
A Novel Weight-assignment Load Balancing Algorithm for Cloud
Applications

Adekunbi A. Adewojo a and Julian M. Bass b

University of Salford, The Crescent, Salford, Manchester, U.K.

Keywords: Cloud Computing, Load Balancing, Weight Assignment, Three-tier Applications.

Abstract: Load balancing dynamically optimizes cloud resources and performance, and enhances the performance of
applications deployed on cloud. We have chosen to investigate the class of cloud deployed web-based three-
tier business applications. There is a problem with load balancing for this class of applications when they
suffer from overload due to sudden flash crowds and resource failures. We propose a novel weight assignment
load balancing algorithm to address this problem. Our approach utilises five carefully selected server metrics
to efficiently distribute load among virtual machines. First, we validated our novel algorithm by comparing it
with a baseline load-balancing algorithm and round-robin algorithm. Then, we experimentally evaluated our
solution, by varying the number of user requests and carefully measuring response times and throughput. The
experiments were performed on a private cloud environment testbed running OpenStack. Our experimental
results show that our approach improves the response time of user requests by 5.66% compared to the baseline
algorithm and 15.15% compared to round-robin algorithm in flash crowd scenario. In addition, while handling
between 110% to 190% overload, our approach improved response times in all scenarios. Consequently, our
novel algorithm outperforms the baseline and round-robin algorithms in overload conditions.

1 INTRODUCTION

Cloud computing, a platform for deploying web-
based business applications, continues to gain rapid
adoption in business and computing world. It is re-
garded as the recent answer to scalable and elastic
computing. One of its appealing features is scalability
(Qu et al., 2017; Grozev and Buyya, 2014b): an abil-
ity of the system’s infrastructure to scale for handling
growing workload requirements while maintaining a
consistent performance.

A load balancer is commonly used to achieve con-
sistent performance in applications deployed in cloud,
while complementing the scalability of cloud. Load
balancing in cloud computing is the process of effi-
ciently and equally distributing workload across avail-
able resources. It plays a crucial role in achieving low
latency, improving responsiveness, and maximising
the utilisation (Hellemans et al., 2019) of resources
in distributed systems. Load balancers use load bal-
ancing algorithm such as round-robin, least connec-
tions, hashing methods, and random algorithm to dis-

a https://orcid.org/0000-0003-1482-3158
b https://orcid.org/0000-0002-0570-7086

tribute workload requests among available resources.
To ensure higher availability of services and respon-
siveness, specific applications such as three-tier web-
based applications would benefit more from a targeted
and improved load balancing algorithm and load bal-
ancer.

A web-based business application commonly ex-
periences flash crowd: a rapid, fluctuating, and ex-
ponential request surge that happens because of in-
creased users trying to access the application. The
cloud’s ability to scale, such that available resources
can cater for this need, is highly essential. However,
there is a problem with load balancing our class of ap-
plications when they experience flash crowds, and/or
resource failures. The typical and common load bal-
ancing and auto-scaling strategies do not always suf-
fice for these situations. Most times, these applica-
tions suffer performance degradation because of the
inability of the load balancer to effectively distribute
the workload or because the auto-scaling strategy was
too slow to scale out resources or never responded at
the required time.

Unfortunately, there has been limited research on
load balancing algorithms for web-based three-tier
business applications deployed on cloud. Even more

86
Adewojo, A. and Bass, J.
A Novel Weight-assignment Load Balancing Algorithm for Cloud Applications.
DOI: 10.5220/0011091600003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 86-96
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

limited research on experimentally evaluating load
balancing/distribution techniques using real cloud in-
frastructures. Most studies conducted in evaluating
and developing load balancing techniques have fo-
cused on the use of simulation tools to evaluate these
cloud models (Grozev and Buyya, 2014b; Shafiq
et al., 2021; Kang et al., 2014; Tychalas and Karatza,
2020; Zomaya and Teh, 2001; Hellemans et al.,
2019). This is in contrast to few evaluations done
on real cloud infrastructure (Wang and Casale, 2014;
Zhang et al., 2017; Chen et al., 2018).

In this paper, we propose a novel weight assign-
ment load balancing algorithm. Our algorithm com-
bines five carefully selected key server (Virtual Ma-
chine (VM)) metrics (thread count, network buffer,
Central Processing Unit (CPU), Rapid Access Mem-
ory (RAM), and bandwidth utilisation) to properly
distribute the workload of a web-based three-tier busi-
ness application. It follows the monitor-analyse-
plan-execute loop architecture commonly adopted by
cloud-based systems (Zeng and Plale, 2014; Qu et al.,
2017). This consistently distributes workload among
available servers to maintain satisfactory response
time and throughput. We validated our algorithm by
comparing it to a baseline load balancing algorithm
by (Grozev and Buyya, 2014b).

