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In the machine learning field, there are many classification algorithms. Each algorithm performs better in

certain scenarios, which are very difficult to define. There is also the concept of grouping multiple classifiers,
known as ensembles, which aim to increase the model generalization capacity. Comparing multiple models
is costly, as, for certain cases, training classifiers can take a long time. In the literature, many aspects of the
data have already been studied to help in the task of classifier selection, such as measures of diversity among
classifiers that form an ensemble, data complexity measures, among others. In this context, the main objective
of this work is to analyze class imbalance and how this measure can be used to guide the selection of classifiers.
We also compare the model’s performances when using class balancing techniques such as oversampling and

undersampling.

1 INTRODUCTION

Machine Learning (ML) (Bishop, 2006) is a field of
study in the field of artificial intelligence. Among
others, ML is used to deal with classification prob-
lems (Hart et al., 2000). From a supervised point of
view, such a problem consists of finding a model or a
function that can identify patterns and describe differ-
ent classes of data. Therefore, the purpose of classifi-
cation is to label new examples by applying the model
or learned function. This model is based on a set of
features extracted from available data.

There are several techniques proposed in the
literature. Support Vector Machines (SVM) (Stein-
wart and Christmann, 2008), Decision Trees
(DT) (Quinlan, 1986), Artificial neural networks
(ANNSs) (Haykin and Network, 2004), Fuzzy Rules
Based Classification Systems (Ishibuchi et al., 2004)
are examples of well-known classification algo-
rithms. Each approach is more suitable for a specific
classification problem, that is, one classification
algorithm may not effectively and/or efficiently
recognize some patterns in complex datasets, while
another may perform optimally for the same task.

To obtain better performance, classification en-
sembles were proposed, combining several classifiers
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to improve the model’s generalization and, conse-
quently, to develop more efficient models for identi-
fying data classes. Several types of ensemble (Opitz
and Maclin, 1999a) generation can be generalized
in techniques such as Bagging, Boosting and Stack-
ing (Quinlan et al., 1996), among others.

Selecting a specific solution to deal with a classi-
fication problem is a complicated task, considering a
large number of algorithms and proposed techniques
available in the literature. Each problem can have its
ideal classification algorithm. Running them all and
adjusting their hyperparameters is not a good idea, as
the amount of time and resources will be prohibitive
if the training data is high.

It is noteworthy that the best performance of the
ensembles is not guaranteed and obtained in all types
of data. In many cases, the ensemble’s efforts are not
justified since models are even worse than the base
models in some situations. A deeper analysis of this
issue is essential, given the wide use of classifiers in
society, becoming more critical every year.

Researchers have analyzed the ensemble’s perfor-
mance from the point of view of distinct aspects: the
diversity among classifiers, the complexity of the data
sets, and the unbalance of data (Garcia et al., 2021).
They could not see a strong relationship between the
ensemble’s performance and these aspects. However,
in cases where there was an advantage in using en-
sembles, data were imbalanced above the average.

Classification models can be used in a variety
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of scenarios, such as bankruptcy prediction (Bar-
boza et al., 2017), discovering diseases such as
cancer (Kourou et al., 2015), and flood predic-
tion (Mosavi et al., 2018). Given the significant diffi-
culty in selecting an algorithm based on data or classi-
fier characteristics and the lack of studies that address
this issue, the present paper aims to analyze the sce-
narios in which ensembles perform better than base
classifiers, specifically from the perspective of imbal-
ance. The degree of imbalance in the datasets is dras-
tically different, making it possible to analyze behav-
ior effectively. Some specific goals are considered:
(1) analyze the performance of the best base classifiers
versus the ensemble, comparing their performance us-
ing different metrics, mainly F1-Score, and (ii) com-
pare the performance of classifiers at different degrees
of imbalance, using balancing techniques such as un-
der and oversampling.

This paper is organized as follows. The theoret-
ical part is presented in Section 2. Section 3 intro-
duce the related works. After that, the methodology
is presented in Section 4. The obtained results are
discussed in Section 5. Finally, in Section 6, the con-
clusions are stated.

2 THEORETICAL BACKGROUND

The development of ML techniques was based on the
idea that systems can learn from data, identifying pat-
terns that can eventually be used for decision making
with low human intervention. In other words, classi-
fication refers to the scenario in which an algorithm
predicts a class based on a set of labeled data. Sev-
eral algorithms aim to classify specific data, whether
supervised or not. Each algorithm will thrive in dif-
ferent scenarios, making it variable which algorithm
will have the best performance for a given dataset.

