
A Recommendation Module based on Reinforcement Learning to an
Intelligent Tutoring System for Software Maintenance

Rodrigo Elias Francisco1,2 a and Flávio de Oliveira Silva1 b

1Faculty of Computer, Federal University of Uberlândia (UFU),
Av. João Naves de Ávila, 2121, Block 1A, Room 1A243 - Campus Santa Mônica, Uberlândia, MG, Brazil

2Federal Institute Goiano (IF Goiano) - Campus Morrinhos, Rodovia BR153, KM633 Zona Rural, Morrinhos, GO, Brazil

Keywords: Intelligent Tutoring System, Software Maintenance, Reinforcement Learning, Q-Learning.

Abstract: The demand for qualified professionals to work with Software Maintenance (SM) brings challenges to com-
puter education. These challenges are related to SM’s inherent complexity and the teacher’s significant work
in providing adequate support in practical SM activities. In this context, Artificial Intelligence (AI) based
techniques, such as recommendations, can play a central role in developing Intelligent Tutoring Systems (ITS)
to focus the teaching-learning process. The literature points out a lack of ITS to SM and that most of them
do not use AI-based techniques to recommend content to the students. In this work, we present an Expert
Knowledge Module (EKM) for an ITS specially designed for SM. To model the EKM content, we did a deep
analysis of the ACM curricula regarding SM topics and the syllabus related to SM from all Brazilian public
universities. The content recommendation engine uses the Q-Learning algorithm, a well-known Reinforce-
ment Learning (RL) AI-based technique. Using simulation-based experiments, we could verify the efficiency
of the Q-Learning-based recommendation mechanism to propose contents using the ITS’s EKM properly. This
work highlights how AI-based techniques can enhance and improve SM’s teaching-learning process using ITS
and advance this research area.

1 INTRODUCTION

Software maintenance (SM) is responsible for about
60% of all costs (Russell and Vinsel, 2017) during
the software life-cycle (Russell and Vinsel, 2017) due
to high consumption of time and effort (Fernández-
Sáez et al., 2018). Learning SM involves handling
complex tasks related to the SM process, understand-
ing and modifying software artifacts. Therefore, com-
puter education needs to help students become profes-
sionals capable of working with SM (Heckman et al.,
2018).

This educational problem brings motivations to
design educational tools based on AI for the SM
teaching-learning process, such as Intelligent Tutor-
ing Systems (ITS). ITS is a software system to en-
hance, adapt, and automate (Alkhatlan and Kalita,
2018) the teaching-learning process. Although there
is ITS’s with different architectures, the ITS gener-
ally works with representations of the three types of
knowledge: the content, the student, and teaching

a https://orcid.org/0000-0003-2866-3431
b https://orcid.org/0000-0001-7051-7396

strategies.
The literature about ITS for SM presents some

gaps. Few works on tutor system for SM and fewer
less on ITS to SM. Most of the work in the literature
does not detail content recommendations. None of the
ones present some recommendation mechanism that
uses AI-based techniques.

In this work we present the design of the Expert
Knowledge Module (EKM)Expert Knowledge Module
(EKM) module of a ITS for SM and a content recom-
mendation mechanism based on the Q-Learning al-
gorithm, a well-known Reinforcement Learning (RL)
AI-based technique used in several areas (Shawky and
Badawi, 2018). The main contributions of this work
are:

• An ITS with an EKM can handle different types
of content related to SM;

• The EKM modeling resulted from a comprehen-
sive analysis of the computer science curricu-
lum proposed by scientific societies, namely the
Brazilian Computer Society (SBC) (Zorzo et al.,
2017), and the Association for Computing Ma-
chinery (ACM) (ACM Computing Curricula Task

322
Francisco, R. and Silva, F.
A Recommendation Module based on Reinforcement Learning to an Intelligent Tutoring System for Software Maintenance.
DOI: 10.5220/0011083900003182
In Proceedings of the 14th International Conference on Computer Supported Education (CSEDU 2022) - Volume 1, pages 322-329
ISBN: 978-989-758-562-3; ISSN: 2184-5026
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



Force, 2013), and the syllabus related to SM used
by all Brazilian public universities.

