
Porting Non Cloud-native Applications across Linux Distributions: A
Practical Approach

Sanjeet Kumar a and Suvrojit Das b

Department of CSE, NIT Durgapur, India

Keywords: Linux, Cloud Computing, Application Portability, Workload Migration.

Abstract: Researchers are trying to solve the problem of application portability ever since we had multiple types of Unix
operating systems. The need for a solution to port application between different operating environments has
only grown in recent years after the adoption of the cloud. The consumers of IT applications want the freedom
of choice when it comes to operating environment. They don’t want to be put in a vendor lock-in where they
are compelled to use one particular platform inspite of their dissatisfaction of service or availability of a better,
economic and more competitive alternative. Sometimes the provider of the operating environment goes out of
business or there are other reasons where porting of applications becomes a necessity. Linux being an open
source operating system gives the liberty to consumers to first extensively test and use the applications on
a free distribution and later port it to a distribution with enterprise support. Portability of cloud native apps
are more or less solved by use of containerization tools and their ecosystem however the portability of non
cloud-native applications is still an open research problem. This paper provides the solution to the problem
of porting an application from one distribution of linux to another using an approach which can further be
generalized for porting of application between wider range of operating environments.

1 INTRODUCTION

According to leading industry analysts linux is the
fastest growing server operating system but the over-
all growth of combined server operating system mar-
ket is only 0.7% (Gartner, ) which implies that more
and more organizations are moving their applications
and workloads from proprietary operating systems to
linux. There is another perspective to this migra-
tion story, organizations wants to move away from
vendor lock-in. They want to use a platform that
gives them choice and freedom. Currently there are
atleast 4 linux vendors which provide enterprise sup-
port for linux viz SUSE, Red Hat, Oracle and Canon-
ical(Ubuntu). Apart from these there are some pretty
impressive community driven linux distributions like
openSUSE and CenOS which organizations with in-
ternal technical skills are adopting without enterprise
support.

Porting of application from one OS platform to
another OS platform is a very sophisticated task. It
needs lots of planning and very granular understand-
ing of the source and target platforms as well as un-

a https://orcid.org/0000-0002-8755-8837
b https://orcid.org/0000-0001-5414-5019

derstanding of the required dependencies of applica-
tion on its platform. Many applications are tightly
locked with their platform and require a lot of effort
in porting. Many standards that serve as a guide for
both OS providers as well as application developers,
guides them to provide the capabilities of porting of
application source and binary between the platforms
that conform to certain standards. Linux Standard
Base(LSB) is one such standard. Currently there are
about 20 different linux distributions which conforms
with LSB 5.0 set of specifications. Still, we see a
lot of deviations and porting an application from one
linux distribution to another distribution is still a very
challenging task.

Porting of applications and workloads between
different OS is a very old problem. The growth in
adoption of cloud as an infrastructure has only caused
this problem to multiply. Cloud brings much more
flexibility than that of traditional virtualization infras-
tructure. Cloud has seen adoption in primarily two
types of use cases. One, in a large organization where
there are multiple departments or lines-of-business.
In such an organization there is a separate IT depart-
ment which serves all the IT infrastructure require-
ment of all the other departments. Second use case is

272
Kumar, S. and Das, S.
Porting Non Cloud-native Applications across Linux Distributions: A Practical Approach.
DOI: 10.5220/0011083700003200
In Proceedings of the 12th International Conference on Cloud Computing and Services Science (CLOSER 2022), pages 272-279
ISBN: 978-989-758-570-8; ISSN: 2184-5042
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



where a cloud service provider provides the necessary
infrastructure to a consumer who can be an individ-
ual or an organization. Traditionally the infrastructure
procurement itself used to take weeks, and now, with
self service in cloud, the line of business can instantly
utilize the infrastructure allocated to them from the
pooled resources. The applications can achieve very
high scalability as per the demand and load.