The key contributions of this research are:

• a novel hybrid-dynamic load distribution algo-
rithm that improves response time, throughput,
and scalability of web-based three-tier business
applications; and

• an implementation of our algorithm evaluated in a
private cloud test-bed

We organized the rest of this paper as follows: we
briefly summarize related work and compare them to
ours in Section 2. We motivate our research in Section
3. We illustrate the use case scenario of our solution
in Section 4. We describe the architecture of our cho-
sen application and some assumptions in Section 5.
We introduce and detail our solution, its design and
architecture in Section 6. We evaluate and present the
results of our algorithm and benchmark algorithms in
Section 9. Finally, we conclude the research in Sec-
tion 10.

2 RELATED WORK

Some efforts have been made in developing and cat-
egorising load distribution techniques for the cloud.
There are two categories of load balancing tech-
niques, namely: static and dynamic techniques (Ku-
mar and Kumar, 2019; Zomaya and Teh, 2001). Static

techniques are typically used to distribute predictable
load requests, while dynamic techniques are used to
distribute unpredictable load requests.

Based on these categories, several authors have
proposed different load balancing algorithms. Au-
thors in (Shafiq et al., 2021) proposed a dynamic load
balancing algorithm that addresses the VM isolation
issue in the cloud through efficient task scheduling
procedures. Their algorithm focused on optimising
Quality of Service and resource allocation, thus im-
proving the load balancing process in the cloud.

Authors in (Chen et al., 2017) also proposed a new
paradigm for load balancing architecture and a new
dynamic annexed load balancing technique that can
be applied to both virtual web servers and physical
servers. Their technique considers both server pro-
cessing power and compute load to inform their load
balancing algorithm. They concluded that their ap-
proach improved the mean response time of load bal-
ancing digital applications deployed on the cloud.

Apart from the above researches, authors in
(Wang and Casale, 2014; Tychalas and Karatza, 2020;
Devi and Uthariaraj, 2016; Sahu et al., 2013) all pro-
posed dynamic load balancing algorithms that use
a weighting mechanism to load balance cloud-based
applications. They all considered specific server met-
rics such as CPU, RAM, and bandwidth in determin-
ing the dynamic weight of a particular physical server
or VM. In contrast to these, our load balancing algo-
rithm improves on those predefined server metrics by
including thread count and network buffer to ensure
that we can determine accurate and precise real time
load of a server for effective routing of user’s request.

Further researches were done to not only load
balance workload but to improve on load balancing
limitations such as single point of failure (Kumar
and Kumar, 2019; Grozev and Buyya, 2014b; Cruz
et al., 2019), scalability, limitation in sensing uncer-
tainties (Zhang et al., 2017), excessive overhead and
re-routing (Zhang et al., 2017).

Building upon research works that are focused on
load balancing limitations, authors in (Zhang et al.,
2017) proposed a resilient data centre load balancer
called Hermes, which is resilient to traffic dynamics,
topology asymmetry, and failures. It leverages com-
prehensive sensing to detect path conditions and ap-
ply correct re-routing of requests to the server.

Authors in (Cruz et al., 2019) proposed a task
mapping algorithm to improve communication and
load balancing in clusters of multicore systems. They
used the eagermap algorithm to determine task map-
pings, which is based on a greedy heuristic to match
application communication patterns to hardware hier-
archies and also consider task load. They claim that

A Novel Weight-assignment Load Balancing Algorithm for Cloud Applications

87

their algorithm design alleviates the single point of
failure problem. Our load balancing algorithm fur-
ther improves on the above-mentioned limitations-
amelioration technique by creating an architecture
that avoids single point of failure, reduces excessive
re-routing by using HAProxy, and sensing uncertain-
ties by using selected server metrics that determine a
server’s capacity.

Authors in (Grozev and Buyya, 2014b) proposed
an adaptive and dynamic resource provisioning and
load distribution algorithms for multi-cloud to heuris-
tically optimize overall cost and response delays with-
out violating essential legislative and regulatory re-
quirements.

Our solution is different from the above ap-
proaches described above. Although it is similar to
the approaches of Grozev (Grozev and Buyya, 2014b)
and Wang (Wang and Casale, 2014), but it combines
carefully selected key server metrics that are specific
for accommodating our chosen class of application.
We also adopt an architecture composed of multiple
available load balancers to alleviate the problems as-
sociated with load balancing in the cloud. Further-
more, similar to the research work of Grozev (Grozev
and Buyya, 2014b), our proposed load balancing al-
gorithm can be extended to work in a multi-cloud set-
ting.

In addition, evaluation of the above researches and
those of (Hellemans et al., 2019; Zomaya and Teh,
2001; Elgedawy, 2015) were all done using simula-
tion tools and environment. We note that there is little
research (Chen et al., 2018) on evaluating cloud com-
puting models by completely using real cloud infras-
tructures. Most times, a simplified real infrastructure
experiment is done to complement simulated experi-
ments as seen in (Wang and Casale, 2014; Grozev and
Buyya, 2014b; Zhang et al., 2017).