• A content recommendation mechanism that uses
the Q-Learning algorithm whats brings AI to en-
hance the results of the ITS, and that showed its
efficiency in different usage scenarios.
We organized work as follows: section 2 describes

the related literature and presents some gaps in this
area. She section 3 describes the design of the EMK
module and the content recommendation strategy fo-
cusing on the SM domain using the Q-Learning algo-
rithm. Section 4 describes the simulation process and
discusses its results. Finally, Section 5 presents some
concluding remarks and future work.

2 RELATED WORK

Table 1 details information about the literature related
to Tutor Systems for SM found in the literature. First,
the table presents if the tutor system is an ITS. When it
is an ITS, the table also shows the modules described
in work using the same name proposed by the au-
thor. The table presents the subject of SM that the
research addresses. The table describes if the ITS has
a content recommendation mechanism and the corre-
sponding recommendation technique indicating based
on AI and highlights if the work describes the tutor
module. The subjects related to SM are Software De-
bugging (SD), Software Refactoring (SR), and Soft-
ware Understanding (SU).

We found some AI techniques in the literature.
Case-based reasoning (CBR) is a strategy that in-
volves the base of a case that is frequently updated
and makes it possible to retrieve stored cases to assist
in solving a new case. Natural Language Processing
(NLP) uses AI algorithms and linguistic knowledge
to work with human language in a given language. Q-
Learning is a Reinforcement Learning (RL) algorithm
that works with the metaphor of an agent inserted in
an environment and performs actions to achieve some
goal. The reinforcement obtained in the perception of
the result makes it possible to create a model at run-
time to guide these actions.

A Socratic ITS and its authoring tool (Alshaikh
et al., 2021) were proposed for teaching-learning of
software understanding. This work applied Natural
Language Processing to generate and interpret stu-
dent dialogues about source code artifacts. They also
used dialogues created by experts. The research ap-
proached the innermost loop of ITS, where the tutor
module performs actions that aim to help the student
understand a specific source code artifact through di-
alogues. The domain module wraps the programs’

source code artifacts and uses the abstract syntax tree.
This work did not propose any recommendation strat-
egy.

The work of (Oberhauser, 2017) presents an ap-
proach for the recommendation, navigation, and 3D
visualization of source code. This work uses a rec-
ommendation service based on a theoretical model
of program understanding and data related to Metho-
dRank metrics for source code, filtering processing,
distance calculations, and points of interest in source
code. Their goal was to understand software from an
exploratory, analytical, and descriptive cognitive pro-
cess perspective. This work did not address any AI
technique and did not describe any module related to
the concept of ITS.

Another work, an ITS for the software debug-
ging domain (Carter and Blank, 2013) that uses the
CBR technique. The authors claim that the debugging
activity performed by the programmer is inherently
case-based. Although this research does not address
recommendations, the work implements the follow-
ing ITS modules: domain, tutor, student, and com-
munication. The domain module comprises syntax,
runtime, and logical errors cases.

The Interactive Tutor System RefacTutor
(Haendler et al., 2019) focus software refactoring.
The work strategy uses software understanding as
support to approach refactoring.

The analysis of the works presented provides es-
sential information for this research. Few of them fo-
cus on Tutor Systems for SM and even less on ITS
for SM. The literature found addresses only three SM
topics. The only work that addressed content recom-
mendation for SM did not present an AI technique.
Furthermore, the papers describe little about how Tu-
tor Systems or ITS for SM modules represent the sys-
tem domain data.

3 DESIGN OF THE ITS FOR SM
USING Q-LEARNING

This work is part of a larger research that aims to de-
sign, develop and deploy an ITS for SM. This ITS has
an architecture which has Tutor, Student, EKM and
User Interface Modules. One goal of this ITS is that
it can adaptively recommend and offer support to the
teaching-learning process of SM. This work focus on
the EKM and the content recommendation function-
ality performed by the Tutor Module.