Porting of application between different types of
infrastructure has its own set of challenges. Standards
like Open Virtualization Format(OVF) from the Dis-
tributed Management Task Force(DMTF) has worked
in this area to make at least the virtual machine image
conform to a standard which eases out the process of
porting, however, porting from physical to cloud still
remains a challenge. There are some proprietary tools
which help with physical to virtual/cloud porting but
they have limitation that they provide solution primar-
ily for intel/amd based architecture.

The adoption of containerization tools like docker
and kubernetes has made the problem of linux appli-
cations look solvable. The applications can be mod-
ified and made cloud native to be able to run on a
container infrastracture and then the porting o such
applications becomes very easy. However, just like
not all pets can be turned into cattles, similarly, not
all applications can be modified into cloud-native ap-
plications and therefore the research community has a
job to look into solution for portability of non cloud-
native applications.

For our experiment we took help of an open source
tool named machinery. Machinery is aimed at config-
uration discovery, system validation and service mi-
gration. Machinery is based on an idea of universal
system descriptor. Although, this project is in a very
nascent stage and currently the feature and function-
alities are very limited, the idea of universal system
descriptor should be valid for all kind of operating
system but the current implementation only focuses
on linux OS. The current implementation captures the
system description for rpm and deb family of linux
distributions. However, for the purpose of export-
ing the system description as a response file for au-
tomatic description, currently it only supports SUSE
and openSUSE and in one of our previous work (Ku-
mar and Das, 2021) we have contributed to the project
so that it can export the system-description of red-
hat family of linux distribution aswell. Secondly, al-
though it has a base prepared for porting of applica-
tion and services but the implementation for the same
has not been done.

We identified that this could be a very useful tool
for application portability use cases. Therefore, we
have began contributing to this project https://github

.com/ksanjeet/machinery/tree/port\ task and solved
the problem of portability of non cloud-native linux
application across linux distribution. In this paper we
are proving the concept using experimental setup and
based on our contribution to this project for portability
of non cloud-native application from one linux plat-
form to another linux platform.

This paper is further divided into a section on lit-
erature review where we have referenced theoretical
and experimental work on application portability in
general as well as in cloud since 1985 till now. In
next section we explain real life problems which be-
came our motivation for this work and our scope and
objectives that we want to achieve through this pa-
per. After that we are introducing our approach and
methodologies for this experimental work, the chal-
lenges we faced and the ideas and algorithms that we
used to overcome the challenges. In the next section
we discuss the results from our experiment and limi-
tations that we find in our approach and what we can
do to remove these limitation in future work. Finally
we conclude our paper and explain how this work
can help in future research in application portability
in cloud.

2 LITERATURE REVIEW

Application portability was first considered as a prob-
lem in mid 1980s when there were several variations
of Unix that ran on various hardware architecture.
Mooney (Mooney, 1990) defines application portabil-
ity as an application is portable across a class of en-
vironments to the degree that the effort required to
transport and adapt it to a new environment is less
than the effort of redevelopment.

In 1985 X/Open Portability Guide (Taylor, 1987)
was released which gave guidelines for a common
application environment(CAE) and served as a refer-
ence on creating application that can be ported across
operating systems.

In 1988 ISO/IEEE POSIX (Group, 1988)(Group,
2018) was released which had a limited scope of
source code portability across various conforming op-
erating systems.

Hankinson (Hankinson, 1990) writes from a US
govt federal agencies perspective that there was a
need to establish strategies and plans for acquiring
information technology products and services based
on open system standard which supports applica-
tion portability and interoperability. His organization,
National Institute of Science and Technology(NIST)
developed a standard called Open System Environ-
ment(OSE) towards this. Similarly Application Porta-

Porting Non Cloud-native Applications across Linux Distributions: A Practical Approach

273



bility Profile(APP) which is an OSE standard profile
was developed by NIST to define US federal agen-
cies requirement of application. This was probably
the first instance when requirement of a software ap-
plication was defined in the form of standard profiles,
an idea that ’ll later be seen in application portability
solutions and approaches for cloud systems.