2.1 Data Imbalance

A dataset is imbalanced when one class label has
many more examples than another (Japkowicz and
Stephen, 2002). Class imbalance is an essential factor
as it is found in many fields. For instance, regarding
the problem of detecting bank fraud, only a minority
of transactions presents fraud. The presence of imbal-
ance has a significant impact on the classifier perfor-
mance (Japkowicz, 2000). Considering that the algo-
rithm aims to recognize patterns to perform the clas-
sification activity, few examples of a particular class
make the algorithm not learn its nuances. Further-
more, statistically, it is a tendency that the generated
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model classifies a minority class as the majority class,
simply due to the large distribution variation.

There are a few ways to mitigate the data imbal-
ance problem, the most common being over and un-
dersampling (Yap et al., 2014). The first technique,
oversampling, consists of adding cases to the minor-
ity classes by replicating existing data. On the other
hand, the undersampling technique eliminates cases
from the majority classes. The instances are cho-
sen randomly, and the process stops when all classes
reach the same number of examples. It is important to
indicate that the degree of balance is arbitrary: there
is no need for equal distribution, e.g., 50% of balance
considering two classes. Therefore, such techniques
guarantee a degree of flexibility in experimentation.

Several problems are arising from such balancing
techniques. One of them is modifying the natural dis-
tribution of events. When we balance bank transac-
tions, we present data to the learning algorithm with
a higher proportion of fraud. Furthermore, in the case
of undersampling, a significant portion of cases can
be lost, negatively impacting the classifier. In the case
of oversampling, data duplication can generate the
phenomenon known as overfitting (Hawkins, 2004),
where the algorithm presents excellent results in train-
ing but bad results in real scenarios since the data is
no longer representative.

2.2 Classifiers

A supervised machine learning classifier aims to rec-
ognize patterns in labeled data fitting a classification
function or model. Several types of classifiers vary
in many factors, such as functioning, type, and inter-
pretability (Polat et al., 2008).

There is also the possibility of combining dif-
ferent classifiers, which we commonly call ensem-
bles (Dietterich et al., 2002). They are meta-
classifiers that combine multiple algorithms or clas-
sification schemas (Opitz and Maclin, 1999b). This
combination makes ensemble methods have a bet-
ter capacity for generalization. There are several
ways to combine classifiers. In the present study,
we use Stacking (Merz, 1999), Boosting (Schapire,
2013), Bagging (Ahmad et al., 2018), and Vot-
ing (Saqlain et al., 2019) techniques. In our exper-
iments, these ensembles have used the following al-
gorithms as base classifiers: Naive Bayes (Zhang,
2005), Logistic Regression (Dong et al., 2016), Sup-
port Vector Machines (Bhavan et al., 2019), K-
Nearest Neighbors (Muliono et al., 2020), and Deci-
sion Trees (Myles et al., 2004).
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Table 1: Confusion matrix example. N represents the num-
ber of instances inside the predictive model during their
avaliation, it’s the sum of all classification possibilities.

Actual / Predicted Positive  Negative
Positive TP FN
Negative FP TN

N=TP+ TN +FN + FP

2.3 Evaluation of Predictive Models

An essential step in the generation of predictive mod-
els is their evaluation. The evaluation metrics summa-
rize the model’s predictive power and provide a basis
for comparison when new models are generated. It is
widespread to generate several models before defin-
ing the final model. There are many hyperparameters
and possible data processing tasks to be varied, and
each combination generates a model to be compared.
Furthermore, in the case of interpretable models, it
may be found that some features do not help in pre-
dicting a particular phenomenon.

The most common metrics used in the evaluation
of machine learning models use a matrix organiza-
tion known as Confusion Matrix (CM) (Visa et al.,
2011), which provides a summarized view of the per-
formance of the predictive model on a case-by-case
basis. That is, the possible scenarios related to a pre-
diction are counted. The first is the case of the hit,
known as True positive (TP). The opposite scenario is
the other possible correct prediction, known as True
Negative (TN). The other two cases are about errors:
False Positives (FP) and False Negatives. Table 1 pro-
vides a more visual way to make the confusion matrix
easier to understand.