Our content recommendation mechanism uses RL
based on the Q-Learning algorithm, which refines its
decision model according to the results of previous
recommendations. The EKM design started from a

A Recommendation Module based on Reinforcement Learning to an Intelligent Tutoring System for Software Maintenance

323



Table 1: Papers on Tutoring Systems for SM.

Reference
ITS (Yes/No/All
Modules? Which
Modules?)

Subject Recommend. Recommend.
Technique

AI-Based
Technique

Tutor
Mod.

(Carter and Blank, 2013)
Yes / All / Modu-
les: domain, tutor,
student and commun.

SD No No Case-based
reasoning Yes

(Haendler et al., 2019) No SR, SU No No No No

(Oberhauser, 2017) Yes / Part. / Modu-
le: recommender SU Yes MethodRank No No

(Alshaikh et al., 2021)
Yes / Part. /
Modules: domain,
tutor

SU No No Natural L.
Processing Yes

THIS WORK
Yes / Part. / Modu-
les: exp. knowledge,
tutor

SM Yes Q-Learning Q-Learning Yes

Software Debugging (SD) - Software Maintenance (SM) - Software Refactoring (SR) - Software Understanding (SU)

requirement analysis of the SM educational context,
assuming that it would be a component of ITS that
could provide an automated recommendation.

3.1 Expert Knowledge Module (EKM)

The EKM has an abstraction of the content that sup-
ports activities that the ITS provides to students. In
this section, we present the rationale used to model
the EKM, and we show a categorization of the activi-
ties capable of supporting the several topics related to
SM.

To model the EKM, we carried out a survey of
SM topics in the curriculum of all Brazilian Federal
Universities that have courses in the computing area,
such as Computer Science and Software Engineer-
ing, to contribute to the creation of the EKM. We
chose all Brazilian Federal Universities because they
have geographic coverage throughout Brazil, which
allowed for contemplating the diversity of SM cur-
ricula. In addition, to gather the requirements of the
EMK, we added to this survey the Reference Cur-
ricula proposed by the Brazilian Computer Society
(SBC) (Zorzo et al., 2017), and Association for Com-
puting Machinery (ACM) (ACM Computing Curric-
ula Task Force, 2013) concerning SM.

The survey of topics covered in SM was neces-
sary to support the pedagogical and technical deci-
sions around the construction of an ITS.

The pedagogical assumptions consider the possi-
bility of teaching SM so that learning begins with
practical experiences, which gradually contributes to
increasing the conceptual knowledge.

The technical assumptions considered an EKM for
the SM domain that can be reused, expanded, and
aligned with the architectural design of an ITS. The
EKM should contribute to the operationalization of
the SM content by using AI based algorithms. The

content modeling should define a semantic that eases
in creating and modifying activities in ITS. Finally,
we consider in the design decisions that the content
managed by the EKM and recommended by the Tu-
tor Module should facilitate the process of evaluating
AI algorithms in instantiating them in an ITS suited
to SM.

We organize the topics raised into four categories:
A - Software Understanding, B - SM Practice, C - SM
Testing, and D - Concepts Understanding. This cate-
gorization allowed the planning of the types of activ-
ities addressed by ITS, as shown in Table 2. We used
Bloom’s Revised Taxonomy (Amer, 2006) to estimate
the dimensions of the cognitive process necessary by
students in each type of activity.

Next, we will present each of these categories and
the topics covered in the SM curricula:

• Category A - Software Understanding includes
the following topics: understanding software ar-
tifacts, reuse, legacy systems, and concerns and
concern location. This category reflects the
need for the SM student to build mental models
about software representation to make decisions
of change in SM.

• Category B - SM Practice has the following top-
ics: types of software maintenance, refactoring,
covers SM practice, reverse engineering, reengi-
neering, and debugging. This category contributes
to the proposal of practical SM activities involv-
ing source code for specific systems that may in-
clude these topics.