After the growth in adoption of linux operating
system, The Linux Foundation drafted its first version
of Linux Standard Base(LSB) (Foundation, b) in 2001
to develop and promote open standard and increase
compatibility among various distributions. LSB gave
guidelines for common libraries, commands, utilities,
runlevels, printing systems etc. It extensively adopted
guidelines from POSIX and in particular it incorpo-
rated Filesystem Hierarchy Standard(FHS) (Founda-
tion, a) that was published in 1994.

When virtualization in x86 machine grew adop-
tion of technology like VMware and XEN and later
KVM, researchers (Ribiere, 2008) saw virtualization
as an important tool for application portability. It was
during this time that Distributed Management Task
Force(DMTF) came up with a virtual machine im-
age standard called Open Virtualization Format(OVF)
(DMTF, 2017). Before this there were different im-
age formats like VMDK, VHD, VDI, etc. Now with a
common image format even if the source image was
something else it could be converted to either OVF or
OVA(open virtualization appliance) and could be im-
ported at the target virtual machine. This helped a lot
for the cause of application portability, however one
couldn’t port an image to a bare metal server,

With the growth in adoption of cloud infrastruc-
ture, researchers tried to find the solution for the prob-
lem for application portability in this new kind of en-
vironment. Cretella and Martino (Cretella and Mar-
tino, 2012) suggested a method for automated analy-
sis of cloud vendors.

Research in application portability in cloud are fo-
cused in two levels of abstraction:

One, at a higher level of abstraction where stan-
dard profiles are created for application where the ca-
pabilities required by the application from the plat-
form is defined in a descriptive language. The capa-
bilities of the platforms can be queried and a mapping
can be done whether application can run on a particu-
lar platform or not. For example, an application pro-
file might mention the requirement as an http server
running on port 80. This requirement can be fulfilled
by platform running either Apache, lighttpd or ng-
inx. This type of application portability research fo-
cuses more on cloud native applications, applications
with microservices architecture, applications that are
highly scalable in design.

Second type of research focuses on a slightly
lower level of abstraction where the application along
with its required dependencies is ported from one in-
frastructure to the other. The infrastructure here can
be Physical, virtual, containers or cloud. This type of
application portability research focuses more on ap-
plication with traditional monolithic and N-tier archi-
tecture.

Different researchers have suggested different ap-
proach to solve the problem of application portabil-
ity in cloud. Petcu et al (D. Petcu and Crciun, 2013)
solution creates a higher layer of abstraction which
abstracts different APIs of different cloud so that the
application finds a common API to work with. The
problem with this approach is that it is not useful
when a set of API is not covered under the abstrac-
tion layer of this solution.

OASIS provided a different approach, a standard
called TOSCA for portability and interoperable op-
erations on cloud applications. Binz et al (T. Binz
and Leymann, 2014) introduces TOSCA as a stan-
dard which provides new way to enable portable au-
tomated deployment and management of composite
applications, TOSCA uses a modeling language to
formalize the application structure as typed topology
graph. TOSCA has since been very popular with re-
searchers with implementation done by Katasaros et.
al. (G. Katsaros and Eberhardt, 2014) and Antoniades
et. al. (D. Antoniades and Kornmayer, 2015).

There are however other approaches or notable ex-
perimental work done by:

Gonidis reported an experimental work with dif-
ferent PaaS platforms. Munnisso demonstrates a
proof-of-concept for application portability of cloud
application that consumes restful APIs using an al-
gorithm for mapping the application to its cloud re-
source.

3 OBJECTIVE AND MOTIVATION

There are several use cases that are the objective of
this work like upgradation of an existing linux system,
moving of workload from physical/virtual to cloud,
regulatory and compliance requirements. However,
the main motivation is to find a solution to avoid ven-
dor lock-in for a paid linux distribution. The linux
distributions like Amazon Linux, Canonical Linux,
Oracle Linux RHEL, SLES provides great services
and support to their customers but sometimes when
the consumer wants to port from one distro to another
there is no easy way to do that.

