with
0.27 in the worst case, i. e., we still identify more
than one meaningful feature in the worst case. In-
terpretable k-Means, in contrast, was able to achieve
a mean precision of 0.64 and 0.19 in the worst case,
i. e., there was again at least one dataset in which no
meaningful feature could be found.
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Figure 3: Overview of the mean precision achieved on smaller datasets. For each combination of instances n, features f and
clusters c the mean precision achieved with different noise ratios r (0, 0.33, 0.66, 0.99 from left to right) is shown.

In a head-to-head comparison, this implies that
our approach achieves the higher mean precision in 93
out of 108 datasets, i. e., in 86 percent of the datasets.

Looking at the results from a domain expert’s
perspective, our approach finds at least 4 meaning-
ful features in 72 percent of the datasets (78 out of
108), while Interpretable k-Means achieves this in
only 30 percent (33 out of 108 datasets). Without the
two greatest noise ratios, the success rate increases
to more than 83 percent (45 out of 54 datasets) for
our approach and again is limited for Interpretable k-
Means (37 percent, 20 out of 54 datasets). In the sce-
nario where the lower baseline of at least 3 meaning-
ful features is required, there is again a significant in-
crease in the success rate using our approach. Across
all datasets, a success rate of more than 91 percent (99
out of 108 datasets) is achieved. Without the larger
noise ratios, the success rate is once again as for the
smaller datasets at 100 percent. These results were
not achievable with Interpretable k-Means. Across all
datasets, at least 3 meaningful features were found in
just 56 percent of the datasets (61 out of 108). Ex-
cluding the high noise ratios, this requirement was

achieved in 68 percent (37 out of 54 datasets). Ta-
ble 2 summarizes these results in comparison.

Table 2: Overview of the results achieved.

Mean 3 out of 5 4 out of 5

Interpretable k-Means (small) 0.74 44% (48/108) 41% (45/108)
Our approach (small) 0.85 97% (105/108) 75% (81/108)
Interpretable k-Means (large) 0.64 56% (61/108) 30% (33/108)
Our approach (large) 0.83 91% (99/108) 72% (78/108)

4.3 Discussion

In the first part of our evaluation, a comparison of var-
ious dispersion metrics shows that the standard devi-
ation performs best. Here, the difference to the vari-
ance in the datasets with lower achieved mean pre-
cision is slightly surprising. A possible explanation
for this is that the variance is squared the standard
deviation value and thus deviations in the data are
taken into account more strongly. Thus, it is pos-
sible for outliers to be weighted strong enough that
they influence a meaningful feature to become a non-
meaningful feature or vice versa. Nevertheless, the
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Figure 4: Overview of the mean precision achieved on large datasets. For each combination of instances n, features f and
clusters c the mean precision achieved with different noise ratios r (0, 0.33, 0.66, 0.99 from left to right) is shown.

first part of the evaluation shows that the standard de-
viation is a well-suited metric due to similar values
at datasets with higher mean precision and better val-
ues at datasets with lower mean precision. Another
advantage is that the computation of the standard de-
viation is performed in linear time and oftentimes al-
ready computed anyway during the clustering algo-
rithm. Thus, there is at most a small overhead for our
approach to explain clustering results.

In the second part of the evaluation, the positive
effect of additional noise for smaller datasets is appar-
ent. The reason for this is unclear, but most likely it
is due to the fact that the equal distribution of the ad-
ditional instances makes the differences in the clean
data more obvious. Thus, for our chosen parameters,
there appear to be datasets in which there are too few
instances per cluster for the differences in a feature’s
value distribution to become apparent. This theory is
also supported by the fact that the effect actually only
occurs in the smaller datasets and is reversed in larger
datasets. In particular, with respect to the fact that our
approach is supposed to improve the interpretation by
a domain expert, this effect is not a real concern, since

the expert could be informed if there are too few in-
stances available in clusters. The achievable results
of our approach in both, smaller and larger datasets,
are quite good. We expect that any meaningful fea-
ture identified will already have a very positive effect
on the analysis and interpretation by a domain expert.
In the vast majority of 73 percent, even 4 out of 5
meaningful features are reliably identified. In order
to identify possible correlations, very large noise ra-
tios were also used for the evaluation, which are likely
to be encountered rather rarely in real-world data. Ac-
cordingly, success rates of 83 percent (90 out of 108
datasets with 4 out of 5 meaningful features) result
in the more realistic observations. For the mean pre-
cision of 3 meaningful features, which we consider
to be still very good, a success rate of 100 percent is
achieved. In particular, it should be mentioned that
there was not a single dataset in which the achieved
mean precision did not correspond to at least one
identified meaningful feature in each cluster. Given
this kind of noise, this speaks for very high robust-
ness, in particular, because very different scenarios
were tested in all possible permutations.
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In summary, the detailed results show that the
only comparable approach Interpretable k-Means was
outperformed by our approach in 93 percent of the
datasets. Moreover, Interpretable k-Means is con-
strained to k-Means, whereas our presented approach
works with any clustering result, regardless of the
conducted algorithm.

5 SUMMARY

In this paper, we introduced a new approach to in-
crease explainability for clustering algorithms. In the
first step, we identify features that are most meaning-
ful for the interpretation of the clustering result based
on the analysis goals. Then, we determine a suitable
quantity of these meaningful features, which are still
comprehensible by domain experts. We apply statisti-
cal parameters to detail these features even more and
to decrease the interpretation complexity for domain
experts. Finally, we visualize the results by showing
the clusters and their corresponding meaningful fea-
tures to the domain experts, as well as by giving in-
sights in the concrete data characteristics, e. g., value
ranges, in the clusters. To assess the suitability of this
new approach, we conducted a comprehensive evalu-
ation based on 216 datasets. We show, that our new
approach is able to outperform existing solutions re-
garding the achieved precision in 93 percent of the
assessed datasets. Moreover, our new approach is ag-
nostic to the clustering algorithm used.
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