• Category C - SM Testsing encompasses only test-
ing in the context of SM

• Category D - Concepts Understanding was di-
vided into two subcategories: D1 - SM Process,
D2 - Software Maintainability.

– D1 - SM Process includes the following topics:

CSEDU 2022 - 14th International Conference on Computer Supported Education

324



Table 2: Activities categorized with Bloom’s Taxonomy.

Activity Type Rememb. Underst. Apply Analyze Evaluate Create Nº Dimens.
A1 - Understand the result
of execution (source code) x x 2

A2 - Order the program
(parson puzzles) x x x x 4

A3 1 - Reply to abstract
(source code) x x x x 4

A3 2 - Reply to abstract
(UML models) x x x x 4

B1 - Defect Fix type SM x x x x x x 6
B2 - SM of the Environ.
Adaptation type x x x x x x 6

B3 - SM of Add Funct. type x x x x x x 6
B4 - Refactoring x x x x 4
C1 - Tests x x x x x 5
D1 - SM Process x x 2
D2 - Maintainability of
Software x x 2

Figure 1: Expert Knowledge Module Partial Class Diagram.

process, migration, the relationship between
SM types, configuration and change manage-
ment, effort estimation, software repository
mining, evolution laws, SM generical, predic-
tion Analysis, Impact Analysis, Software Evo-
lution, and Integration and Continuous Deliv-
ery.

– D2 - Software Maintainability has the follow-
ing topics: maintenance problems, mainte-
nance cost, maintainability and metrics for soft-
ware maintainability, and (re)documentation.

As a result of the assumptions, design decisions,
the survey of SM topics, and its categorization, pre-
sented in Table 2, we modeled the EKM. Figure 1
presents a partial class diagram of the EKM classes.

Activity types are represented by the class Activ-
ityType and are categorized by ActivityCategory. Di-
dacticMaterial, which represents the activities, is re-
lated to a given ActivityType and has the fields score
and demandedCapacity to represent the score and the
capacity that the student needs to be able to get it right

the question in the simulation.
Capacity has three dimensions: knowledge di-

mension, social dimension, and intelligence dimen-
sion. This work emphasizes only the dimensions of
knowledge, subdivided into software understanding,
SM practice, tests, and concept understanding. Stu-
dent represents the student, who has a grade (“score”)
and capacity.

3.2 Content Recommendation

An ITS needs a model capable of allowing its Tutor
Module to make appropriate pedagogical decisions.
These decisions include recommending content con-
sidering the student’s learning status concerning the
SM content at a given time. We choose to use the
Q-Learning algorithm, which builds and improves
the model at run-time and does not depend on prior
knowledge of experts to build the model.

The Q-Learning (Shawky and Badawi, 2018) al-
gorithm, used in this proposal to recommend contents,
uses an RL algorithm that models the best actions for
certain states and stores this model in the Q matrix.
The equation, presented in 1 represents the way the
algorithm updates the matrix. At certain moments
random choices occur in a controlled manner.

Q(s,a) = Q(s,a)+α[r+ γ∗ (maxQ(s′,a′))−Q(s,a)] (1)

The update of the Q matrix occurs whenever the
algorithm performs an action recommendation and
does its execution. Q(s, a) represents the benefit of
doing action a in state s. α and γ are the learning
rate and discount factor parameters. The maxQ(s’, a’)
function returns the score of the best possible action
(a’) in the new state (s’).

A Recommendation Module based on Reinforcement Learning to an Intelligent Tutoring System for Software Maintenance

325



To use Q-Learning it is necessary to model the
states and actions of the environment in question and
to calibrate their parameters. In a simplified way, this
algorithm represents an agent that performs actions
in the background and receives reinforcement, which
can be positive or negative, on these actions. Upon
receiving the reinforcement, the algorithm updates its
model with the memory of the result of the executed
action. In our Q-Learning configuration, the recom-
mended actions represent a Didactic Material (DM),
and the states represent the scores of the students.