However, we argue that simulation experiments
rely heavily on parameters to be accurate, so there
is a challenge of knowing what an accurate param-
eter value should be. The consequence of this is an
incorrect simulation result when the parameters are
not right. Meanwhile, running experiments on real
cloud infrastructure do not require parameterisation,
we get the real behaviour of all resources used and
this produces a more realistic result. Our research val-
idates our baseline algorithm, compares our algorithm
to the baseline and round-robin algorithms, and tests
our novel algorithm using a real cloud test environ-
ment.

3 MOTIVATION

Research (Grozev and Buyya, 2014b; Chen et al.,
2017; Tychalas and Karatza, 2020) shows that stan-
dard load balancing technique does not suffice for
most applications deployed on the cloud. How much
more, web applications that commonly experiences
flash crowds and sometimes resource failures. These
studies corroborate the fact that there is need for a dy-
namic and real-time capacity focused load balancing
algorithm for our class of application.

An approach to alleviate issues associated with a
standard load balancing algorithm is to incorporate
into the algorithm the key factors that affect the real-
time load of a VM. Our research identified the fol-
lowing key server metrics namely: CPU utilisation,
memory utilisation, network bandwidth, number of
threads running, and network buffers, as the most rel-
evant determinants of a VM’s real-time capacity and
load. Incorporating these factors will help a load bal-
ancer to make decisions based on the current capac-
ity and real-time load of a VM, and therefore better
utilise available resources and provide improved per-
formance.

Our proposed algorithm is an enhancement of
a load balancing algorithm by (Grozev and Buyya,
2014b). It incorporates the dynamic load balancing
technique, and the above-mentioned server factors to
calculate the weight of a VM. It assigns each VM a
weight based on the current utilisation, so the weight
of each VM and the probability of each VM’s usage
dynamically changes during runtime after evaluating
its current state. We implement this idea in our novel
Load Balancing Algorithm as depicted in 1.

4 USE CASE SCENARIOS

Our load balancing algorithm will be effective in the
following scenarios:

4.1 Flash Crowds

Flash crowds are traffic spikes that commonly affects
web applications (Qu et al., 2017; Ari et al., 2003; Le
et al., 2007). They happen without any prior notice
and may become difficult to manage. Commercial
cloud providers use auto-scaling services to combat
flash crowds. These services launch new VMs after
the application has experienced high load for a spe-
cific period of time set by the user. Our algorithm can
easily complement the role of an auto-scaler in any
cloud based deployment, by effectively balancing ap-
plication workload across available servers, thereby

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

88

maintaining consistent performance that do not fall
below predefined service level agreement (SLA) be-
fore resources are provisioned.

4.2 Resource Failures

Cloud resource failure occurs when any of the com-
ponents of a cloud environment fails to function as it
is intended to. According to (Priyadarsini and Arock-
iam, 2013; Prathiba and Sowvarnica, 2017), the three
most common resource failures in any cloud environ-
ment are hardware, virtual machines and application
failures. Any of this cloud resource failure can hap-
pen suddenly, and immediately result into degrada-
tion of service performance or total loss of service.
Most cloud providers use the intervention of an auto-
scaler and load balancer to mitigate the effect of any
such failures. However, the time required for an auto-
scaler to provision new resources will usually result
into performance degradation if existing and new re-
quests are not well managed, so our proposed load
balancing technique will definitely help to maintain
acceptable service performance while the auto-scaler
is provisioning resource.

5 APPLICATION
ARCHITECTURE AND
REQUIREMENTS

Our target applications are three-tier web-based busi-
ness applications deployed on cloud. The three-tier
architecture is the most popular implementation of a
multi-tier architecture (Amazon, 2021). A three-tier
web application is an interactive application that can
be accessed over the internet. Its architectural layers
are divided into three, namely: presentation, domain,
and data layer.

Our approach is the foundation to tenanted multi-
cloud load distribution, hence it will require requests
that can be processed by application replicas deployed
in more than one data center. This involves some im-
portant factors, and the most important factor for this
research is session continuity.

Session continuity ensures that end user sessions,
established over any access networks, will not lose
connection or any internal state even when different
servers process the user requests. Stateless applica-
tions, such as search engines, does not save client data
generated in one session for use in the next session
with that client. Also, stateless applications can eas-
ily scale because they can be deployed across multi-
ple servers without issues while ensuring session con-

tinuity. All these properties of stateless applications
implicitly satisfy the requirement of session continu-
ity. On the other hand, stateful applications require
persistence of end-user IP and session to a specific
server. Therefore, stateful applications and services
cannot be managed by our approach.

6 THE PROPOSED APPROACH

6.1 Load Balancing Architecture

Our approach to designing a hybrid-dynamic load bal-
ancing algorithm using a novel weight-assignment
policy is depicted in Figure 1. We co-locate the
load balancer and our load balancing service in the
same data centre to achieve fast detection of flash
crowds and perform quick adaptations. The load bal-
ancing service comprises a monitoring module, that
constantly monitors incoming requests and the status
of available resources to detect application or server
overload; and a control module to modify the weight
of each VM to accommodate request workload.