In december 2020 Redhat announced that they
will discontinue centOS in its original format used by

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

274



thousands of consumers running millions of servers
(RedHat, ) forcing them either use paid version of
RedHat or use a version that is of no use to them. This
was a real life situation which motivated us to build a
solution to port workloads from one linux distribution
to another. In this work we are demonstrating how the
above problem can be solved in an automated way.

4 METHODOLOGY

To port non cloud-native application from one linux
distribution to another we have used machinery tool
and developed additional features in this tool that
helps us to achieve the application portability. We had
to answer three questions in order to build our solu-
tion.
What Constitute an Application? A clear definition
of application is very necessary to perform its migra-
tion. What may be an application for one user may be
an Linux distribution feature or dependency for an-
other user. Defining what is application is also neces-
sary as not every application comes in the packaging
format of the linux distribution package manager. For
example a python application may not have been in-
stalled by RPM or DEB and instead it may have been
installed by ”pip”. Similarly a ruby application may
have been installed by ”gem” instead of the distribu-
tion specific package manager. A tomcat or apache
applicaion may simply be a collection of files in their
document root. We have therefore arrived at follow-
ing definition that can be put into a program logic to
identify the application from the rest of the operating
system:

1. It has to be RPM package that is not part of the
base OS. Please see section 4.1.1 to see what we
have assumed as the base OS.

2. It has to be a ”pip” installed python application

3. It has to be a ”gem” installed ruby application

4. It has to be a ”npm” installed javascript applica-
tion

5. It has to be tomcat application stored in its stan-
dard document root as per its linux distribution

6. It has to be apache web application in its standard
document root as per its linux distribution.

Above definition is used for a working boundary
and it can be extended with additional criteria for in-
cluding more sets of applications.
How to Optimize Machinery System Descriptions
So That It only Captures the Application and Not
the Rest of the OS? To filter only the contents of
applications (rpm and other packages, configuration,

managed and unmanaged files etc) we first compare
the system descriptions of the source system and the
base of the source system. A base system is a plain
vanilla installation of that particular linux distribution
which doesn’t have installed on it. The comparsion
gives us a diff of the two system description. This is
further optimized to remove any distrubution specific
content and finally only the application related con-
tents are left. This is also explained in Algorithm 1.
How to Convert from Source System Description
to Target i. e. RPM Names etc? In different linux
distributions the names of many packages are dif-
ferent. Even for the distributions using same pack-
age manager for example centOS and openSUSE uses
RPM package manager the names of the package re-
lated to apache web servers are different. On Cen-
tOS the name for apache web server is ”httpd” while
on openSUSE it is ”apache2”. There are many many
more packages that have different names. Our method
for conersion involves using tools like ”zypper” and
”dnf” to match the binaries and libraries from the tar-
get distribution repository. Once the match is found
then the system description content is replaced ac-
cordingly from source content to target content.

4.1 Experiment: Portability of
Application from One Linux
Platform to Another Linux Platform

Automated porting of application from linux distribu-
tion to another is a big challenge. We have chosen one
distro of RedHat family as the source and one distro
of SUSE family as the target. There are many differ-
ence between the two distros such as software pack-
ages names are different in Red Hat family of Linux
and SUSE family of linux. Users and groups may
have different UIDs, GIDs. Configuration files for
the same packages may have different locations for
these two families of linux. A simple free command
shows slightly different output when run on these two
flavour of linux. Therefore an automated porting has
to be done very carefully.

4.1.1 Assumptions

To come up with an automated solution we have to
make a very basic assumption. The assumption is
that a minimal OS installation of these two flavours
are equal. By minimal installation we mean only
OS has been installed without any additional appli-
cation server or database services installation. More
granularly, a minimal installation is: Linux Standard
Base(LSB), X-Window environment, Gnome or KDE
desktop environment, other basic utilities to provide

Porting Non Cloud-native Applications across Linux Distributions: A Practical Approach

275



Algorithm 1: Port system description of one version or distribution type to another version or distribution type.