4 SIMULATION AND
DISCUSSION

Using simulation, we evaluated the EKM and the
content recommendation mechanism based on the Q-
Learning algorithm. In this work, the evaluation fo-
cuses only on the knowledge dimension considering
the student Capacity presented in Figure 1. This sec-
tion details the simulation process and presents a dis-
cussion about the results.

4.1 Simulation Process

Figure 2 details the simulation process and presents
the sequence of activities between the following ac-
tors: the teacher, the ITS, and the student coordinated
by the simulator. Initially, the teacher selects a set of
students and a set of DM’s and configures the learning
session with the appropriate Q-Learning parameters.
The simulator will traverse the student set. During
this process, the simulator first verifies if there is a
DM is available. If yes, the ITS uses the Q-Learning
algorithm and the student’s current profile to recom-
mend a DM. The student solve the DM. In the simu-
lation process, the simulator infers success or failure
for the DM. When no more DM is available for the
student, the simulator displays the results.

The simulator infers success or failure by
verifying if the student’s capacity (attribute Stu-
dent.capacity) is sufficient to solve the DM consid-
ering its DM.demandedCapacity. If the student has
enough capacity, the simulator updates the current
student capacity, its score and the list of solved DM’s.

Using the simulator, we create a set of students in
the ITS using a default constructor. The initial param-
eter for the simulator is the size of the set. Initially all
the students capacity attributes (softwareUnderstand-
ing, practiceSM, testSM and understandingConcepts)
are set to zero. The student score of student represents
the number of activities solved correctly and initially
is also zero.

The simulator creates a set of DM to mimic the
DM selection by the teacher. The simulator receives
the size of the DM set and creates activities of every
type (ActivityType) to the given size. The simulator
calculates the required capacity for each activity. The
attribute categoryActivity defines the activity category
and indicates knowledge dimension attributes associ-
ated with the attribute demandedCapacity. The Al-
gorithm 1 describes the calculation of the demanded
knowledge capacity and the score for a given DM.

Algorithm 1: Calculate Demand Capacity and DM Score.
Let n be the number of DM for a given Activity

Type: DM[i] | i>=1, i<=n;
Let j be the indication of the Activity Category and

Demanded Capacity (knowledge dimension) of
the DM[i];

i=1;
while i<=n do

DM[i].demandedCapacity[j] = i *
(numBloomDimensions / n);

DM[i].score = numBloomDimensions / n;
i++;

end

To configure the learning sessions, the teacher de-
scribes the average number of times a student tries
to solve a DM and the parameters of the Q-Learning
algorithm: positive reinforcement, negative reinforce-
ment, learning rate, discount factor, and indicator of
the percentage of exploitation.

The recommendation of DM’s follows the se-
quence of generated students. Initially, the simulator
creates a Q matrix. For each student, while the student
has not reached the maximum score or the maximum
number of attempts, the ITS recommends a DM to the
student. The simulator changes the student state and
updates the Q matrix.

4.2 Results and Discussion

To evaluate the content recommendation module ac-
cording to the EKM proposed, we did several simu-
lations using different parameters configurations for
the Q-Learning algorithm. We used ten (10) different
configurations with the same simulation scenario.

The simulation scenario consisted of ten (10) stu-
dents and a set with 110 DM’s for each student. We
created ten (10) DM’s for each of the eleven (11)
types of activity presented in Table 2. The goal of
each experiment was to use the recommendation sys-
tem until each student reached the maximum score,
in this case, 110 considering one point to each DM’s
correctly solved.

Table 3 presents the different settings for the Q-
Learning algorithm in each experiment. The Max.

CSEDU 2022 - 14th International Conference on Computer Supported Education

326



Figure 2: Simulation Process.

Table 3: Experiments and Results of Simulation for the Content Recommendation.