Figure 1: Proposed Load Balancing Architecture.

6.2 Overall Architecture

We depict the proposed overall architecture in Figure
2. We extend the conventional three-tier architectural
pattern with one additional layer of components. The
proposed load balancing layer comprises three dis-
tinct components: HAProxy load balancer, our load
balancing service, and an auto scaler.

Users are presented with an entry point that con-
sists of VMs that host load balancing service that dis-
tribute requests to application servers. The domain
layer is replicated over multiple Application Servers
and are hosted in separate VMs in our experimental
cloud test-bed. This enables the domain layer to be
scaled horizontally. The data layer also consists of
multiple database servers installed across VMs.

A Novel Weight-assignment Load Balancing Algorithm for Cloud Applications

89

Figure 2: Proposed Overall Layered Architecture in a Sin-
gle Data Center.

6.3 Design and Deployment
Architecture

A good load balancing algorithm should reduce re-
sponse time, increase throughput and improve util-
isation of resources while enhancing system perfor-
mance. Furthermore, a suitable load balancing tech-
nique should consider different metrics to make it rel-
evant for applications whose size and needs may in-
crease suddenly, leading to the use of more resources
(Kumar and Kumar, 2019).

The issues and limitations discussed in section
2 highlights areas that need improvement in a load
balancing algorithm. We discuss relevant techniques
used in our architecture that mitigate these issues as
follows:

• Scalability: Ability of a load balancer (or al-
gorithm) to perform load balancing with any fi-
nite number of nodes (Kansal and Chana, 2012).
Our proposed architecture is scalable because our
load balancing algorithm is built on a proven load
balancing system – HAProxy 2.4.2-1 (HAProxy,
2021). We have also tested our solution using
a varied number of heterogeneous VMs ranging
from one to eight VMs to test scalability. Our so-
lution has proven to load balance workload with
finite number of nodes.

• Fault Tolerance: Ability of a load balancer to
continue to deliver services despite failure (Shah
et al., 2017) of a load balancer or a server. We mit-

igate the issue of single point of failure by creating
multiple load balancing front-ends and a standby
application server, as shown in Figure 2. Our ap-
proach uses the high availability keep alive tech-
nology of HAProxy to monitor the services and
automatically switch over to a standby server. To
make the load balancer fault-tolerant, we create a
floating IP that can be moved between load bal-
ancers; if the primary load balancer goes down,
the floating IP moves to the second load balancer
automatically, allowing service to continue.

• Reduced Overhead and Latency: Overhead refers
to the extra time taken by a load balancer when
distributing workload, which increases communi-
cation cost (Zomaya and Teh, 2001; Shah et al.,
2017). The extra overhead generated by our
algorithm is negligible because it uses a de-
centralised approach to collect and maintain the
server’s metrics, as recommended by (Zomaya
and Teh, 2001). Our architecture includes VMs
with glances (Hennion, 2021) agents installed on
each of them. It uses the RESTful Application
Programming Interface (API) of glances to cap-
ture server metrics that serves as inputs to our load
balancing service. To calibrate performance indi-
cator, these agents also send server metrics to In-
fluxDB — a time series database.

• Server Metrics: Ability of a load balancing algo-
rithm to make use of relevant server metrics in
deciding how to balance the workload of an ap-
plication (Chen et al., 2017). Our algorithm com-
bines carefully selected key server metrics that de-
termine a server load as evidenced in these studies
(Grozev and Buyya, 2014b; Tychalas and Karatza,
2020; Wang and Casale, 2014; Sahu et al., 2013).
We argue that aside from the common metrics
of CPU, and Memory utilisation, network band-
width utilisation and Thread Count are vital server
metrics because they determine how efficient data
is transmitted in and out of a system; and sum-
marises the number of concurrent requests hap-
pening in the server at a particular time respec-
tively. These metrics help us to understand what
the general load of a server looks like from a re-
quest level, and the amount of load on the server
when running multiple threads.

7 PROPOSED LOAD BALANCING
SERVICE

This section describes our novel weight assignment
technique and load balancing algorithm.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

90

7.1 Proposed Weighting Technique

The weighting technique for our novel load balancing
algorithm improves the research of (Chen et al., 2018)
and (Chen et al., 2017). We made use of four of our
proposed metrics in the weighting calculation, while
we used the fifth metric in the proposed algorithm.

To compute the weight of a VM, W (Xk), we first
calculated its real-time load, Lr(Xk), in equation (1),
using the following server metrics. Mk represents
Memory utilisation, Bk represents Bandwidth utili-
sation, Ck represents CPU utilisation, Tk represents
Thread Count and NBk represents Transmission Con-
trol Protocol (TCP) network buffer/queues. These pa-
rameters are derived as percentages and must be con-
verted to integer values by dividing it by 100.