Accuracy is the most common metric used in the Ma-

chine Learning field. It is the proportion of correct

predictions (TP, TN) and the total instances used in

evaluating the model, defined by the equation 1.
TP+TN

Accuracy = N @))

Precision is a predictive model evaluation metric that
aims to answer the following question: What propor-
tion of cases classified as positive is positive? The
equation 2 defines the Precision.
TP

T 2)
TP+FP

Recall is usually used in conjunction with Precision,
as it aims to answer a question that is also relevant in
the analysis of the performance of predictive models:

which proportion of the positive cases was correctly
classified? Equation 3 defines the Recall.

TP
Recall = —— 3)
TP+FN

Precision =
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F1-Score is the harmonic mean between Accuracy
and Recall, and is defined by equation 4. When gener-
ating predictive models that use unbalanced datasets
as a basis, F1 is very powerful: it is possible to
summarize the model’s performance between classes,
with minority classes having a significant impact on
the final result.

Fl-Score — 2 x Prec.is.ion * Recall @)
Precision + Recall

Area Under the ROC Curve (AUC) is an evaluation
metric very good in generalizing results also in unbal-
anced scenarios. Obtaining them, however, is consid-
erably more complex than the other measures. The
curve that delimits its area is called the Receiver Op-
erating Characteristic (ROC) (Hoo et al., 2017). Such
a curve is constructed with the possible combinations
between the proportion of True Positives and False
Positives, defined through different decision thresh-
olds.

When machine learning models are built, valida-

tion is required, mainly due to the possibility that
training was ineffective or the scenario that datasets
are not representative. It is common to use validation
methods to ensure that the model has been trained and
tested in different scopes of data, observing how it be-
haves.
Cross-validation is a sampling method used to evalu-
ate machine learning models on a limited dataset. The
method takes a parameter that indicates the number
of partitions. Each partition will be used as the val-
idation set and the remaining folds to train a distinct
model. The performance of all models is averaged. It
is important to note that the partitions are stratified,
as this reduces bias and variance compared to non-
stratified models, as pointed out by (Kohavi, 1995).

3 RELATED WORK

Considering the number of resources spent searching
for the ideal machine learning model, a deeper study
is essential on how specific characteristics can help us
reduce the number of possibilities.

In the work of (Thabtah et al., 2020), different sets
of data with different degrees of imbalance were an-
alyzed. For the analysis, Recall, Precision, and Ac-
curacy asymmetries were observed for each scenario.
Authors also tested balancing techniques such as
SMOTE (Chawla et al., 2002), which generates new
synthetic data using the K-Nearest Neighbors (KNN)
algorithm. Five different datasets were used to con-
duct the study, named Cleveland, Credit-German, Di-
abetes, and Hepatitis. The largest is Credit-German,



with 1,000 instances and 20 features. The smallest
is Hepatitis, with 155 instances and 19 features. The
degree of imbalance varies for all datasets, reaching
9:1. During training, 10-fold cross-validation was
performed, and the balance was changed to 1:1. The
authors concluded that the fundamental behavior of
the algorithm was to maximize the accuracy of the
model. Furthermore, although the highest accuracy
is concentrated in high imbalance experiments, these
are biased and are not good classifiers.

In the work of (Oreski and Oreski, 2014), the per-
formance of different classifiers on different datasets
was analyzed. The SMOTE synthetic data gener-
ation technique was applied for each dataset. The
classification algorithms employed were Neural Net-
works (Hagan et al.,, 1997), Support Vector Ma-
chines (Hearst et al., 1998), Repeated Incremental
Pruning to Produce ErrorReduction (RIPPER) (Park
and Bae, 2015), and Naive Bayes (Zhang, 2005).
Thirty different datasets were used, all obtained
through the platform Knowledge Extraction based on
Evolutionary Learning (KEEL) (Alcald-Fdez et al.,
2009). The proportion of instances in the majority
and minority classes ranges from 9:1 to 41:1. The
number of instances ranges from 92 to 1829. To eval-
uate the results, a paired t-test (Hsu and Lachenbruch,
2014) as well as a Wilcoxon signed-rank test (Ben-
nett, 1964) ware performed. Cross-validation was not
used, and the hyperparameters of the classifiers were
not fine-tuned. As a result, it was possible to observe
a decrease in the performance of the algorithms after
applying the SMOTE data balancing technique for the
Naive Bayes algorithm. In contrast, a considerable
increase was observed for the other classifiers when
analyzing the AUC metric. However, when analyz-
ing accuracy, the SMOTE technique did not positively
contribute to the data sets’ performance: the classi-
fiers showed better performance when applied to the
original, unbalanced data.