Command=”port”, argument1=”sname” (for source name), argument2=”tname” (for target name)
Legends:
← = assignment, <action> direction
: = action
:: = derives subclass
.function(arg) = executes function using argument arg

1: ”dsname”← system description(sname)
2: ”sbase”← name(Search : {OS,architecture}← source)
3: ”dsbase”← system description(Search : {OS,architecture}← source)
4: Input : target← choices
5: ”tbase”← name(target)
6: ”dtbase”← system description(target)
7: Machinery::PortTask.new()
8: Machinery::PortTask(sname, dsname, sbase, dsbase, tbase, dtbase, tname)
9: Create(Dir) : {name : tname, parent dir : DEFAULT CONFIG DIR}
10: jsonparse({sname,sbase, tbase})
11: ”s di f f ”← ”dsname”− ”dsbase”
12: ”plist”← rpm names(Run remotecommand : sname(rpm−group : {”SystemEnvironment/Daemons”,”Applications/Engineering”}))
13: c← 0
14: l1← length o f array s di f f [”packages”][” elements”]
15: l2← length o f the array ”plist”
16: for i ∈ {1, . . . , l1−1} do
17: h← hash o f s di f f [”packages”][” elements”][c]
18: name← h[”name”]
19: if plist includesname? then
20: c=c+1
21: next i
22: else
23: delete h from s diff[”packages”][” elements”]
24: next i
25: end if
26: end for
27: ” f list”← unmanaged f iles to be deleted f rom target
28: c← 0
29: l1← length o f array s di f f [”unmanaged”][” elements”]
30: l2← length o f the array ” f list”
31: for i ∈ {1, . . . , l1−1} do
32: q← 0
33: h← hash o f s di f f [”unmanaged”][” elements”][c]
34: name← h[”name”]
35: for j ∈ {1, . . . , l2−1} do
36: if name starts with f list[ j]? then
37: s di f f [”unmanaged”][” elements”][h].delete()
38: next j
39: else
40: q← 1
41: end if
42: end for
43:
44: if q = 0? then
45: c=c+1
46: next i
47: else
48: next i
49: end if
50: end for
51: for all s di f f [”packages”][” elements”] as s do
52: spname← s[”name”]
53: ”t pname”← Run remote command : ”tbase”(rpm name = ”spname”))
54: s[”version”]← t pname[”version”]
55: s[”release”]← ””
56: s[”arch”]← t pname[”arch”]
57: s[”vendor”]← t pname[”vendor”]
58: s[”cheksum”]← ””
59: end for
60: tdes← dtbase+ s di f f

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

276



a graphical interface to user. It can also be under-
stood in this way that when we install RedHat/Cen-
tOS manually at one point it gives us a choice for soft-
ware selection. There if we choose server with GUI,
that is our definition of minimal. Similarly in case of
SUSE/OpenSUSE it gives a choice of interface during
manual installation and if we choose Gnome Environ-
ment, that is our minimal. The reason for choosing a
graphical environment in minimal system is that in
every practical installation we see graphical environ-
ment. If we do not chose a graphical environment
then our difference from this minimal system and our
source system which we want to port will be huge.

Figure 1: Conceptual Depiction of problem of linux appli-
cation portability

4.1.2 Settings

Now that we have defined what is a minimal OS in-
stallation, we take a machinery system description of
this minimal system which will become our base sys-
tem description for reference and for calculating dif-
ference. Secondly we take a system description of our
source system. Lets suppose our source system is a
CentOS and we want to port it to openSUSE. We find
out the difference between CentOS minimal and Cen-
tOS source by compare command of the machinery
tool and store it into a file.