Lr(Xk) = (e1 ∗ (Ck/100))+(e2 ∗ (Mk/100))+
(e3 ∗ (Bk/100))+(e4 ∗ (Tk/100))

(1)

To acknowledge the different influences of each
metric factor on a VM, we introduce a weight factor
to the metrics used in equation (1). e1,e2,e3,e4 rep-
resents weight of CPU, RAM, bandwidth, and thread
count respectively. The sum of them is 1.

We carefully chose experimental proven values
for each of the weight factors. We fitted these data
in experiments, and they represent best fit values
of the different influence of our chosen server met-
rics of an application server for a three-tier web-
based business application. The values chosen are
w = 0.5,0.3,0.15,0.05 for CPU, RAM, bandwidth,
and thread count respectively. CPU utilisation has
the highest weight factor because our class of ap-
plication is processor intensive. Memory utilisation
has the next highest weight factor because it makes
the VM become quickly unresponsive when being
heavily used, even when other metrics are not fully
utilised.

We did not include network buffer in equation (1),
and as a result; we did not assign a weight factor to
it. This is because this factor is used as a check of
network utilisation/availability or how busy the net-
work is at any particular time, and its influence on a
server is constant. However, we use network buffer in
our load balancing algorithm to continuously monitor
available network availability when calculating real-
time load.

We define the average value of all available appli-
cation server VM load as a threshold for load compar-
ison; this is represented in equation (2), where n rep-
resents the number of all available application server
VMs.

Lrth =
∑Lr(Xk)

n
(2)

We further improved and analysed our weight cal-
culation as follows: if Lr(Xk) ≤ Lrth, this shows that
the application server VM’s load is relatively small,
so we should increase its weight. If it is the opposite,
we decrease the weight. Therefore, we define a mod-
ification parameter δ as shown in equation (3) using
the weighted averages.

δ =
Lr(Xk)

∑Lr(Xk)
(3)

The least utilised application server VM will re-
turn the lowest real time load, but our load balancer,
HAProxy, functions by appropriating a bigger weight
value to the least utilised VM in a set of VMs. So to
achieve this, we computed the inverse of the real-time
load, Lr(Xk), in equation (4). Doing this will make the
least utilised VM’s real load time to have the biggest
value.

Finally, because the weight used by HAProxy is
bounded for real integer values, the weight must be
a whole number; otherwise it will not be consistent
with the original intention. Our algorithm implemen-
tation rounds up any decimal value that is greater than
eight to make the value an integer. We represent the
complete weight equation in (4).

W (Xk) =

{
(1

Lr(Xk)
+δ),Lr(Xk)≤ Lrth

(1
Lr(Xk)

−δ),Lr(Xk)≥ Lrth
(4)

7.2 Proposed Load Balancing
Algorithm

Our proposed novel algorithm, Algorithm 1 abstracts
the overall flow of the weighting and load balancing
algorithm. It defines a hybrid—dynamic load bal-
ancing algorithm; it computes the utilisation of each
server every two seconds and then assigns a weight
to each server during run-time using our proposed
weighting technique. The input parameters of the al-
gorithm are:

• T hc—CPU threshold;

• T hr—RAM threshold;

• T hbw—Bandwidth threshold;

• T htr—Thread count threshold;

• V Mas—list of currently deployed application
server VMs;

As the first step in the algorithm, we receive and set
the overall threshold for the input parameters. We ex-
perimentally set values of 80%,80%,80%,85% for
CPU, RAM, Bandwidth, and Thread count respec-
tively, by performing a profiling tests on one medium

A Novel Weight-assignment Load Balancing Algorithm for Cloud Applications

91

application server VM using synthetic workload gen-
erated according to real requests. We used a pre-
defined SLA of 90% requests should be replied within
one second as recommended by (Qu et al., 2017) to
determine the average utilisation percentage.

To simplify our algorithm, we extracted the logic
for checking TCP network buffer NBk in a separate
function called TCPBufferOverloaded(). This func-
tion uses the netstat command to check if there is a
TCP socket for which any of the ratios of the buffer
sizes, Recv-Q and Send-Q values are greater than 0.9.
A ratio greater or equal to 1 mean the network buffer
is overloaded and requests will not arrive promptly at
that VM.

For each of the VM, we retrieved the utilisation
values of our chosen VM metrics. In line 2, our
algorithm loops through a list of available applica-
tion server VMs and compares each utilisation met-
ric against the set threshold for the current VM. Af-
ter that, it computes the weight as defined in equation
(4) and checks the TCP network buffer NBk of each
application server VM. It assigns a weight to each
VM whose TCP network buffer is not overloaded as
shown in line 9; otherwise, if the VM is fully utilised
(100%), it assigns a weight of 0 to the VM as shown
in line 11 so that the VM does not accept any more in-
coming request until the utilisation is lower or equal
to the set threshold.