4 METHODOLOGY

In this section, the methodology adopted in this study
is presented. We describe the datasets used and their
particularities. The learning process that was per-
formed for each algorithm and dataset and the the best
hyperparameters for each model are detailed.

4.1 Datasets

To establish a solid basis for the present experiment,
15 datasets with different levels of unbalance, several
instances, and several characteristics were selected.
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Table 2: Description of the datasets used in the study.

ID Name #Inst #Feat #Prop
Eco ecoli 336 7 8.6:1
Sat satimage 6435 36 9.3:1
Aba abalone 4177 10 9.7:1
Sic sick_euthyroid 3163 42 9.8:1
Usc us_crime 1994 100 12:1
Yeal8 yeast-ml8 2417 103 13:1
Lib libras_move 360 90 14:1
Arr arrhytmia 452 278 17:1
Sol solar_flarem0 1389 32 19:1
Oil oil 937 49 22:1
Car car_eval 4 1728 21 26:1
Yea2 yeast_me?2 1484 8 28:1

Wine  wine_quality 4898 11 26:1
Ozo ozone_level 2536 72 34:1
Abal9 abalone_19 4177 10  130:1

Table 2 presents all data referring to the datasets used.
The table columns indicate dataset name, the number
of instances (#Inst) and features (#Feat), and also the
proportion of the majority class to the minority class
(Prop.) used for ordering the datasets.

All data were obtained from the open-source li-
brary imblearn (Lemaitre et al., 2017). The selected
datasets were structured to provide a basis for perfor-
mance comparison, known as the term benchmark.
Therefore, it is possible to see that after processing
and formatting, a dataset generated more than one
benchmark dataset, which is the case of the Abalone.
In this study, the original dataset was used, as well as
a variation called Abalone_19, where the difference
between them was the formatting of the features to be
classified.

4.2 Selection of Machine Learning
Algorithms

Ten machine learning algorithms were selected. Five
are base classifiers, namely: Naive Bayes (NB)
(Zhang, 2005), Logistic Regression (LR) (Dong et al.,
2016), Support Vector Machines (SVM) (Bhavan
et al., 2019), K-Nearest Neighbors (Muliono et al.,
2020) (KNN), and Decision Trees (DT) (Myles et al.,
2004). The other five are ensembles: Stacking (Merz,
1999), Boosting (Schapire, 2013), Bagging (Ahmad
et al., 2018), and Voting (Saqlain et al., 2019). Each
algorithm has a drastically different operation.

The choice was made based on the assumption
that different algorithms are more likely to gener-
ate models that perform different predictions, as they
make decisions using different logic. Considering
that each dataset is distinct, the use of several al-
gorithms makes it more likely to generate at least
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one base classifier with good performance. Using
distinct base classification algorithms is also essen-
tial for building the Stacking because the diversity
among classifiers generates models with greater gen-
eralizability and better performance (Kuncheva and
Whitaker, 2003). The same logic was defined for the
Voting-based algorithm.

4.3 Experimental Setup

Each ML algorithm has customizable hyperparam-
eters, and they can impact the generated model in
several ways, such as the learning rate, complexity,
and weights for certain features. In our experiment
evaluation, several classifiers were used, each with
its specific hyperparameters. As there are many, the
technique known as Grid Search (Liashchynskyi and
Liashchynskyi, 2019) (GS) was used, which com-
bines all of them, generating N models. The num-
ber of distinct hyperparameter combinations defines
N. When searching for the hyperparameters, the func-
tion returns the model with the best performance con-
sidering an evaluation metric. Each generated model
was evaluated using Cross-Validation.

The best models fitted by the base classification
algorithms are compared using F1-Score since it re-
lates two very relevant metrics in unbalanced scenar-
ios: Precision and Recall. However, the other met-
rics presented in Section 2.3 are also generated for
further analysis. Then, the same process is applied to
the ensembles. Evaluation metrics are generated, and,
finally, the performance of the best ensemble is ana-
lyzed. Results are generated for each dataset, and in
the end, it is possible to compare the performance of
the best base classifier and the best ensemble.

To create the Stacking algorithm, we used the es-
timators obtained using the Grid Search in each base
algorithm used: LR, DT, SVM, and KNN. These are
then combined in the meta-classifier, which the best is
selected based on performance of the base classifiers.

Finally, we present the 15 unbalanced datasets se-
lected for this study in Table 2. Where ID is re-
lated with the identification of the dataset, used in the
obtained results, Name is the complete name of the
dataset, #Inst the number of instances, #Feat the num-
ber of features and #Prop the proportion of examples.