Experiment 1 2 3 4 5 6 7 8 9 10
Max. Number of Attempts 330 330 440 660 770 550 550 550 550 550
Exploration Percentage (%) 50 33,3 25 20 20 16,6 16,6 16,66 12,5 12,5
Positive Reinforcement 4 4 4 10 8 9 15 15 13 13
Negative Reinforcement -4 -4 -4 -9 -8 -9 -15 -15 -13 -13
Learning Rate (α) 0,12 0,12 0,12 0,16 0,16 0,4 0,4 0,5 0,5 0,7
Discount Factor (γ) 0,9 0,9 0,9 0,7 0,7 0,8 0,8 0,8 0,8 0,7
Number of Recommendations: 1473 1538 1569 1388 1408 1303 1276 1342 1326 1361

Number of Attempts sets the maximum number of at-
tempts a student makes to solve the complete DM
set. The Exploitation Percentage defines the pol-
icy of the Q-Learning algorithm to explore the envi-
ronment. Positive reinforcement, negative reinforce-
ment, learning rate, and discount factor are param-
eters used by Q-Learning to update its model upon
receiving reinforcement. The Number of Recommen-
dations indicates the total recommendations that were
necessary for all students to perform all DM’s cor-
rectly. This number is related to the efficiency of the
experiment, and the lower is better.

Experiments number 6 and 7 had the best results,
as they needed fewer recommendations to reach the
maximum score. These experiments have very simi-
lar configurations, and the only difference was the pa-
rameters referring to positive and negative reinforce-
ment. There are indications that a relatively low ex-
ploitation percentage, as in the case of 16.6%, con-
tributes to the efficiency of the experiment, which is
related to the idea of privileging the Q-Learning algo-
rithm model instead to work randomly. Experiments
2 and 3 had the worst results. We can observe that
their exploitation percentages are among the highest,
which indicates a more random behavior.

The simulation contributed to evaluating the con-
tent recommendation functionality of the Tutor Com-
ponent with the EKM at design time. Furthermore,
the experiments showed that the EKM could be prop-
erly operationalized by the simulation process and by
the content recommendation functionality of the Tu-
tor Component.

To highlight the benefits of the recommendation
module based on the Q-Learning algorithm, we will

describe a hypothetical scenario with no recommen-
dation using two different types of students. We mod-
eled these students using average data from under-
graduate computer science students (Tomkin et al.,
2018).

The scenario is the same: a set of ten (10) students
and a set with 110 DM’s, ten (10) different DM’s for
each of the eleven (11) types of activity presented in
Table 2. In each cycle, each type of student tries to
solve all the DM’s. We assumed one ability to hit a
DM for each cycle, and between cycles, we assumed
an increment of this ability.

Table 4 presents these values and details the hy-
pothetical scenario considering the types of students.
The Number of Attempts (set size) is the size of the set
of DM’s that the student needs to solve in each cycle.
Increment (Inc.) shows the increase in the correctness
capacity in a specific cycle for a given type of student.
The Ability to Hit shows the total capacity to solve
each DM correctly after the increment of the capacity.
Number of Hits (No. Hits) is the number of DM’s that
the student solved correctly in the cycle. The table
summarizes the overall performance for each type of
student, presenting the total Number of Attempts for
one and ten students. For both student types, the in-
crement of hit ability occurs in a non-linear way. The
hypothetical Student Type #1 starts with a slight hit
ability of 20% with a gradual increment (0%, 10%,
10%, 10%, 20%, 30%). In contrast, the hypothetical
student of type #2 starts with a correctness capacity
of 50% with different gradual increments (0%, 15%,
15%, 20%) in each cycle.

Figure 3 presents a comparison between the two
types of hypothetical students. The vertical line of the

A Recommendation Module based on Reinforcement Learning to an Intelligent Tutoring System for Software Maintenance

327



Table 4: Hypothetical scenario of DM resolutions.