Finally, requests were distributed to each server in
turns in line 14, according to their weights. This dis-
tributes server load proportionally based on a VM’s
real-time capacity.

8 EXPERIMENTAL TEST-BED

We illustrate our experimental test-bed in Figure 3. It
consists of twelve heterogeneous VMs as described in
Table 1.

We deployed Apache Jmeter; a workload simula-
tor, on an external machine. We deployed HAProxy
server along with our load balancing service on two
VM instances. We launched five medium VM in-
stances of application servers and four large instances
of database server.

8.1 Case Study Application

Our case study application is a stateless, three-tier,
open source multi-tenant E-commerce application
used to buy and sell various products on the Inter-
net. It is built using Orchard Core framework cou-
pled with Elastic search for implementing its search
engine. The application is supported by MySQL

Algorithm 1: Novel Load Balancing Algorithm.

Input: si, T hc, T hr, T hbw, T htr, V Mas
1 RetrieveAllocateToInputThresholdValues

();
2 for each VM, vmi ∈V Mas do
3 Utlcpu← CPU utilisation of vmi;
4 Utlram← RAM utilisation of vmi;
5 Utlbw← Bandwidth utilisation of vmi;
6 UtlT hreadCount← Threadcount of vmi;
7 if (Utlcpu ¡ T hc & Utlram ¡ T hr & Utlbw ¡

T hbw & UtlT hreadCount ¡ T htr &
!TCPBufferOverloaded ()) then

8 W (Xk)←
CalculateWeightbyutilisation
(Utlcpu, Utlram, Utlbw,
UtlT hreadCount, V Mas, vmi);

9 assignweighttoVM (vmi,W (Xk));
10 else
11 assignweighttoVM (vmi,0);
12 end
13 end
14 HAProxyAssignRequest (si,V M)

Table 1: VM Capacity.

m1.medium m1.large
VCPUs 4 8
RAM 4GB 8GB

Disk Size 40GB 80GB

database. Because this research does not consider
data deployment, we focused on the application tier.

8.2 Workload

To simulate realistic user requests and location, we
hosted JMeter on a non-cloud machine. First, we pro-
file our application instance to determine the amount
of requests that can be successfully handled within
one second. Second, we profile our application in-
stance again to determine the amount of requests that
can be handled, if our SLA stipulates that 90% of re-
quests must be handled within one second, this SLA
mechanism was recommended by (Qu et al., 2017).

Figure 3: Experimental Test-Bed.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

92

An average combination of the two profile showed
that our application server instance can handle 90 re-
quests per second. Based on this profiling, we cre-
ated our workload to emulate a Poisson distribution
because of the nature of user request arrival, as indi-
cated by (Chlebus and Brazier, 2007). We used Jmeter
to send requests to our deployed application using our
workload model. We repeated each experiments three
times and took the average of the repeated tests in all
our evaluations.

8.3 Baseline Application and Evaluation

To test the performance of our solution, we compared
our approach with our baseline algorithm by (Grozev
and Buyya, 2014b) and a standard load balancing
(round-robin) algorithm. Our evaluation sought to
characterise prominent load balancing performance
parameters, namely response times and throughput
(Zomaya and Teh, 2001; Shah et al., 2017).

9 PERFORMANCE ANALYSIS
AND RESULTS

In this section, we analyse and compare the perfor-
mance offered by our algorithm and the benchmarks.

9.1 Performance under Resource
Failures

We first validated our algorithm to determine if it will
effectively distribute requests by first simulating over
utilized VMs as depicted in Figure 4. Our algorithm
assigned correctly a weight of 0 to overutilised VMs
and then distributed load across available VM based
on their assigned weight.

To test fault tolerance and scalability, we per-
formed tests in resource failure situations. In these ex-
periments, we remove some VMs from the available
VMs at 300ms time point. This process creates hard-
ware failure. We added the VMs back to the available
VM pool after five seconds to emulate recovery from
failure.

We compared the performance of our algorithm
with the benchmark algorithms. The baseline algo-
rithm by (Grozev and Buyya, 2014b) suffered per-
formance degradation, with very high response times,
such that the percentage of requests it could handle
declined. By the time the number of hardware fail-
ures increased to three, the algorithm’s performance
could only attend to 85% of requests within one sec-
ond, which is less than the SLA of 90% of requests

Figure 4: Overutilised VM.

to be completed within one second. The round-robin
algorithm performed worst, because the amount of re-
quests handled were much less than the SLA in all
three scenarios of server failures. Figures 5a, 5b, and
5c depicts the performances of each of the algorithms
during the three different server failures. Our algo-
rithm did not violate the SLA, and it maintained low
failed requests as Figure 6. These result proved that
our algorithm can distribute requests effectively even
during server failures.