S RESULTS

In this section, we present the results and discuss
them. To do so, we provide them in Table 3, which
is divided into two parts. The first one presents the
results related to the base classifiers and the second
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to the ensemble. If an obtained value in the ensem-
ble part is superior to the base classifier, we highlight
it with boldface. Considering the structure of this ta-
ble, rows are related to the different datasets. We have
provided results considering the original datasets and
their versions where the undersample (_Under) and
oversample (_Over) were applied. Additionally, the
columns represent the different evaluation metrics for
the best-tuned model. The base model column shows
the acronym of the best base classification algorithm.
For F1, precision (Prec), and recall (Rec), we provide
the results per class (CO and C1) and its averaging
(Avg). The last two columns are related to the Area
Under the Curve (AUC) and Accuracy (Acc).

Our first analysis takes into account the accuracy.
It is necessary to highlight that the base classifiers are
already achieving high accuracy, therefore the usage
of an ensemble can not provide a significant perfor-
mance. Moreover, as mentioned before, consider the
accuracy for an unbalanced problem does not seem a
good alternative. For this reason, we are focusing on
averaging F1-Score as the general evaluation metric.

Up to this point, we analyze in which cases en-
semble outperformed the base classifier. Considering
all 15 datasets in their standard versions, i.e., without
applying over or undersampling, the ensembles per-
formed best considering averaging F1-Score in four
of them (26%): Oil, Sic, Spec, and Yea2. In the
oversampling scenario, this rate remained the same
(Abal9, Eco, Lib, and Yea2). Regarding undersam-
ple, ensembles were best in 8 datasets (53%): Aba,
Abal9, Oil, Ozo, Sat, Sic, Spec, and Win.

Although almost all experiments presented better
results using balancing techniques, the degree of im-
balance of the standard datasets did not show a corre-
lation with the improvement in F1-Score when apply-
ing these techniques. For instance, despite Aba_19 be-
ing the most imbalanced dataset (130:1), it reached a
smaller F1 gain when compared with its original ver-
sion, Abalone, which presents a distribution of 9.7:1.

It is important to note that the difference between
ensembles and base classifiers was insufficient to jus-
tify their use. Only two cases presented significant
differences after over or undersampling (Eco = 4.6%
and Ozo = 4.3%). Therefore, it is necessary to ana-
lyze whether few gains are essential for the applica-
tion field. Furthermore, even in the scenario in which
the ensemble overreach the best base classifier apply-
ing undersampling, it is necessary to verify in-depth
that there was no loss of information in removing in-
stances at random. Possibly, techniques that analyze
the distribution of data points can provide a basis of
study with less damage to data quality in some cases.

In a closer look at the averaging Recall, we have
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Table 3: Evaluation metrics performed in the 15 datasets considering over and undersampling.