Student
Type #1

Student
Type #2

Cycle No. Attempts
(set size) Inc. Ability

to Hit No. Hits No. Attempts
(set size) Inc. Ability

to Hit No. Hits

1 110 0% 20% 22 110 0% 50% 55
2 88 10% 30% 26,4 55 15% 65% 35,75
3 61,6 10% 40% 24,64 19,25 15% 80% 15,4
4 36,96 10% 50% 18,48 3,85 20% 100% 3,85
5 18,48 20% 70% 12,93 - - - -
6 5,54 30% 100% 5,54 - - - -

No. of Attempts
(1 student) 320,584 188,1

chart displays the cumulative number of DM’s hits,
the maximum of which is 110. The horizontal line
of the chart shows the cycles in which students try
to solve the complete set of DM’s, where the Student
Type #1 uses six cycles, and student type #2 uses four
cycles. Student Type #2 has a higher DM’s resolution
capability than Student Type #1, which allows it to
resolve DM’s faster.

Figure 3: Comparison between the Students Types.

Student of Type #1, which can be considered a
student with lower ability, would need approximately
320 attempts to solve the 110 DM’s, and the total for
ten students of this type would require around 3206
attempts to solve these 110 DM’s. The Student Type
#2, who is considered a student with average ability,
would need 188,1 attempts to solve these 110 DM’s,
and ten students of this type would need 1881 at-
tempts to solve these 110 DM’s.

Content recommendation and the EKM for ITS
for SM presented in this work, according to the simu-
lation’s parameters described in Experiment 7, allow
ten virtual students to solve the 110 DM’s with 1276
recommendations. This information enables us to es-
timate the improvement that the proposal can bring
to the efficiency of the SM teaching-learning process
when considering two types of hypothetical students.

The recommendation method and the EKM pro-
posed in this work reduce by approximately 60,2 %
of the number of attempts compared to the Type #1
students, so instead of 3206 attempts, only 1276 ones

are necessary to solve the complete DM set by all stu-
dents. When considering students Type #2, which has
a higher ability from the beginning, we can see a re-
duction of approximately 32,2 %, with 1276 attempts
to solve all the DM set compared to 1881 attempts.

Thus, the results of this work overcome the hypo-
thetical scenario described, whose types of students
designed meet beginner (Student Type #1) and aver-
age (Student Type #2) ability levels.

5 CONCLUSION

The literature on Tutor Systems for SM has gaps
available for investigation. Furthermore, there are few
initiatives to address the concept of ITS for SM. In
the literature, we did not find a content recommenda-
tion method for SM applied in the context of an ITS,
which shows that this research contributes to advanc-
ing the state-of-art. Moreover, the only mechanism of
recommending SM-related content found in the liter-
ature does not use any AI-based technique.

We have realized the importance of providing
Computer Science students with learning based on
SM’s practical and conceptual experience and the dif-
ficulty of this for teachers. An ITS can be very
promising in solving this problem.

This work contributes to this area and presents
an ITS with an EKM capable of handling different
types of content related to SM. The EKM modeling
resulted from a comprehensive analysis of the com-
puter science curriculum based on scientific societies,
namely ACM and SBC, and the syllabus related to
SM from all Brazilian public universities. The EKM
brings the capacity representation, which includes the
SM knowledge dimension and the social and intel-
lectual dimensions; the student representation, which
consists of the ability and the score; and the neces-
sary models for the SM content, which are activity
category, activity type, and the DM.

Other researchers can explore the EKM modeling

CSEDU 2022 - 14th International Conference on Computer Supported Education

328



presented to reuse and refine it to build an ITS suitable
to SM that can help the SM teaching-learning process.

Our contribution goes further in this area, and we
introduce a content recommendation method based on
the Q-Learning algorithm whats brings AI to enhance
the results of the ITS.

The experiments showed that the content recom-
mendation, through the Q-Learning algorithm, man-
ages to make recommendations that improve over
time. The experiment that reached the maximum
score performed 1276 DM’s recommendations, and
this indicates the efficiency of Q-Learning algorithm.
As there are ten students and 110 DM’s, an ideal situ-
ation where students do not wrong DM’s is composed
of 1100 recommendations, which is very close to the
experiment’s value.