9.2 Performance under Flash Crowds

We tested the performance of our algorithm when the
application experiences flash crowds. First, we satu-
rated three VMs to make them 100% utilised for a pe-
riod of five seconds. Our algorithm consistently dis-
tributed the requests, maintained SLA and the average
response time was kept low and became lower by the
time the auto-scaler provisioned a new VM. The base-
line algorithm by (Grozev and Buyya, 2014b) could
not evenly distribute requests and had more failed re-
quests within four seconds of the flash crowd. The
round-robin algorithm became unresponsive because
it had a queue of requests trying to access the appli-
cation servers.

Secondly, we emulated flash crowds by updating
our workload to exponentially increase requests for a
period of 300ms every five seconds within 1 minute.
The peaks of the flash crowd range from 110% to
190% of the normal workload. Our algorithm still
performed better than the other two algorithms as dis-
played in Figures 7a, 7b, and 7c. Requests were
distributed without violating SLA unlike the bench-
mark algorithms, they violated SLA by the time flash
crowds exceed 130% of the normal load. This con-
firms our algorithm can accommodate changing user
requests while maintaining the defined SLA. This fur-
ther validates our choice of carefully selected server
metrics, because the awareness of these metrics im-
proves the accuracy of determining the capacity of
VMs handling these requests.

A Novel Weight-assignment Load Balancing Algorithm for Cloud Applications

93

(a) 1 Server Failure. (b) 2 Server Failures. (c) 3 Server Failures.

Figure 5: Cumulative Distribution Values of One Server Failure.

Figure 6: Failed Request Chart — Error Rates.

10 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a novel weight assignment
load balancing algorithm for web-based three-tier ap-
plications deployed on the cloud. This class of appli-
cation commonly suffer from overload due to sudden
flash crowds and resource failures. To address this
problem, our approach utilised five carefully selected
server metrics namely: thread count, CPU, RAM,
and network bandwidth utilisation. This approach ef-
fectively determines the real-time capacity of a VM,
thereby allowing an efficient distribution of load. Our
novel algorithm employed the server metrics to deter-
mine the weight of a VM, and the algorithm forms
part of a load balancing service (HAProxy and auto-
scaler) to properly distribute load among virtual ma-
chines. In addition, we adopted a highly available de-
ployment architecture to overcome challenges com-
mon with load balancing architectures such as sin-
gle point of failure, reliability, and scalability. Fur-
thermore, we deployed our load balancing service on
the same data centre to enable quick adaptation to
changes in the system.

We implemented and evaluated our novel algo-

rithm on a private cloud data centre running Open-
Stack. First, we validated our novel algorithm by
comparing it to a baseline load balancing algorithm
(Grozev and Buyya, 2014a) and a standard algorithm
(round-robin). Second, we sent varied user requests
using a workload pattern in Jmeter, to deployed appli-
cations and carefully measured widely accepted per-
formance parameters – response time and throughput.
The obtained results showed that our approach is able
to distribute the workload of our chosen class of ap-
plication while maintaining a widely accepted SLA
of 90% of requests to be completed within one sec-
ond. The response times were improved by 5.66%
and 15.15% compared to the baseline algorithm and
round-robin algorithm in flash crowd scenarios.

As future work, we will improve on some limit-
ing factors of this research. We aim to implement our
novel algorithm on one or more public cloud, so that
we can compare and validate the performance of the
algorithm in different clouds. Furthermore, we will
extend our load balancing algorithm to improve re-
source allocation in multi-cloud deployment of web
applications.

ACKNOWLEDGEMENTS

We thank Daniel MacDonald, for helping us to install,
and commission our private cloud environment.

REFERENCES

Amazon (2021). Aws serverless multi-tier architectures
with amazon api gateway and aws lambda aws
whitepaper.

Ari, I., Hong, B., Miller, E. L., Brandt, S. A., and Long,
D. D. (2003). Managing flash crowds on the internet.
In 11th IEEE/ACM International Symposium on Mod-
eling, Analysis and Simulation of Computer Telecom-
munications Systems, 2003. MASCOTS 2003., pages
246–249. IEEE.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

94

(a) 135 req/s flash crowd. (b) 188 req/s flash crowd. (c) 240 req/s flash crowd.

Figure 7: Cumulative Distribution of Flash Crowd.

Chen, S.-L., Chen, Y.-Y., and Kuo, S.-H. (2017). Clb: A
novel load balancing architecture and algorithm for
cloud services. Computers & Electrical Engineering,
58:154–160.

Chen, Z., Zhang, H., Yan, J., and Zhang, Y. (2018). Imple-
mentation and research of load balancing service on
cloud computing platform in ipv6 network environ-
ment. In Proceedings of the 2nd International Con-
ference on Telecommunications and Communication
Engineering, pages 220–224.

Chlebus, E. and Brazier, J. (2007). Nonstationary poisson
modeling of web browsing session arrivals. Informa-
tion Processing Letters, 102(5):187–190.