Dataset Base Model FlAvg FICO FICI RecAvg RecCO RecCl Prec Avg PrecCO Prec Cl AUC Acc
Aba KNN 0482 0949 0014 0.503 0.907 0.100 0.502 0.996 0.008 0502 0.903
Aba_Over KNN 0.872  0.855  0.888 0.899 1.000  0.799 0.874 0.748 1.000  0.874 0.874
Aba_Under SVM 0.791  0.764  0.819 0.816  0.892 0.740 0.795 0.672 0918 0795 0.795
Aba_19 KNN 0498 0996  0.000 0496 0.992 0.000 0.500 1.000 0.000  0.500 0.992
Aba_19 Over KNN 0976 0976  0.977 0.977 1.000  0.954 0.976 0.952 1.000 0976 0.976
Aba_19_Under DT 0714 0.644  0.785 0.812 0933 0.690 0.742 0.542 0942 0.742 0.736
Arr DT 0.780 0976  0.584 0.808 0977 0.640 0.780 0.977 0.583  0.780 0.956
Arr_Over SVM 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Arr_Under DT 0.833  0.840 0.826 0.854 0900  0.808 0.842 0.817 0.867 0.842 0.840
Car SVM 0.990 0999  0.980 0.999  0.999 1.000 0.983 1.000 0.967 0.983 0.999
Car_Over SVM 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Car_Under NB 0.992 0992  0.992 0.993 1.000  0.986 0.993 0.986 1.000 0993 0.992
Eco KNN 0.802 0964  0.639 0.856 0958 0.753 0.793 0.970 0.617  0.793 0.934
Eco_Over DT 0.943 0940  0.947 0.949 0996  0.902 0.943 0.890 0.997 0943 0.943
Eco_Under KNN 0.925 0921  0.930 0.938 0975 0.902 0.925 0.883 0.967 0925 0.929
Lib LR 0.877  0.990  0.763 0.940  0.980  0.900 0.850 1.000 0.700  0.850 0.981
Lib_Over DT 0.994 0994  0.994 0.994 1.000  0.989 0.994 0.988 1.000  0.994 0.994
Lib_Under NB 0.832  0.807 0.857 0.850  0.783 0.917 0.867 0.867 0.867 0.867 0.850
Oil DT 0.700  0.976 0425 0742 0973 0.510 0.694 0.979 0410  0.694 0.954
Oil_Over SVM 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Oil_Under LR 0.836 0.834  0.839 0.847  0.827 0.867 0.840 0.855 0.825 0.840 0.842
Ozo DT 0.540 0981  0.099 0.557 0973 0.141 0.536 0.989 0.082 0536 0.963
0Ozo_Over SVM 1.000 1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000  1.000
Ozo_Under LR 0.761  0.756 17.357 0.785 0.833 0.738 0.764 0.711 0.818  0.764 0.768
Sat KNN 0.811 0966  0.655 0.840 0958 0.723 0.788 0.975 0.601  0.788 0.938
Sat_Over SVM 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Sat_Under KNN 0.870 0.859  0.881 0.882 0938 0.826 0.872 0.796 0.947  0.872 0871
Sic DT 0.921 0985  0.857 0.925 0.985 0.864 0.920 0.986 0.854 0920 0973
Sic_Over SVM 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Sic_Under DT 0.944 0943  0.944 0.946 0954 0938 0.943 0.935 0.952 0943 0.944
Sol NB 0.619 0964 0275 0.626  0.963 0.289 0.621 0.964 0.279  0.621 0.931
Sol_Over SVM 0925 0923  0.927 0.927 0950  0.903 0.925 0.898 0952 0925 0.925
Sol_Under SVM 0.754  0.736  0.773 0.777  0.826  0.727 0.760 0.679 0.840  0.760 0.758
Spec KNN 0.878 0983  0.774 0.972 0968 0.975 0.824 0.998 0.650  0.824  0.968
Spec_Under LR 0.910 0917  0.902 0.921 0.887 0.955 0913 0.960 0.865 0913 0911
Usc LR 0.743 0970 0516 0.834 0954 0715 0.700 0.986 0413 0.700 0.943
Usc_Over SVM 0.994 0994  0.994 0.994 1.000  0.989 0.994 0.989 1.000  0.994 0.994
Usc_Under NB 0.873  0.874  0.871 0.880  0.864  0.897 0.873 0.893 0.853 0.873 0.873
Win DT 0.570 0981  0.159 0.716 0966  0.467 0.547 0.996 0.099  0.547 0.962
Win_Over SVM 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
‘Win_Under LR 0.709 0.717  0.701 0.714  0.702 0.726 0.710 0.738 0.683  0.710 0.710
Yea2 DT 0.649 0981 0318 0.694 0975 0.413 0.630 0.987 0273 0.630 0.962
Yea2_Over KNN 0.946 0943  0.949 0.952 1.000  0.904 0.947 0.893 1.000  0.947 0.947
Yea2_Under SVM 0.831 0832 0.830 0.839 0833 0.845 0.833 0.840 0.827  0.833 0.832
Yeal8 NB 0496 0926  0.065 0.495 0.926  0.065 0.498 0.927 0.068  0.498 0.864
Yeal8_Over SVM 0.997 0997  0.997 0.997 1.000  0.995 0.997 0.995 1.000  0.997 0.997
Yeal8_Under KNN 0.578 0573 0.584 0.580  0.587 0.573 0.579 0.562 0.597  0.579  0.579
Mean - 0.833 0920 1.100 0.853 0.939 0.769 0.831 0.911 0.751  0.831 0917
Dataset Ei ble Model Fl1Avg FICO FICI RecAvg RecCO RecCl PrecAvg PrecCO PrecCl  AUC  Acc