Now, we had to create another script which will
read the content of this ”diff” file and check from the
rpm package file list which are the equivalent rpm
packages containing the same binaries and libraries
and then substitute those rpm names with equivalent
names of the target system. In this experiment’s case
openSUSE system.

desc ”Move sys tem d e s c r i p t i o n ”
l o n g d e s c <<−LONGDESC

Move a sys tem d e s c r i p t i o n .

The sys tem d e s c r i p t i o n name i s
↪→ changed t o t h e p r o v i d e d
↪→ name .

LONGDESC

a r g ”FROM NAME”
a r g ”TO NAME”
command ”move” do | c |

c . a c t i o n do | g l o b a l o p t i o n s ,
↪→ o p t i o n s , a r g s |

from = s h i f t a r g ( a rgs , ”
↪→ FROM NAME” )

t o = s h i f t a r g ( a rgs
↪→ , ”TO NAME” )

t a s k = MoveTask . new
t a s k . move (

↪→ s y s t e m d e s c r i p t i o n s t o r e ,
↪→ from , t o )

end
end

desc ” P o r t System D e s c r i p t i o n ”
l o n g d e s c <<−LONGDESC
P o r t a sys tem d e s c r i p t i o n .
The s o u r c e sys tem d e s c r i p t i o n i s

↪→ p o r t e d t o t a r g e t l i n u x
↪→ p l a t f o r m ( e . g . CentOS −>
↪→ openSUSE )

LONGDESC
a r g ”SOURCE NAME”
a r g ”SOURCE BASE”
a r g ”TARGET BASE”
a r g ”TARGET NAME”
command ” p o r t ” do | c |

c . a c t i o n do | g l o b a l o p t i o n s ,
↪→ o p t i o n s , a r g s |

sname = s h i f t a r g ( a rgs , ”
↪→ SOURCE NAME” )

dsname = S y s t e m D e s c r i p t i o n . l o a d
↪→ ( sname ,
↪→ s y s t e m d e s c r i p t i o n s t o r e )

s b a s e = s h i f t a r g ( a rgs , ”
↪→ SOURCE BASE” )

d s b a s e = S y s t e m D e s c r i p t i o n . l o a d
↪→ ( sbase ,
↪→ s y s t e m d e s c r i p t i o n s t o r e )

t b a s e = s h i f t a r g ( a rgs , ”
↪→ TARGET BASE” )

d t b a s e = S y s t e m D e s c r i p t i o n . l o a d
↪→ ( t b a s e ,
↪→ s y s t e m d e s c r i p t i o n s t o r e )

tname = s h i f t a r g ( a rgs , ”
↪→ TARGET NAME” )

t a s k = P o r t T a s k . new
t a s k . p o r t ( sname , dsname , sbase ,

↪→ dsbase , t b a s e , d t b a s e ,
↪→ tname )

end
end
desc ” Deploy image t o OpenStack

↪→ c l o u d ”
l o n g d e s c <<−LONGDESC

Porting Non Cloud-native Applications across Linux Distributions: A Practical Approach

277



Once the conversion of the diff or extra system
description is complete we can add this diff or extra
system description to the base or minimal install of
the target distribution and then export the final system
description as either autoyast profile if the target dis-
tribution belongs to SUSE family or as kickstart pro-
file if the target distribution belongs to RedHat fam-
ily. Since in our experiment’s the target distribution
is openSUSE therefore we exported the final system
description as autoyast profile. These autoyast/kick-
start profile are further used to build a deployable ISO
image which can be used to deploy on the target in-
frastructure which can be physical, virtual or cloud.

Figure 2: Conceptual Depiction of solution of linux appli-
cation portability.

5 RESULT AND FUTURE WORK

This experiment is a proof-of-concept that non cloud-
native applications and services can be ported be-
tween different flavours of linux. We were able to
improve the capabilities of the machinery tool in a
way that it can be used for porting of whole appli-
cation workloads from one operating environment to
another.

Table 1: Results of contribution in Machinery tool.