Using two types of hypothetical students, one with
a low learning ability, called Student of Type #1, and
another one with an average learning ability, called
Student of Type #2, we made a comparison with
our recommendation method. The results showed
that our recommendation method improved approx-
imately 60.2 % compared to students with lower abil-
ity and 32.2 % to students with average ability.

We intend to investigate data clustering algorithms
to extend the ITS student’s module for SM in future
work. We will evaluate its influence on the content
recommendation. Moreover, we will deploy and as-
sess our ITS for SM in the educational context and
corporate SM training using a real-world experimen-
tal scenario.

ACKNOWLEDGEMENTS

This work is inside UFU-CAPES.Print Program. This
study was financed in part by the Coordenação de
Aperfeiçoamento de Pessoal de Nı́vel Superior –
Brasil (CAPES) – Finance Code 001. This research
also received the support from PROPP/UFU.

REFERENCES

ACM Computing Curricula Task Force, editor (2013).
Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in
Computer Science. ACM, Inc.

Alkhatlan, A. and Kalita, J. (2018). Intelligent tutoring sys-
tems: A comprehensive historical survey with recent
developments. arXiv preprint arXiv:1812.09628.

Alshaikh, Z., Tamang, L., and Rus, V. (2021). Experiments
with Auto-generated Socratic Dialogue for Source
Code Understanding:. In Proceedings of the 13th In-
ternational Conference on Computer Supported Edu-

cation, pages 35–44, Online Streaming, — Select a
Country —. SCITEPRESS - Science and Technology
Publications.

Amer, A. (2006). Reflections on bloom’s revised taxon-
omy. Electronic Journal of Research in Educational
Psychology, 4(1):213–230.

Carter, E. and Blank, G. D. (2013). An intelligent tutor-
ing system to teach debugging. In International Con-
ference on Artificial Intelligence in Education, pages
872–875. Springer.

Fernández-Sáez, A. M., Chaudron, M. R., and Genero,
M. (2018). An industrial case study on the use of
uml in software maintenance and its perceived ben-
efits and hurdles. Empirical Software Engineering,
23(6):3281–3345.

Haendler, T., Neumann, G., and Smirnov, F. (2019). Refac-
tutor: an interactive tutoring system for software
refactoring. In International Conference on Computer
Supported Education, pages 236–261. Springer.

Heckman, S., Stolee, K., and Parnin, C. (2018). 10+
years of teaching software engineering with itrust: the
good, the bad, and the ugly. In 2018 IEEE/ACM 40th
International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-
SEET), pages 1–4. IEEE.

Oberhauser, R. (2017). Visitr: 3d visualization for code
visitation trail recommendations. International Jour-
nal on Advances in Software Volume 10, Number 1 &
2, 2017.

Russell, A. and Vinsel, L. (2017). Andrew
Russell and Lee Vinsel. Let’s Get Ex-
cited About Maintenance! Available in
https://www.nytimes.com/2017/07/22/opinion/sunday
/lets-get-excited-about-maintenance.html. Accessed
in November 13, 2020.

Shawky, D. and Badawi, A. (2018). A reinforcement
learning-based adaptive learning system. In Inter-
national Conference on Advanced Machine Learn-
ing Technologies and Applications, pages 221–231.
Springer.

Tomkin, J. H., West, M., and Herman, G. L. (2018). An
Improved Grade Point Average, With Applications to
CS Undergraduate Education Analytics. ACM Trans-
actions on Computing Education, 18(4):17:1–17:16.

Zorzo, A. F., Nunes, D., Steinmacher, I., Leite, J. C.,
Araujo, R., Correia, R. C. M., and Martins, S.
(2017). Referenciais de Formação para os Cursos de
Graduação em Computação 2017.

A Recommendation Module based on Reinforcement Learning to an Intelligent Tutoring System for Software Maintenance

329