Aba AdaBoost 0478 0951  0.005 0.503  0.907 0.100 0.501 1.000 0.003 0501 0.907
Aba Over AdaBoost 0.859 0843 0875 0.880 0964  0.795 0.861 0.750 0.972  0.861 0.861
Aba Under Random Forest 0.796  0.773  0.819 0.815 0.880  0.749 0.799 0.693 0.906  0.799 0.799
Aba_19 Random Forest 0498 0996  0.000 0.496  0.992 0.000 0.500 1.000 0.000  0.500 0.992
Aba_19_Over  AdaBoost 0.998 0998  0.998 0.998 1.000  0.995 0.998 0.995 1.000  0.998 0.998
Abal9 Under  Extra Trees 0735  0.682  0.787 0.828  0.927 0.730 0.763 0.608 0917  0.763 0.752
Arr AdaBoost 0.753 0977 0530 0.766  0.975 0.557 0.764 0.979 0.550  0.764 0.956
Arr_Over Random Forest 0.998 0998  0.998 0.998 1.000  0.995 0.998 0.995 1.000  0.998 0.998
Arr_Under AdaBoost 0.791  0.790  0.792 0.813 0.850  0.775 0.800 0.767 0.833  0.800 0.800
Car AdaBoost 0.954 0997 0911 0.997  0.994 1.000 0.921 1.000 0.843 0921 0.994
Car_Over AdaBoost 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Car_Under Random Forest 0.992 0992  0.992 0.993 1.000  0.986 0.993 0.986 1.000 0993 0.992
Eco AdaBoost 0.769 0957  0.581 0.826 0952 0.700 0.765 0.963 0.567  0.765 0.923
Eco_Over AdaBoost 0.983 0983  0.984 0.984 1.000  0.969 0.983 0.967 1.000  0.983 0.983
Eco_Under AdaBoost 0.899 0.899  0.899 0.904  0.892 0.917 0.904 0.917 0.892  0.904 0.900
Lib Random Forest 0.872 0987  0.757 0.987 0974 1.000 0.817 1.000 0.633  0.817 0975
Lib_Over Random Forest 1.000  1.000  1.000 1.000 1.000 1.000 1.000 1.000 1.000  1.000 1.000
Lib_Under Extra Trees 0.832  0.807 0.857 0.850  0.783 0.917 0.867 0.867 0.867  0.867 0.850
Oil AdaBoost 0.721 0980 0461 0.786 0973 0.600 0.689 0.988 0.390  0.689 0.962
Oil_Over AdaBoost 0.998 0998  0.998 0.998 1.000  0.996 0.998 0.996 1.000  0.998 0.998
Oil_Under AdaBoost 0.850 0.852  0.847 0.868  0.853 0.883 0.853 0.875 0.830 0.853 0.853
Ozo Random Forest 0493 0985  0.000 0486 0971 0.000 0.500 1.000 0.000 0500 0.971
0zo0_Over AdaBoost 0.997 0.997  0.997 0.997 1.000 0.994 0.997 0.993 1.000  0.997 0.997
0Ozo_Under Random Forest 0.796 0794  0.798 0.799  0.809 0.790 0.797 0.784 0.811  0.797 0.797
Sat AdaBoost 0.789 0964  0.613 0.838 0951 0.725 0.757 0.978 0.536  0.757 0.935
Sat_Over AdaBoost 0.942 0939  0.945 0.947  0.992 0.902 0.942 0.892 0.993 0942 0.942
Sat_Under Random Forest 0.872 0.865  0.880 0.879 0915 0.842 0.873 0.823 0.923  0.873 0.873
Sic AdaBoost 0.941 0989  0.892 0.945 0988 0.902 0.937 0.990 0.884  0.937 0.980
Sic_Over AdaBoost 0.990 0990  0.991 0.991 0.999 0.982 0.990 0.982 0.999  0.990 0.990
Sic_Under AdaBoost 0.945 0946  0.944 0.947 0945 0.949 0.945 0.949 0.941 0945 0.945
Sol AdaBoost 0.556 0974  0.138 0.690 0955 0.425 0.540 0.994 0.086  0.540 0.950
Sol_Over AdaBoost 0.848 0840  0.855 0.853 0.890  0.816 0.848 0.797 0.899 0.848 0.848
Sol_Under Extra Trees 0735 0.745  0.725 0.766  0.763 0.769 0.744 0.767 0.721  0.744  0.743
Spec Extra Trees 0.890 0985  0.796 0.969 0972 0.967 0.849 0.998 0.700  0.849 0972
Spec_Under Random Forest 0931 0933 0928 0.944 0.947 0.942 0.928 0.930 0925 0928 0.933
Usc AdaBoost 0.711 0967 0454 0.802  0.949 0.654 0.670 0.986 0.353  0.670 0.938
Usc_Over AdaBoost 0.989 0989  0.989 0.989 1.000 0978 0.989 0.978 1.000  0.989 0.989
Usc_Under Extra Trees 0.843  0.837  0.848 0.849 0875 0.823 0.843 0.807 0.880 0.843 0.843
Win AdaBoost 0536 0.982  0.090 0.807 0964  0.650 0.525 1.000 0.050 0525 0.964
Win_Over AdaBoost 0.968 0967  0.969 0.969  0.991 0.947 0.968 0.945 0.991  0.968 0.968
‘Win_Under Random Forest 0.775  0.786  0.763 0.783  0.754  0.811 0.776 0.825 0.727  0.776 0.776
Yea2 AdaBoost 0.668 0982  0.353 0.787 0975 0.600 0.632 0.990 0.273  0.632 0.966
Yea2_Over AdaBoost 0.989 0989  0.989 0.989 1.000  0.979 0.989 0.978 1.000  0.989 0.989
Yea2_Under Extra Trees 0.807 0.817  0.796 0.820 0811 0.830 0.812 0.840 0.783  0.812 0811
Yeal8 AdaBoost 0481 0962  0.000 0.463 0.926  0.000 0.500 1.000 0.000  0.500 0.926
Yeal6_Over AdaBoost 0.977 0976  0.977 0.978 1.000 0955 0.977 0.953 1.000 0977 0977
Yeal8 Under  Extra Trees 0.565  0.538  0.591 0.576  0.597 0.556 0.571 0.500 0.642 0571 0.570
Mean - 0.826 0919 0.732 0.854 0933 0.776 0.823 0.915 0.730  0.823 0917
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a mean of 0.85 for all the ensembles and base clas-
sifiers. Comparing the achieved results, we have that
for 21 different datasets, out of the 47 considered, we
have that the achieved results is superior or equal than
the ones obtained in the base classifiers. We also have
that both balancing techniques improved the obtained
values for the dataset Aba_19, Car and Lib. On the
other hand, neither approach holds this behavior for
the datasets Aba, Arr, Sat, Sol, Usc, and Yeal8. For
the remaining cases, at least one technique, over or
undersampling, enhances the results.