S.No. Features Before
Contri-
bution

After
Contri-
bution

1 Inspect system and cre-
ate system description

Yes Yes

2 Compare two system
descriptions

Yes Yes

3 Store difference after
comparison

No Yes

4 Convert difference to
the equivalent of target
linux distro

No Yes

5 Apply the difference to
a target base system de-
scription

No Yes

6 Export system descrip-
tion to a autoinstall pro-
file

Only
Autoy-
ast

Autoyast
and
Kick-
start

Successful application portability requires support
both from the infrastructure as well as applications.
While working on this we realised that the challenge
of identifying the application layer of software or the
software or services that needs to be ported can be
solved a small information is added to the rpm pack-
ages, therefore, we recommend that porting of linux
applications can become easier if while creating rpms
of applications we set a portable flag in the rpm infor-
mation e.g. instead of rpm-group name System Envi-
ronment/Daemon we may give the rpm-group name
as System Environment/Daemon:Portable so that it
can easily be identified as an rpm package that can
easily be ported to a new version or a different linux
distribution.

We made several enhancement to the original
machinery tools to achieve the target of application
portability. Here is a list of contributions done.

In the enterprise segment the type of operating
systems used as platform for hosting applications are
very few. Apart from linux, which is the most grow-
ing operating system, windows and unix flavours like
HP UX, IBM AIX and Solaris are the only other op-
erating systems that are predominantly used.

REFERENCES

Cretella, G. and Martino, B. D. (2012). Towards automatic
analysis of cloud vendors apis for supporting cloud
application portability. 375:61–67.

D. Antoniades, N. Loulloudes, A. F. C. S. D. T. G. P. M. D.
and Kornmayer, H. (2015). Enabling cloud applica-
tion portability, proceedings of the 8th international
conference on utility and cloud computing. pages
354–360.

CLOSER 2022 - 12th International Conference on Cloud Computing and Services Science

278



D. Petcu, G. Macariu, S. P. and Crciun, C. (2013).
Portable cloud applications-from theory to practice.
29(6):1417–1430.

DMTF (2017). Information technology open virtualization
format (ovf) specification. pages 1–61.

Foundation, T. L. Filesystem hierarchy standard (fhs). http
s://refspecs.linuxfoundation.org/FHS3.0/fhs-3.0.pdf.
last accessed: Dec 24, 2021.

Foundation, T. L. Linux standard base (lsb). https://wiki.l
inuxfoundation.org/lsb/start. last accessed: Dec 24,
2021.

G. Katsaros, M. Menzel, A. L. J. R. R. R. S. and Eberhardt,
J. (2014). Cloud application portability with tosca,
chef and openstack. 302:295–385.

Gartner. Gartner market share analysis server operating sys-
tem, worldwide 2016. https://www.gartner.com/doc/
3731017/market-share-analysis-server-operating.
last accessed: Oct 20, 2020.

Group, P. (1988). Ieee standard portable operating system
interface for computer environments. pages 1–40.

Group, P. (2018). Ieee standard for information tech-
nology–portable operating system interface (posix(r))
base specifications. pages 1–3951.

Hankinson, A. (1990). Open system standards: A us gov-
ernment perspective. 10:207–211.

Kumar, S. and Das, S. (2021). An open source and practi-
cal approach to x2x linux workload migration. page
1791–1796.

Mooney, J. (1990). Strategies for supporting application
portability. Computer, 23(11):59–70.

RedHat. Centos stream: Building an innovative future for
enterprise linux. https://www.redhat.com/en/blog/cen
tos-stream-building-innovative-future-enterprise-lin
ux. last accessed: Jan 16, 2022.

Ribiere, A. (2008). Using virtualization to improve dura-
bility and portability of industrial applications. pages
1545–1550.

T. Binz, U. Breitenbcher, O. K. and Leymann, F. (2014).
Tosca: Portable automated deployment and manage-
ment of cloud applications.

Taylor, C. (1987). The x/open group and the common ap-
plication environment. 5(4):665 – 679.

Porting Non Cloud-native Applications across Linux Distributions: A Practical Approach

279