Cruz, E. H., Diener, M., Pilla, L. L., and Navaux, P. O.
(2019). Eagermap: A task mapping algorithm to im-
prove communication and load balancing in clusters
of multicore systems. ACM Transactions on Parallel
Computing (TOPC), 5(4):1–24.

Devi, D. C. and Uthariaraj, V. R. (2016). Load balanc-
ing in cloud computing environment using improved
weighted round robin algorithm for nonpreemptive
dependent tasks. The scientific world journal, 2016.

Elgedawy, I. (2015). Sultan: A composite data consistency
approach for saas multi-cloud deployment. In 2015
IEEE/ACM 8th International Conference on Utility
and Cloud Computing (UCC), pages 122–131.

Grozev, N. and Buyya, R. (2014a). Inter-cloud architectures
and application brokering: taxonomy and survey. Soft-
ware: Practice and Experience, 44(3):369–390.

Grozev, N. and Buyya, R. (2014b). Multi-cloud provision-
ing and load distribution for three-tier applications.
ACM Trans. Auton. Adapt. Syst., 9(3):13:1–13:21.

HAProxy (2021). Haproxy technologies — the world
fastest and most widely use load balancing solution.

Hellemans, T., Bodas, T., and Van Houdt, B. (2019). Perfor-
mance analysis of workload dependent load balancing
policies. Proceedings of the ACM on Measurement
and Analysis of Computing Systems, 3(2):1–35.

Hennion, N. (2021). Glances an eye on your system. a
top/htop alternative for gnu/linux, bsd, mac os and
windows operating systems.

Kang, S., Veeravalli, B., and Mi Aung, K. M. (2014).
Scheduling multiple divisible loads in a multi-cloud
system. In 2014 IEEE/ACM 7th International Confer-
ence on Utility and Cloud Computing, pages 371–378.

Kansal, N. J. and Chana, I. (2012). Cloud load balancing
techniques: A step towards green computing. IJCSI
International Journal of Computer Science Issues,
9(1):238–246.

Kumar, P. and Kumar, R. (2019). Issues and challenges
of load balancing techniques in cloud computing: A
survey. ACM Computing Surveys (CSUR), 51(6):1–
35.

Le, Q., Zhanikeev, M., and Tanaka, Y. (2007). Methods
of distinguishing flash crowds from spoofed dos at-
tacks. In 2007 Next Generation Internet Networks,
pages 167–173. IEEE.

Prathiba, S. and Sowvarnica, S. (2017). Survey of failures
and fault tolerance in cloud. In 2017 2nd International
Conference on Computing and Communications Tech-
nologies (ICCCT), pages 169–172. IEEE.

Priyadarsini, R. J. and Arockiam, L. (2013). Failure man-
agement in cloud: An overview. International Journal
of Advanced Research in Computer and Communica-
tion Engineering, 2(10):2278–1021.

Qu, C., Calheiros, R. N., and Buyya, R. (2017). Mitigating
impact of short-term overload on multi-cloud web ap-
plications through geographical load balancing. con-
currency and computation: practice and experience,
29(12):e4126.

Sahu, Y., Pateriya, R., and Gupta, R. K. (2013). Cloud
server optimization with load balancing and green
computing techniques using dynamic compare and
balance algorithm. In 2013 5th International Confer-
ence and Computational Intelligence and Communi-
cation Networks, pages 527–531.

Shafiq, D. A., Jhanjhi, N. Z., Abdullah, A., and Alzain,
M. A. (2021). A load balancing algorithm for the
data centres to optimize cloud computing applica-
tions. IEEE Access, 9:41731–41744.

Shah, J. M., Kotecha, K., Pandya, S., Choksi, D., and
Joshi, N. (2017). Load balancing in cloud comput-
ing: Methodological survey on different types of al-
gorithm. In 2017 International Conference on Trends
in Electronics and Informatics (ICEI), pages 100–107.
IEEE.

Tychalas, D. and Karatza, H. (2020). An advanced weighted
round robin scheduling algorithm. In 24th Pan-
Hellenic Conference on Informatics, pages 188–191.

Wang, W. and Casale, G. (2014). Evaluating weighted
round robin load balancing for cloud web services. In

A Novel Weight-assignment Load Balancing Algorithm for Cloud Applications

95

2014 16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing, pages
393–400. IEEE.

Zeng, J. and Plale, B. (2014). Multi-tenant fair share in
nosql data stores. In 2014 IEEE International Confer-
ence on Cluster Computing (CLUSTER), pages 176–
184. IEEE.

Zhang, H., Zhang, J., Bai, W., Chen, K., and Chowdhury,
M. (2017). Resilient datacenter load balancing in
the wild. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication,
pages 253–266.

Zomaya, A. Y. and Teh, Y.-H. (2001). Observations on
using genetic algorithms for dynamic load-balancing.
IEEE transactions on parallel and distributed sys-
tems, 12(9):899–911.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

96