A similar analysis was performed with the averag-
ing Precision, for both the base classifier and the en-
semble. Once again, we can notice a similar behavior
in these cases, which means around 0.83. We have 20
different cases presenting best Precision scores than
the base classifiers. Considering the datasets, we have
that the sampling approaches did not increase the re-
sults only for Arr, Sol, and Usc.

The mean AUC regarding all datasets for the base
classifiers was 0.831, while the achieved mean for
the ensembles was 0.823. Additionally, for 20 dif-
ferent datasets, the ensembles AUC outperformed or
tied the base classifiers. Again, for Arr, Sol, and Usc,
this metric was worst than base classifiers. In all ot-
ter cases, the usage of balancing demonstrated at least
one situation better than those in base classifiers.

Finally, analyzing the performance of the ensem-
bles and base classifiers, it is possible to see that, even
for cases where there is a significant imbalance, there
is no direct relationship that allows us to perform a
prediction based on this variable.

6 CONCLUSION

In this paper, we study the performance relationship
of ensembles and base classifiers from the perspective
of unbalance. We collect several metrics such as ac-
curacy, recall, precision, and Fl-score. We analyzed
whether we can fit ensembles with outstanding pre-
dictive capacity than base classifiers in scenarios of
greater imbalance.

After analyzing the experimental results over fif-
teen datasets, it is possible to state that there is no
direct and strong correlation between imbalance and
the performance of ensembles. In most cases, we had
base classifiers that performed better. These results
added to the extra resources spent for selection and
the classifiers’ training time, helping us to conclude
that it is not reasonable to use ensembles just based on
an imbalance distribution. The problem presents itself
to the authors as a mixture of possible and previously
analyzed variables, in addition to other measures that
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were possibly not analyzed.

By applying balancing techniques, we got slightly
different results. For oversampling, we got the same
rate of scenarios where ensembles outperformed the
base classifiers, and for undersampling, that rate was
53%. It was impossible to observe a correlation be-
tween the degree of imbalance in the dataset and how
this distribution can benefit the ensemble. In addi-
tion to the results, it is also necessary to analyze how
the sampling method selects data to be cloned or ex-
cluded, as it can drastically affect the representative-
ness of the studied phenomenon.
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